summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_trans.h
Commit message (Collapse)AuthorAgeFilesLines
* xfs: rename _zone variables to _cacheDarrick J. Wong2021-10-221-1/+1
| | | | | | | | Now that we've gotten rid of the kmem_zone_t typedef, rename the variables to _cache since that's what they are. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
* xfs: remove kmem_zone typedefDarrick J. Wong2021-10-221-1/+1
| | | | | | | Remove these typedefs by referencing kmem_cache directly. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
* xfs: formalize the process of holding onto resources across a defer rollDarrick J. Wong2021-10-141-6/+0
| | | | | | | | | | Transaction users are allowed to flag up to two buffers and two inodes for ownership preservation across a deferred transaction roll. Hoist the variables and code responsible for this out of xfs_defer_trans_roll so that we can use it for the defer capture mechanism. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
* xfs: xfs_log_force_lsn isn't passed a LSNDave Chinner2021-06-211-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In doing an investigation into AIL push stalls, I was looking at the log force code to see if an async CIL push could be done instead. This lead me to xfs_log_force_lsn() and looking at how it works. xfs_log_force_lsn() is only called from inode synchronisation contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn value as the LSN to sync the log to. This gets passed to xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the journal, and then used by xfs_log_force_lsn() to flush the iclogs to the journal. The problem is that ip->i_itemp->ili_last_lsn does not store a log sequence number. What it stores is passed to it from the ->iop_committing method, which is called by xfs_log_commit_cil(). The value this passes to the iop_committing method is the CIL context sequence number that the item was committed to. As it turns out, xlog_cil_force_lsn() converts the sequence to an actual commit LSN for the related context and returns that to xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn" variable that contained a sequence with an actual LSN and then uses that to sync the iclogs. This caused me some confusion for a while, even though I originally wrote all this code a decade ago. ->iop_committing is only used by a couple of log item types, and only inode items use the sequence number it is passed. Let's clean up the API, CIL structures and inode log item to call it a sequence number, and make it clear that the high level code is using CIL sequence numbers and not on-disk LSNs for integrity synchronisation purposes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* xfs: remove obsolete AGF counter debuggingDarrick J. Wong2021-04-291-15/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In commit f8f2835a9cf3 we changed the behavior of XFS to use EFIs to remove blocks from an overfilled AGFL because there were complaints about transaction overruns that stemmed from trying to free multiple blocks in a single transaction. Unfortunately, that commit missed a subtlety in the debug-mode transaction accounting when a realtime volume is attached. If a realtime file undergoes a data fork mapping change such that realtime extents are allocated (or freed) in the same transaction that a data device block is also allocated (or freed), we can trip a debugging assertion. This can happen (for example) if a realtime extent is allocated and it is necessary to reshape the bmbt to hold the new mapping. When we go to allocate a bmbt block from an AG, the first thing the data device block allocator does is ensure that the freelist is the proper length. If the freelist is too long, it will trim the freelist to the proper length. In debug mode, trimming the freelist calls xfs_trans_agflist_delta() to record the decrement in the AG free list count. Prior to f8f28 we would put the free block back in the free space btrees in the same transaction, which calls xfs_trans_agblocks_delta() to record the increment in the AG free block count. Since AGFL blocks are included in the global free block count (fdblocks), there is no corresponding fdblocks update, so the AGFL free satisfies the following condition in xfs_trans_apply_sb_deltas: /* * Check that superblock mods match the mods made to AGF counters. */ ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) == (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta + tp->t_ag_btree_delta)); The comparison here used to be: (X + 0) == ((X+1) + -1 + 0), where X is the number blocks that were allocated. After commit f8f28 we defer the block freeing to the next chained transaction, which means that the calls to xfs_trans_agflist_delta and xfs_trans_agblocks_delta occur in separate transactions. The (first) transaction that shortens the free list trips on the comparison, which has now become: (X + 0) == ((X) + -1 + 0) because we haven't freed the AGFL block yet; we've only logged an intention to free it. When the second transaction (the deferred free) commits, it will evaluate the expression as: (0 + 0) == (1 + 0 + 0) and trip over that in turn. At this point, the astute reader may note that the two commits tagged by this patch have been in the kernel for a long time but haven't generated any bug reports. How is it that the author became aware of this bug? This originally surfaced as an intermittent failure when I was testing realtime rmap, but a different bug report by Zorro Lang reveals the same assertion occuring on !lazysbcount filesystems. The common factor to both reports (and why this problem wasn't previously reported) becomes apparent if we consider when xfs_trans_apply_sb_deltas is called by __xfs_trans_commit(): if (tp->t_flags & XFS_TRANS_SB_DIRTY) xfs_trans_apply_sb_deltas(tp); With a modern lazysbcount filesystem, transactions update only the percpu counters, so they don't need to set XFS_TRANS_SB_DIRTY, hence xfs_trans_apply_sb_deltas is rarely called. However, updates to the count of free realtime extents are not part of lazysbcount, so XFS_TRANS_SB_DIRTY will be set on transactions adding or removing data fork mappings to realtime files; similarly, XFS_TRANS_SB_DIRTY is always set on !lazysbcount filesystems. Dave mentioned in response to an earlier version of this patch: "IIUC, what you are saying is that this debug code is simply not exercised in normal testing and hasn't been for the past decade? And it still won't be exercised on anything other than realtime device testing? "...it was debugging code from 1994 that was largely turned into dead code when lazysbcounters were introduced in 2007. Hence I'm not sure it holds any value anymore." This debugging code isn't especially helpful - you can modify the flcount on one AG and the freeblks of another AG, and it won't trigger. Add the fact that nobody noticed for a decade, and let's just get rid of it (and start testing realtime :P). This bug was found by running generic/051 on either a V4 filesystem lacking lazysbcount; or a V5 filesystem with a realtime volume. Cc: bfoster@redhat.com, zlang@redhat.com Fixes: f8f2835a9cf3 ("xfs: defer agfl block frees when dfops is available") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: use current->journal_info for detecting transaction recursionDave Chinner2021-02-251-0/+30
| | | | | | | | | | | | | | | | | Because the iomap code using PF_MEMALLOC_NOFS to detect transaction recursion in XFS is just wrong. Remove it from the iomap code and replace it with XFS specific internal checks using current->journal_info instead. [djwong: This change also realigns the lifetime of NOFS flag changes to match the incore transaction, instead of the inconsistent scheme we have now.] Fixes: 9070733b4efa ("xfs: abstract PF_FSTRANS to PF_MEMALLOC_NOFS") Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: refactor inode ownership change transaction/inode/quota allocation idiomDarrick J. Wong2021-02-031-0/+3
| | | | | | | | | | | | | | | | | | For file ownership (uid, gid, prid) changes, create a new helper xfs_trans_alloc_ichange that allocates a transaction and reserves the appropriate amount of quota against that transction in preparation for a change of user, group, or project id. Replace all the open-coded idioms with a single call to this helper so that we can contain the retry loops in the next patchset. This changes the locking behavior for ichange transactions slightly. Since tr_ichange does not have a permanent reservation and cannot roll, we pass XFS_ILOCK_EXCL to ijoin so that the inode will be unlocked automatically at commit time. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: refactor inode creation transaction/inode/quota allocation idiomDarrick J. Wong2021-02-031-0/+6
| | | | | | | | | | | | | | | | | | | For file creation, create a new helper xfs_trans_alloc_icreate that allocates a transaction and reserves the appropriate amount of quota against that transction. Replace all the open-coded idioms with a single call to this helper so that we can contain the retry loops in the next patchset. This changes the locking behavior for non-tempfile creation slightly, in that we now make the quota reservation without holding the directory ILOCK. While the dquots chosen for inode creation are based on the directory state at a given point in time, the directory ILOCK was released as soon as the dquot references are picked up. Hence it was never necessary to hold the directory ILOCK for the quota reservation. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: allow reservation of rtblocks with xfs_trans_alloc_inodeDarrick J. Wong2021-02-031-1/+2
| | | | | | | | | Make it so that we can reserve rt blocks with the xfs_trans_alloc_inode wrapper function, then convert a few more callsites. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: refactor common transaction/inode/quota allocation idiomDarrick J. Wong2021-02-031-0/+3
| | | | | | | | | | | Create a new helper xfs_trans_alloc_inode that allocates a transaction, locks and joins an inode to it, and then reserves the appropriate amount of quota against that transction. Then replace all the open-coded idioms with a single call to this helper. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: periodically relog deferred intent itemsDarrick J. Wong2020-10-071-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There's a subtle design flaw in the deferred log item code that can lead to pinning the log tail. Taking up the defer ops chain examples from the previous commit, we can get trapped in sequences like this: Caller hands us a transaction t0 with D0-D3 attached. The defer ops chain will look like the following if the transaction rolls succeed: t1: D0(t0), D1(t0), D2(t0), D3(t0) t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0) t3: d5(t1), D1(t0), D2(t0), D3(t0) ... t9: d9(t7), D3(t0) t10: D3(t0) t11: d10(t10), d11(t10) t12: d11(t10) In transaction 9, we finish d9 and try to roll to t10 while holding onto an intent item for D3 that we logged in t0. The previous commit changed the order in which we place new defer ops in the defer ops processing chain to reduce the maximum chain length. Now make xfs_defer_finish_noroll capable of relogging the entire chain periodically so that we can always move the log tail forward. Most chains will never get relogged, except for operations that generate very long chains (large extents containing many blocks with different sharing levels) or are on filesystems with small logs and a lot of ongoing metadata updates. Callers are now required to ensure that the transaction reservation is large enough to handle logging done items and new intent items for the maximum possible chain length. Most callers are careful to keep the chain lengths low, so the overhead should be minimal. The decision to relog an intent item is made based on whether the intent was logged in a previous checkpoint, since there's no point in relogging an intent into the same checkpoint. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: proper replay of deferred ops queued during log recoveryDarrick J. Wong2020-10-071-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we replay unfinished intent items that have been recovered from the log, it's possible that the replay will cause the creation of more deferred work items. As outlined in commit 509955823cc9c ("xfs: log recovery should replay deferred ops in order"), later work items have an implicit ordering dependency on earlier work items. Therefore, recovery must replay the items (both recovered and created) in the same order that they would have been during normal operation. For log recovery, we enforce this ordering by using an empty transaction to collect deferred ops that get created in the process of recovering a log intent item to prevent them from being committed before the rest of the recovered intent items. After we finish committing all the recovered log items, we allocate a transaction with an enormous block reservation, splice our huge list of created deferred ops into that transaction, and commit it, thereby finishing all those ops. This is /really/ hokey -- it's the one place in XFS where we allow nested transactions; the splicing of the defer ops list is is inelegant and has to be done twice per recovery function; and the broken way we handle inode pointers and block reservations cause subtle use-after-free and allocator problems that will be fixed by this patch and the two patches after it. Therefore, replace the hokey empty transaction with a structure designed to capture each chain of deferred ops that are created as part of recovering a single unfinished log intent. Finally, refactor the loop that replays those chains to do so using one transaction per chain. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: remove XFS_LI_RECOVEREDDarrick J. Wong2020-10-071-3/+1
| | | | | | | | | | | The ->iop_recover method of a log intent item removes the recovered intent item from the AIL by logging an intent done item and committing the transaction, so it's superfluous to have this flag check. Nothing else uses it, so get rid of the flag entirely. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: do the assert for all the log done items in xfs_trans_cancelKaixu Xia2020-09-251-0/+16
| | | | | | | | | | | | We should do the assert for all the log intent-done items if they appear here. This patch detect intent-done items by the fact that their item ops don't have iop_unpin and iop_push methods and also move the helper xlog_item_is_intent to xfs_trans.h. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: simplify xfs_trans_getsbChristoph Hellwig2020-09-151-1/+1
| | | | | | | | | | Remove the mp argument as this function is only called in transaction context, and open code xfs_getsb given that the function already accesses the buffer pointer in the mount point directly. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: unwind log item error flaggingDave Chinner2020-07-071-1/+0
| | | | | | | | | | | | | | | When an buffer IO error occurs, we want to mark all the log items attached to the buffer as failed. Open code the error handling loop so that we can modify the flagging for the different types of objects directly and independently of each other. This also allows us to remove the ->iop_error method from the log item operations. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: get rid of log item callbacksDave Chinner2020-07-071-4/+0
| | | | | | | | | | | They are not used anymore, so remove them from the log item and the buffer iodone attachment interfaces. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: refactor intent item RECOVERED flag into the log itemDarrick J. Wong2020-05-081-1/+3
| | | | | | | | | | Rename XFS_{EFI,BUI,RUI,CUI}_RECOVERED to XFS_LI_RECOVERED so that we track recovery status in the log item, then get rid of the now unused flags fields in each of those log item types. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: refactor releasing finished intents during log recoveryDarrick J. Wong2020-05-081-0/+1
| | | | | | | | | | Replace the open-coded AIL item walking with a proper helper when we're trying to release an intent item that has been finished. We add a new ->iop_match method to decide if an intent item matches a supplied ID. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: refactor recovered EFI log item playbackDarrick J. Wong2020-05-081-0/+1
| | | | | | | | | | Move the code that processes the log items created from the recovered log items into the per-item source code files and use dispatch functions to call them. No functional changes. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: make xfs_trans_get_buf return an error codeDarrick J. Wong2020-01-261-9/+4
| | | | | | | | | Convert xfs_trans_get_buf() to return numeric error codes like most everywhere else in xfs. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com>
* xfs: make xfs_trans_get_buf_map return an error codeDarrick J. Wong2020-01-261-5/+10
| | | | | | | | | Convert xfs_trans_get_buf_map() to return numeric error codes like most everywhere else in xfs. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com>
* xfs: merge xfs_trans_bmap.c into xfs_bmap_item.cChristoph Hellwig2019-06-281-11/+0
| | | | | | | | | Keep all bmap item related code together. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: merge xfs_trans_rmap.c into xfs_rmap_item.cChristoph Hellwig2019-06-281-11/+0
| | | | | | | | | Keep all rmap item related code together in one file. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: merge xfs_trans_refcount.c into xfs_refcount_item.cChristoph Hellwig2019-06-281-11/+0
| | | | | | | | | Keep all the refcount item related code together in one file. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: merge xfs_trans_extfree.c into xfs_extfree_item.cChristoph Hellwig2019-06-281-8/+0
| | | | | | | | | Keep all the extree item related code together in one file. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: remove the xfs_log_item_t typedefChristoph Hellwig2019-06-281-8/+8
| | | | | | | Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: add a flag to release log items on commitChristoph Hellwig2019-06-281-0/+7
| | | | | | | | | | | We have various items that are released from ->iop_comitting. Add a flag to just call ->iop_release from the commit path to avoid tons of boilerplate code. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: split iop_unlockChristoph Hellwig2019-06-281-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The iop_unlock method is called when comitting or cancelling a transaction. In the latter case, the transaction may or may not be aborted. While there is no known problem with the current code in practice, this implementation is limited in that any log item implementation that might want to differentiate between a commit and a cancellation must rely on the aborted state. The aborted bit is only set when the cancelled transaction is dirty, however. This means that there is no way to distinguish between a commit and a clean transaction cancellation. For example, intent log items currently rely on this distinction. The log item is either transferred to the CIL on commit or released on transaction cancel. There is currently no possibility for a clean intent log item in a transaction, but if that state is ever introduced a cancel of such a transaction will immediately result in memory leaks of the associated log item(s). This is an interface deficiency and landmine. To clean this up, replace the iop_unlock method with an iop_release method that is specific to transaction cancel. The existing iop_committing method occurs at the same time as iop_unlock in the commit path and there is no need for two separate callbacks here. Overload the iop_committing method with the current commit time iop_unlock implementations to eliminate the need for the latter and further simplify the interface. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: remove unused flags arg from getsb interfacesEric Sandeen2019-06-121-1/+1
| | | | | | | | | The flags value is always passed as 0 so remove the argument. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: const-ify xfs_owner_info argumentsDarrick J. Wong2018-12-121-1/+2
| | | | | | | | | | Only certain functions actually change the contents of an xfs_owner_info; the rest can accept a const struct pointer. This will enable us to save stack space by hoisting static owner info types to be const global variables. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: idiotproof defer op type configurationDarrick J. Wong2018-12-121-4/+0
| | | | | | | | | | | | Recently, we forgot to port a new defer op type to xfsprogs, which caused us some userspace pain. Reorganize the way we make libxfs clients supply defer op type information so that all type information has to be provided at build time instead of risky runtime dynamic configuration. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
* xfs: fix buffer state management in xrep_findroot_blockDarrick J. Wong2018-10-181-0/+1
| | | | | | | | | | | | | | | | | | | | | We don't handle buffer state properly in online repair's findroot routine. If a buffer already has b_ops set, we don't ever want to touch that, and we don't want to call the read verifiers on a buffer that could be dirty (CRCs are only recomputed during log checkpoints). Therefore, be more careful about what we do with a buffer -- if someone else already attached ops that are not the ones for this btree type, just ignore the buffer. We only attach our btree type's buf ops if it matches the magic/uuid and structure checks. We also modify xfs_buf_read_map to allow callers to set buffer ops on a DONE buffer with NULL ops so that repair doesn't leave behind buffers which won't have buffers attached to them. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: fold dfops into the transactionBrian Foster2018-08-021-6/+2
| | | | | | | | | | | | | | | struct xfs_defer_ops has now been reduced to a single list_head. The external dfops mechanism is unused and thus everywhere a (permanent) transaction is accessible the associated dfops structure is as well. Remove the xfs_defer_ops structure and fold the list_head into the transaction. Also remove the last remnant of external dfops in xfs_trans_dup(). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: replace xfs_defer_ops ->dop_pending with on-stack listBrian Foster2018-08-021-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | The xfs_defer_ops ->dop_pending list is used to track active deferred operations once intents are logged. These items must be aborted in the event of an error. The list is populated as intents are logged and items are removed as they complete (or are aborted). Now that xfs_defer_finish() cancels on error, there is no need to ever access ->dop_pending outside of xfs_defer_finish(). The list is only ever populated after xfs_defer_finish() begins and is either completed or cancelled before it returns. Remove ->dop_pending from xfs_defer_ops and replace it with a local list in the xfs_defer_finish() path. Pass the local list to the various helpers now that it is not accessible via dfops. Note that we have to check for NULL in the abort case as the final tx roll occurs outside of the scope of the new local list (once the dfops has completed and thus drained the list). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: drop dop param from xfs_defer_op_type ->finish_item() callbackBrian Foster2018-08-021-5/+5
| | | | | | | | | | | | The dfops infrastructure ->finish_item() callback passes the transaction and dfops as separate parameters. Since dfops is always part of a transaction, the latter parameter is no longer necessary. Remove it from the various callbacks. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: automatic dfops inode reloggingBrian Foster2018-08-021-3/+0
| | | | | | | | | | | | | | | | | | Inodes that are held across deferred operations are explicitly joined to the dfops structure to ensure appropriate relogging. While inodes are currently joined explicitly, we can detect the conditions that require relogging at dfops finish time by inspecting the transaction item list for inodes with ili_lock_flags == 0. Replace the xfs_defer_ijoin() infrastructure with such detection and automatic relogging of held inodes. This eliminates the need for the per-dfops inode list, replaced by an on-stack variant in xfs_defer_trans_roll(). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: automatic dfops buffer reloggingBrian Foster2018-08-021-1/+0
| | | | | | | | | | | | | | | | | | Buffers that are held across deferred operations are explicitly joined to the dfops structure to ensure appropriate relogging. While buffers are currently joined explicitly, we can detect the conditions that require relogging at dfops finish time by inspecting the transaction item list for held buffers. Replace the xfs_defer_bjoin() infrastructure with such detection and automatic relogging of held buffers. This eliminates the need for the per-dfops buffer list, replaced by an on-stack variant in xfs_defer_trans_roll(). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: replace dop_low with transaction flagBrian Foster2018-08-021-2/+0
| | | | | | | | | | | | | | | | | | | | | The dop_low field enables the low free space allocation mode when a previous allocation has detected difficulty allocating blocks. It has historically been part of the xfs_defer_ops structure, which means if enabled, it remains enabled across a set of transactions until the deferred operations have completed and the dfops is reset. Now that the dfops is embedded in the transaction, we can save a bit more space by using a transaction flag rather than a standalone boolean. Drop the ->dop_low field and replace it with a transaction flag that is set at the same points, carried across rolling transactions and cleared on completion of deferred operations. This essentially emulates the behavior of ->dop_low and so should not change behavior. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: remove unused __xfs_defer_cancel() internal helperBrian Foster2018-08-021-3/+0
| | | | | | | | | | With no more external dfops users, there is no need for an xfs_defer_ops cancel wrapper. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: drop unnecessary xfs_defer_finish() dfops parameterBrian Foster2018-07-261-0/+3
| | | | | | | | | | | | | | | | | | | Every caller of xfs_defer_finish() now passes the transaction and its associated ->t_dfops. The xfs_defer_ops parameter is therefore no longer necessary and can be removed. Since most xfs_defer_finish() callers also have to consider xfs_defer_cancel() on error, update the latter to also receive the transaction for consistency. The log recovery code contains an outlier case that cancels a dfops directly without an available transaction. Retain an internal wrapper to support this outlier case for the time being. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: support embedded dfops in transactionBrian Foster2018-07-261-1/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The dfops structure used by multi-transaction operations is typically stored on the stack and carried around by the associated transaction. The lifecycle of dfops does not quite match that of the transaction, but they are tightly related in that the former depends on the latter. The relationship of these objects is tight enough that we can avoid the cumbersome boilerplate code required in most cases to manage them separately by just embedding an xfs_defer_ops in the transaction itself. This means that a transaction allocation returns with an initialized dfops, a transaction commit finishes pending deferred items before the tx commit, a transaction cancel cancels the dfops before the transaction and a transaction dup operation transfers the current dfops state to the new transaction. The dup operation is slightly complicated by the fact that we can no longer just copy a dfops pointer from the old transaction to the new transaction. This is solved through a dfops move helper that transfers the pending items and other dfops state across the transactions. This also requires that transaction rolling code always refer to the transaction for the current dfops reference. Finally, to facilitate incremental conversion to the internal dfops and continue to support the current external dfops mode of operation, create the new ->t_dfops_internal field with a layer of indirection. On allocation, ->t_dfops points to the internal dfops. This state is overridden by callers who re-init a local dfops on the transaction. Once ->t_dfops is overridden, the external dfops reference is maintained as the transaction rolls. This patch adds the fundamental ability to support an internal dfops. All codepaths that perform deferred processing continue to override the internal dfops until they are converted over in subsequent patches. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: pack holes in xfs_defer_ops and xfs_transBrian Foster2018-07-261-1/+1
| | | | | | | | | | | | Both structures have holes due to member alignment. Move dop_low to the end of xfs_defer ops to sanitize the cache line alignment and move t_flags to save 8 bytes in xfs_trans. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: add firstblock field to xfs_transBrian Foster2018-07-111-0/+1
| | | | | | | | | | | | | | | | A firstblock var is typically allocated and initialized along with xfs_defer_ops structures and passed around independent from the associated transaction. To facilitate combining the two, add an optional ->t_firstblock field to xfs_trans that can be used in place of an on-stack variable. The firstblock value follows the lifetime of the transaction, so initialize it on allocation and when a transaction rolls. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: rename xfs_trans ->t_agfl_dfops to ->t_dfopsBrian Foster2018-07-111-1/+1
| | | | | | | | | | | | | | | | | | The ->t_agfl_dfops field is currently used to defer agfl block frees from associated transaction contexts. While all known problematic contexts have already been updated to use ->t_agfl_dfops, the broader goal is defer agfl frees from all callers that already use a deferred operations structure. Further, the transaction field facilitates a good amount of code clean up where the transaction and dfops have historically been passed down through the stack separately. Rename the field to something more generic to prepare to use it as such throughout XFS. This patch does not change behavior. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: convert to SPDX license tagsDave Chinner2018-06-061-13/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Remove the verbose license text from XFS files and replace them with SPDX tags. This does not change the license of any of the code, merely refers to the common, up-to-date license files in LICENSES/ This change was mostly scripted. fs/xfs/Makefile and fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected and modified by the following command: for f in `git grep -l "GNU General" fs/xfs/` ; do echo $f cat $f | awk -f hdr.awk > $f.new mv -f $f.new $f done And the hdr.awk script that did the modification (including detecting the difference between GPL-2.0 and GPL-2.0+ licenses) is as follows: $ cat hdr.awk BEGIN { hdr = 1.0 tag = "GPL-2.0" str = "" } /^ \* This program is free software/ { hdr = 2.0; next } /any later version./ { tag = "GPL-2.0+" next } /^ \*\// { if (hdr > 0.0) { print "// SPDX-License-Identifier: " tag print str print $0 str="" hdr = 0.0 next } print $0 next } /^ \* / { if (hdr > 1.0) next if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 next } /^ \*/ { if (hdr > 0.0) next print $0 next } // { if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 } END { } $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: add bmapi nodiscard flagBrian Foster2018-05-101-1/+2
| | | | | | | | | | | | | Freed extents are unconditionally discarded when online discard is enabled. Define XFS_BMAPI_NODISCARD to allow callers to bypass discards when unnecessary. For example, this will be useful for eofblocks trimming. This patch does not change behavior. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: get rid of the log item descriptorDave Chinner2018-05-101-4/+4
| | | | | | | | | | | | | | | | | | It's just a connector between a transaction and a log item. There's a 1:1 relationship between a log item descriptor and a log item, and a 1:1 relationship between a log item descriptor and a transaction. Both relationships are created and terminated at the same time, so why do we even have the descriptor? Replace it with a specific list_head in the log item and a new log item dirtied flag to replace the XFS_LID_DIRTY flag. Signed-Off-By: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> [darrick: fix up deferred agfl intent finish_item use of LID_DIRTY] Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: log item flags are racyDave Chinner2018-05-101-7/+12
| | | | | | | | | | | | | | | | | The log item flags contain a field that is protected by the AIL lock - the XFS_LI_IN_AIL flag. We use non-atomic RMW operations to set and clear these flags, but most of the updates and checks are not done with the AIL lock held and so are susceptible to update races. Fix this by changing the log item flags to use atomic bitops rather than be reliant on the AIL lock for update serialisation. Signed-Off-By: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: defer agfl block frees when dfops is availableBrian Foster2018-05-091-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The AGFL fixup code executes before every block allocation/free and rectifies the AGFL based on the current, dynamic allocation requirements of the fs. The AGFL must hold a minimum number of blocks to satisfy a worst case split of the free space btrees caused by the impending allocation operation. The AGFL is also updated to maintain the implicit requirement for a minimum number of free slots to satisfy a worst case join of the free space btrees. Since the AGFL caches individual blocks, AGFL reduction typically involves multiple, single block frees. We've had reports of transaction overrun problems during certain workloads that boil down to AGFL reduction freeing multiple blocks and consuming more space in the log than was reserved for the transaction. Since the objective of freeing AGFL blocks is to ensure free AGFL free slots are available for the upcoming allocation, one way to address this problem is to release surplus blocks from the AGFL immediately but defer the free of those blocks (similar to how file-mapped blocks are unmapped from the file in one transaction and freed via a deferred operation) until the transaction is rolled. This turns AGFL reduction into an operation with predictable log reservation consumption. Add the capability to defer AGFL block frees when a deferred ops list is available to the AGFL fixup code. Add a dfops pointer to the transaction to carry dfops through various contexts to the allocator context. Deferring AGFL frees is conditional behavior based on whether the transaction pointer is populated. The long term objective is to reuse the transaction pointer to clean up all unrelated callchains that pass dfops on the stack along with a transaction and in doing so, consistently defer AGFL blocks from the allocator. A bit of customization is required to handle deferred completion processing because AGFL blocks are accounted against a per-ag reservation pool and AGFL blocks are not inserted into the extent busy list when freed (they are inserted when used and released back to the AGFL). Reuse the majority of the existing deferred extent free infrastructure and customize it appropriately to handle AGFL blocks. Note that this patch only adds infrastructure. It does not change behavior because no callers have been updated to pass ->t_agfl_dfops into the allocation code. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>