summaryrefslogtreecommitdiffstats
path: root/fs/xfs
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'for-3.18/core' of git://git.kernel.dk/linux-blockLinus Torvalds2014-10-181-2/+0
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull core block layer changes from Jens Axboe: "This is the core block IO pull request for 3.18. Apart from the new and improved flush machinery for blk-mq, this is all mostly bug fixes and cleanups. - blk-mq timeout updates and fixes from Christoph. - Removal of REQ_END, also from Christoph. We pass it through the ->queue_rq() hook for blk-mq instead, freeing up one of the request bits. The space was overly tight on 32-bit, so Martin also killed REQ_KERNEL since it's no longer used. - blk integrity updates and fixes from Martin and Gu Zheng. - Update to the flush machinery for blk-mq from Ming Lei. Now we have a per hardware context flush request, which both cleans up the code should scale better for flush intensive workloads on blk-mq. - Improve the error printing, from Rob Elliott. - Backing device improvements and cleanups from Tejun. - Fixup of a misplaced rq_complete() tracepoint from Hannes. - Make blk_get_request() return error pointers, fixing up issues where we NULL deref when a device goes bad or missing. From Joe Lawrence. - Prep work for drastically reducing the memory consumption of dm devices from Junichi Nomura. This allows creating clone bio sets without preallocating a lot of memory. - Fix a blk-mq hang on certain combinations of queue depths and hardware queues from me. - Limit memory consumption for blk-mq devices for crash dump scenarios and drivers that use crazy high depths (certain SCSI shared tag setups). We now just use a single queue and limited depth for that" * 'for-3.18/core' of git://git.kernel.dk/linux-block: (58 commits) block: Remove REQ_KERNEL blk-mq: allocate cpumask on the home node bio-integrity: remove the needless fail handle of bip_slab creating block: include func name in __get_request prints block: make blk_update_request print prefix match ratelimited prefix blk-merge: don't compute bi_phys_segments from bi_vcnt for cloned bio block: fix alignment_offset math that assumes io_min is a power-of-2 blk-mq: Make bt_clear_tag() easier to read blk-mq: fix potential hang if rolling wakeup depth is too high block: add bioset_create_nobvec() block: use bio_clone_fast() in blk_rq_prep_clone() block: misplaced rq_complete tracepoint sd: Honor block layer integrity handling flags block: Replace strnicmp with strncasecmp block: Add T10 Protection Information functions block: Don't merge requests if integrity flags differ block: Integrity checksum flag block: Relocate bio integrity flags block: Add a disk flag to block integrity profile block: Add prefix to block integrity profile flags ...
| * Merge branch 'for-linus' into for-3.18/coreJens Axboe2014-09-224-12/+114
| |\ | | | | | | | | | | | | Moving patches from for-linus to 3.18 instead, pull in this changes that will go to Linus today.
| * | block, bdi: an active gendisk always has a request_queue associated with itTejun Heo2014-09-081-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bdev_get_queue() returns the request_queue associated with the specified block_device. blk_get_backing_dev_info() makes use of bdev_get_queue() to determine the associated bdi given a block_device. All the callers of bdev_get_queue() including blk_get_backing_dev_info() assume that bdev_get_queue() may return NULL and implement NULL handling; however, bdev_get_queue() requires the passed in block_device is opened and attached to its gendisk. Because an active gendisk always has a valid request_queue associated with it, bdev_get_queue() can never return NULL and neither can blk_get_backing_dev_info(). Make it clear that neither of the two functions can return NULL and remove NULL handling from all the callers. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Jens Axboe <axboe@fb.com>
* | | Merge branch 'xfs-misc-fixes-for-3.18-3' into for-nextDave Chinner2014-10-1316-61/+57
|\ \ \
| * | | xfs: fix agno increment in xfs_inumbers() loopEric Sandeen2014-10-131-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | caused a regression in xfs_inumbers, which in turn broke xfsdump, causing incomplete dumps. The loop in xfs_inumbers() needs to fill the user-supplied buffers, and iterates via xfs_btree_increment, reading new ags as needed. But the first time through the loop, if xfs_btree_increment() succeeds, we continue, which triggers the ++agno at the bottom of the loop, and we skip to soon to the next ag - without the proper setup under next_ag to read the next ag. Fix this by removing the agno increment from the loop conditional, and only increment agno if we have actually hit the code under the next_ag: target. Cc: stable@vger.kernel.org Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: xfs_iflush_done checks the wrong log item callbackMark Tinguely2014-10-031-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 3013683 ("xfs: remove all the inodes on a buffer from the AIL in bulk") made the xfs inode flush callback more efficient by combining all the inode writes on the buffer and the deletions of the inode log item from AIL. The initial loop in this patch should be looping through all the log items on the buffer to see which items have xfs_iflush_done as their callback function. But currently, only the log item passed to the function has its callback compared to xfs_iflush_done. If the log item pointer passed to the function does have the xfs_iflush_done callback function, then all the log items on the buffer are removed from the li_bio_list on the buffer b_fspriv and could be removed from the AIL even though they may have not been written yet. This problem is masked by the fact that currently all inodes on a buffer will have the same calback function - either xfs_iflush_done or xfs_istale_done - and hence the bug cannot manifest in any way. Still, we need to remove the landmine so that if we add new callbacks in future this doesn't cause us problems. Signed-off-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: flush the range before zero range conversionBrian Foster2014-10-021-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | XFS currently discards delalloc blocks within the target range of a zero range request. Unaligned start and end offsets are zeroed through the page cache and the internal, aligned blocks are converted to unwritten extents. If EOF is page aligned and covered by a delayed allocation extent. The inode size is not updated until I/O completion. If a zero range request discards a delalloc range that covers page aligned EOF as such, the inode size update never occurs. For example: $ rm -f /mnt/file $ xfs_io -fc "pwrite 0 64k" -c "zero 60k 4k" /mnt/file $ stat -c "%s" /mnt/file 65536 $ umount /mnt $ mount <dev> /mnt $ stat -c "%s" /mnt/file 61440 Update xfs_zero_file_space() to flush the range rather than discard delalloc blocks to ensure that inode size updates occur appropriately. [dchinner: Note that this is really a workaround to avoid the underlying problems. More work is needed (and ongoing) to fix those issues so this fix is being added as a temporary stop-gap measure. ] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: restore buffer_head unwritten bit on ioend cancelBrian Foster2014-10-021-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_vm_writepage() walks each buffer_head on the page, maps to the block on disk and attaches to a running ioend structure that represents the I/O submission. A new ioend is created when the type of I/O (unwritten, delayed allocation or overwrite) required for a particular buffer_head differs from the previous. If a buffer_head is a delalloc or unwritten buffer, the associated bits are cleared by xfs_map_at_offset() once the buffer_head is added to the ioend. The process of mapping each buffer_head occurs in xfs_map_blocks() and acquires the ilock in blocking or non-blocking mode, depending on the type of writeback in progress. If the lock cannot be acquired for non-blocking writeback, we cancel the ioend, redirty the page and return. Writeback will revisit the page at some later point. Note that we acquire the ilock for each buffer on the page. Therefore during non-blocking writeback, it is possible to add an unwritten buffer to the ioend, clear the unwritten state, fail to acquire the ilock when mapping a subsequent buffer and cancel the ioend. If this occurs, the unwritten status of the buffer sitting in the ioend has been lost. The page will eventually hit writeback again, but xfs_vm_writepage() submits overwrite I/O instead of unwritten I/O and does not perform unwritten extent conversion at I/O completion. This leads to data corruption because unwritten extents are treated as holes on reads and zeroes are returned instead of reading from disk. Modify xfs_cancel_ioend() to restore the buffer unwritten bit for ioends of type XFS_IO_UNWRITTEN. This ensures that unwritten extent conversion occurs once the page is eventually written back. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: check for null dquot in xfs_quota_calc_throttle()Eric Sandeen2014-10-021-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Coverity spotted this. Granted, we *just* checked xfs_inod_dquot() in the caller (by calling xfs_quota_need_throttle). However, this is the only place we don't check the return value but the check is cheap and future-proof so add it. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: fix crc field handling in xfs_sb_to/from_diskEric Sandeen2014-10-021-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I discovered this in userspace, but the same change applies to the kernel. If we xfs_mdrestore an image from a non-crc filesystem, lo and behold the restored image has gained a CRC: # db/xfs_metadump.sh -o /dev/sdc1 - | xfs_mdrestore - test.img # xfs_db -c "sb 0" -c "p crc" /dev/sdc1 crc = 0 (correct) # xfs_db -c "sb 0" -c "p crc" test.img crc = 0xb6f8d6a0 (correct) This is because xfs_sb_from_disk doesn't fill in sb_crc, but xfs_sb_to_disk(XFS_SB_ALL_BITS) does write the in-memory CRC to disk - so we get uninitialized memory on disk. Fix this by always initializing sb_crc to 0 when we read the superblock, and masking out the CRC bit from ALL_BITS when we write it. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: don't send null bp to xfs_trans_brelse()Eric Sandeen2014-10-021-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In this case, if bp is NULL, error is set, and we send a NULL bp to xfs_trans_brelse, which will try to dereference it. Test whether we actually have a buffer before we try to free it. Coverity spotted this. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: check for inode size overflow in xfs_new_eof()Brian Foster2014-10-021-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If we write to the maximum file offset (2^63-2), XFS fails to log the inode size update when the page is flushed. For example: $ xfs_io -fc "pwrite `echo "2^63-1-1" | bc` 1" /mnt/file wrote 1/1 bytes at offset 9223372036854775806 1.000000 bytes, 1 ops; 0.0000 sec (22.711 KiB/sec and 23255.8140 ops/sec) $ stat -c %s /mnt/file 9223372036854775807 $ umount /mnt ; mount <dev> /mnt/ $ stat -c %s /mnt/file 0 This occurs because XFS calculates the new file size as io_offset + io_size, I/O occurs in block sized requests, and the maximum supported file size is not block aligned. Therefore, a write to the max allowable offset on a 4k blocksize fs results in a write of size 4k to offset 2^63-4096 (e.g., equivalent to round_down(2^63-1, 4096), or IOW the offset of the block that contains the max file size). The offset plus size calculation (2^63 - 4096 + 4096 == 2^63) overflows the signed 64-bit variable which goes negative and causes the > comparison to the on-disk inode size to fail. This returns 0 from xfs_new_eof() and results in no change to the inode on-disk. Update xfs_new_eof() to explicitly detect overflow of the local calculation and use the VFS inode size in this scenario. The VFS inode size is capped to the maximum and thus XFS writes the correct inode size to disk. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: only set extent size hint when askedDave Chinner2014-10-021-2/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently the extent size hint is set unconditionally in xfs_ioctl_setattr() when the FSX_EXTSIZE flag is set. Hence we can set hints when the inode flags indicating the hint should be used are not set. Hence only set the extent size hint from userspace when the inode has the XFS_DIFLAG_EXTSIZE flag set to indicate that we should have an extent size hint set on the inode. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: project id inheritance is a directory only flagDave Chinner2014-10-022-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_set_diflags() allows it to be set on non-directory inodes, and this flags errors in xfs_repair. Further, inode allocation allows the same directory-only flag to be inherited to non-directories. Make sure directory inode flags don't appear on other types of inodes. This fixes several xfstests scratch fileystem corruption reports (e.g. xfs/050) now that xfstests checks scratch filesystems after test completion. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: kill time.hDave Chinner2014-10-025-41/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The typedef for timespecs and nanotime() are completely unnecessary, and delay() can be moved to fs/xfs/linux.h, which means this file can go away. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | xfs: compat_xfs_bstat does not have forkoffDave Chinner2014-10-022-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | struct compat_xfs_bstat is missing the di_forkoff field and so does not fully translate the structure correctly. Fix it. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | | | Merge branch 'xfs-buf-iosubmit' into for-nextDave Chinner2014-10-0212-358/+282
|\ \ \ \
| * | | | xfs: simplify xfs_zero_remaining_bytesChristoph Hellwig2014-10-021-30/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_zero_remaining_bytes() open codes a log of buffer manupulations to do a read forllowed by a write. It can simply be replaced by an uncached read followed by a xfs_bwrite() call. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: check xfs_buf_read_uncached returns correctlyDave Chinner2014-10-025-62/+58
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_buf_read_uncached() has two failure modes. If can either return NULL or bp->b_error != 0 depending on the type of failure, and not all callers check for both. Fix it so that xfs_buf_read_uncached() always returns the error status, and the buffer is returned as a function parameter. The buffer will only be returned on success. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: introduce xfs_buf_submit[_wait]Dave Chinner2014-10-028-128/+117
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is a lot of cookie-cutter code that looks like: if (shutdown) handle buffer error xfs_buf_iorequest(bp) error = xfs_buf_iowait(bp) if (error) handle buffer error spread through XFS. There's significant complexity now in xfs_buf_iorequest() to specifically handle this sort of synchronous IO pattern, but there's all sorts of nasty surprises in different error handling code dependent on who owns the buffer references and the locks. Pull this pattern into a single helper, where we can hide all the synchronous IO warts and hence make the error handling for all the callers much saner. This removes the need for a special extra reference to protect IO completion processing, as we can now hold a single reference across dispatch and waiting, simplifying the sync IO smeantics and error handling. In doing this, also rename xfs_buf_iorequest to xfs_buf_submit and make it explicitly handle on asynchronous IO. This forces all users to be switched specifically to one interface or the other and removes any ambiguity between how the interfaces are to be used. It also means that xfs_buf_iowait() goes away. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: kill xfs_bioerror_relseDave Chinner2014-10-023-44/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is only one caller now - xfs_trans_read_buf_map() - and it has very well defined call semantics - read, synchronous, and b_iodone is NULL. Hence it's pretty clear what error handling is necessary for this case. The bigger problem of untangling xfs_trans_read_buf_map error handling is left to a future patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: xfs_bioerror can die.Dave Chinner2014-10-021-46/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Internal buffer write error handling is a mess due to the unnatural split between xfs_bioerror and xfs_bioerror_relse(). xfs_bwrite() only does sync IO and determines the handler to call based on b_iodone, so for this caller the only difference between xfs_bioerror() and xfs_bioerror_release() is the XBF_DONE flag. We don't care what the XBF_DONE flag state is because we stale the buffer in both paths - the next buffer lookup will clear XBF_DONE because XBF_STALE is set. Hence we can use common error handling for xfs_bwrite(). __xfs_buf_delwri_submit() is a similar - it's only ever called on writes - all sync or async - and again there's no reason to handle them any differently at all. Clean up the nasty error handling and remove xfs_bioerror(). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: kill xfs_bdstrat_cbDave Chinner2014-10-021-23/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Only has two callers, and is just a shutdown check and error handler around xfs_buf_iorequest. However, the error handling is a mess of read and write semantics, and both internal callers only call it for writes. Hence kill the wrapper, and follow up with a patch to sanitise the error handling. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: rework xfs_buf_bio_endio error handlingDave Chinner2014-10-022-2/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently the report of a bio error from completion immediately marks the buffer with an error. The issue is that this is racy w.r.t. synchronous IO - the submitter can see b_error being set before the IO is complete, and hence we cannot differentiate between submission failures and completion failures. Add an internal b_io_error field protected by the b_lock to catch IO completion errors, and only propagate that to the buffer during final IO completion handling. Hence we can tell in xfs_buf_iorequest if we've had a submission failure bey checking bp->b_error before dropping our b_io_remaining reference - that reference will prevent b_io_error values from being propagated to b_error in the event that completion races with submission. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: xfs_buf_ioend and xfs_buf_iodone_work duplicate functionalityDave Chinner2014-10-026-55/+45
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We do some work in xfs_buf_ioend, and some work in xfs_buf_iodone_work, but much of that functionality is the same. This work can all be done in a single function, leaving xfs_buf_iodone just a wrapper to determine if we should execute it by workqueue or directly. hence rename xfs_buf_iodone_work to xfs_buf_ioend(), and add a new xfs_buf_ioend_async() for places that need async processing. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: synchronous buffer IO needs a referenceDave Chinner2014-10-021-9/+42
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When synchronous IO runs IO completion work, it does so without an IO reference or a hold reference on the buffer. The IO "hold reference" is owned by the submitter, and released when the submission is complete. The IO reference is released when both the submitter and the bio end_io processing is run, and so if the io completion work is run from IO completion context, it is run without an IO reference. Hence we can get the situation where the submitter can submit the IO, see an error on the buffer and unlock and free the buffer while there is still IO in progress. This leads to use-after-free and memory corruption. Fix this by taking a "sync IO hold" reference that is owned by the IO and not released until after the buffer completion calls are run to wake up synchronous waiters. This means that the buffer will not be freed in any circumstance until all IO processing is completed. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: Don't use xfs_buf_iowait in the delwri buffer codeDave Chinner2014-10-021-5/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For the special case of delwri buffer submission and waiting, we don't need to issue IO synchronously at all. The second pass to call xfs_buf_iowait() can be replaced with blocking on xfs_buf_lock() - the buffer will be unlocked when the async IO is complete. This formalises a sane the method of waiting for async IO - take an extra reference, submit the IO, call xfs_buf_lock() when you want to wait for IO completion. i.e.: bp = xfs_buf_find(); xfs_buf_hold(bp); bp->b_flags |= XBF_ASYNC; xfs_buf_iosubmit(bp); xfs_buf_lock(bp) error = bp->b_error; .... xfs_buf_relse(bp); While this is somewhat racy for gathering IO errors, none of the code that calls xfs_buf_delwri_submit() will race against other users of the buffers being submitted. Even if they do, we don't really care if the error is detected by the delwri code or the user we raced against. Either way, the error will be detected and handled. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: force the log before shutting downDave Chinner2014-10-021-38/+17
| | |/ / | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we have marked the filesystem for shutdown, we want to prevent any further buffer IO from being submitted. However, we currently force the log after marking the filesystem as shut down, hence allowing IO to the log *after* we have marked both the filesystem and the log as in an error state. Clean this up by forcing the log before we mark the filesytem with an error. This replaces the pure CIL flush that we currently have which works around this same issue (i.e the CIL can't be flushed once the shutdown flags are set) and hence enables us to clean up the logic substantially. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | | | Merge branch 'xfs-sparse-fixes' into for-nextDave Chinner2014-09-295-11/+9
|\ \ \ \
| * | | | xfs: annotate user variables passed as voidDave Chinner2014-09-291-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Some argument callbacks can contain user buffers, and sparse warns about passing them as void pointers. Cast appropriately to remove the sparse warnings. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: xfs_kset should be static Dave Chinner2014-09-292-4/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As it is accessed through the struct xfs_mount and can be set up entirely from fs/xfs/xfs_super.c Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: xfs_qm_dquot_isolate needs locking annotations for sparseDave Chinner2014-09-291-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To remove noise from the build. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: fix use of agi_newino in finobt lookupDave Chinner2014-09-291-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Sparse warns that we are passing the big-endian valueo f agi_newino to the initial btree lookup function when trying to find a new inode. This is wrong - we need to pass the host order value, not the disk order value. This will adversely affect the next inode allocated, but given that the free inode btree is usually much smaller than the allocated inode btree it is much less likely to be a performance issue if we start the search in the wrong place. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | | | | Merge branch 'xfs-trans-recover-cleanup' into for-nextDave Chinner2014-09-291-256/+308
|\ \ \ \ \
| * | | | | xfs: refactor recovery transaction start handlingDave Chinner2014-09-291-43/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rework the transaction lookup and allocation code in xlog_recovery_process_ophdr() to fold two related call-once helper functions into a single helper. Then fold in all the XLOG_START_TRANS logic to that helper to clean up the remaining logic in xlog_recovery_process_ophdr(). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | | xfs: reorganise transaction recovery item codeDave Chinner2014-09-291-179/+179
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The code for managing transactions anf the items for recovery is spread across 3 different locations in the file. Move them all together so that it is easy to read the code without needing to jump long distances in the file. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | | xfs: fix double free in xlog_recover_commit_transDave Chinner2014-09-291-2/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When an error occurs during buffer submission in xlog_recover_commit_trans(), we free the trans structure twice. Fix it by only freeing the structure in the caller regardless of the success or failure of the function. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | | xfs: recovery of XLOG_UNMOUNT_TRANS leaks memoryDave Chinner2014-09-291-11/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The XLOG_UNMOUNT_TRANS case skips the transaction, despite the fact an unmount record is always in a standalone transaction. Hence whenever we come across one of these we need to free the transaction structure associated with it as there is no commit record that follows it. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | | xfs: refactor xlog_recover_process_data()Dave Chinner2014-09-291-76/+132
| | |/ / / | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Clean up xlog_recover_process_data() structure in preparation for fixing the allocation and freeing context of the transaction being recovered. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | | | | Merge branch 'xfs-misc-fixes-for-3.18-2' into for-nextDave Chinner2014-09-237-14/+71
|\ \ \ \ \ | | |_|/ / | |/| | |
| * | | | xfs: flush entire last page of old EOF on truncate upDave Chinner2014-09-231-0/+30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On a sub-page sized filesystem, truncating a mapped region down leaves us in a world of hurt. We truncate the pagecache, zeroing the newly unused tail, then punch blocks out from under the page. If we then truncate the file back up immediately, we expose that unmapped hole to a dirty page mapped into the user application, and that's where it all goes wrong. In truncating the page cache, we avoid unmapping the tail page of the cache because it still contains valid data. The problem is that it also contains a hole after the truncate, but nobody told the mm subsystem that. Therefore, if the page is dirty before the truncate, we'll never get a .page_mkwrite callout after we extend the file and the application writes data into the hole on the page. Hence when we come to writing that region of the page, it has no blocks and no delayed allocation reservation and hence we toss the data away. This patch adds code to the truncate up case to solve it, by ensuring the partial page at the old EOF is always cleaned after we do any zeroing and move the EOF upwards. We can't actually serialise the page writeback and truncate against page faults (yes, that problem AGAIN) so this is really just a best effort and assumes it is extremely unlikely that someone is concurrently writing to the page at the EOF while extending the file. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: xfs_swap_extent_flush can be staticDave Chinner2014-09-231-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix sparse warning introduced by commit 4ef897a ("xfs: flush both inodes in xfs_swap_extents"). Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: xfs_buf_write_fail_rl_state can be staticDave Chinner2014-09-231-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix sparse warning introduced by commit ac8809f9 ("xfs: abort metadata writeback on permanent errors"). Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: xfs_rtget_summary can be staticFengguang Wu2014-09-231-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix sparse warning introduced by commit afabfd3 ("xfs: combine xfs_rtmodify_summary and xfs_rtget_summary"). Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: remove second xfs_quota.h inclusion in xfs_icache.cFabian Frederick2014-09-231-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_quota.h was included twice. Signed-off-by: Fabian Frederick <fabf@skynet.be> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: don't ASSERT on corrupt ftypeEric Sandeen2014-09-231-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_dir3_data_get_ftype() gets the file type off disk, but ASSERTs if it's invalid: ASSERT(type < XFS_DIR3_FT_MAX); We shouldn't ASSERT on bad values read from disk. V3 dirs are CRC-protected, but V2 dirs + ftype are not. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: xlog_cil_force_lsn doesn't always wait correctlyDave Chinner2014-09-231-9/+38
| | |/ / | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When running a tight mount/unmount loop on an older kernel, RedHat QE found that unmount would occasionally hang in xfs_buf_unpin_wait() on the superblock buffer. Tracing and other debug work by Eric Sandeen indicated that it was hanging on the writing of the superblock during unmount immediately after logging the superblock counters in a synchronous transaction. Further debug indicated that the synchronous transaction was not waiting for completion correctly, and we narrowed it down to xlog_cil_force_lsn() returning NULLCOMMITLSN and hence not pushing the transaction in the iclog buffer to disk correctly. While this unmount superblock write code is now very different in mainline kernels, the xlog_cil_force_lsn() code is identical, and it was bisected to the backport of commit f876e44 ("xfs: always do log forces via the workqueue"). This commit made the CIL push asynchronous for log forces and hence exposed a race condition that couldn't occur on a synchronous push. Essentially, the xlog_cil_force_lsn() relied implicitly on the fact that the sequence push would be complete by the time xlog_cil_push_now() returned, resulting in the context being pushed being in the committing list. When it was made asynchronous, it was recognised that there was a race condition in detecting whether an asynchronous push has started or not and code was added to handle it. Unfortunately, the fix was not quite right and left a race condition where it it would detect an empty CIL while a push was in progress before the context had been added to the committing list. This was incorrectly seen as a "nothing to do" condition and so would tell xfs_log_force_lsn() that there is nothing to wait for, and hence it would push the iclogbufs in memory. The fix is simple, but explaining the logic and the race condition is a lot more complex. The fix is to add the context to the committing list before we start emptying the CIL. This allows us to detect the difference between an empty "do nothing" push and a push that has not started by adding a discrete "emptying the CIL" state to avoid the transient, incorrect "empty" condition that the (unchanged) waiting code was seeing. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | | | Merge branch 'xfs-shift-extents-rework' into for-nextDave Chinner2014-09-234-153/+289
|\ \ \ \
| * | | | xfs: only writeback and truncate pages for the freed rangeBrian Foster2014-09-231-4/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_free_file_space() only affects the range of the file for which space is being freed. It currently writes and truncates the page cache from the start offset of the free to EOF. Modify xfs_free_file_space() to write back and truncate page cache of just the range being freed. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | xfs: writeback and inval. file range to be shifted by collapseBrian Foster2014-09-232-13/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The collapse range operation currently writes the entire file before starting the collapse to avoid changes in the in-core extent list due to writeback causing the extent count to change. Now that collapse range is fsb based rather than extent index based it can sustain changes in the extent list during the shift sequence without disruption. Modify xfs_collapse_file_space() to writeback and invalidate pages associated with the range of the file to be shifted. xfs_free_file_space() currently has similar behavior, but the space free need only affect the region of the file that is freed and this could change in the future. Also update the comments to reflect the current implementation. We retain the eofblocks trim permanently as a best option for dealing with delalloc extents. We don't shift delalloc extents because this scenario only occurs with post-eof preallocation (since data must be flushed such that the cache can be invalidated and data can be shifted). That means said space must also be initialized before being shifted into the accessible region of the file only to be immediately truncated off as the last part of the collapse. In other words, the eofblocks trim will happen anyways, we just run it first to ensure the file remains in a consistent state throughout the collapse. Finally, detect and fail explicitly in the event of a delalloc extent during the extent shift. The implementation does not support delalloc extents and the caller is expected to prevent this scenario in advance as is done by collapse. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>