|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
KVM regularly introduces new hypercall services to the guests without
any consent from the userspace. This means, the guests can observe
hypercall services in and out as they migrate across various host
kernel versions. This could be a major problem if the guest
discovered a hypercall, started using it, and after getting migrated
to an older kernel realizes that it's no longer available. Depending
on how the guest handles the change, there's a potential chance that
the guest would just panic.
As a result, there's a need for the userspace to elect the services
that it wishes the guest to discover. It can elect these services
based on the kernels spread across its (migration) fleet. To remedy
this, extend the existing firmware pseudo-registers, such as
KVM_REG_ARM_PSCI_VERSION, but by creating a new COPROC register space
for all the hypercall services available.
These firmware registers are categorized based on the service call
owners, but unlike the existing firmware pseudo-registers, they hold
the features supported in the form of a bitmap.
During the VM initialization, the registers are set to upper-limit of
the features supported by the corresponding registers. It's expected
that the VMMs discover the features provided by each register via
GET_ONE_REG, and write back the desired values using SET_ONE_REG.
KVM allows this modification only until the VM has started.
Some of the standard features are not mapped to any bits of the
registers. But since they can recreate the original problem of
making it available without userspace's consent, they need to
be explicitly added to the case-list in
kvm_hvc_call_default_allowed(). Any function-id that's not enabled
via the bitmap, or not listed in kvm_hvc_call_default_allowed, will
be returned as SMCCC_RET_NOT_SUPPORTED to the guest.
Older userspace code can simply ignore the feature and the
hypercall services will be exposed unconditionally to the guests,
thus ensuring backward compatibility.
In this patch, the framework adds the register only for ARM's standard
secure services (owner value 4). Currently, this includes support only
for ARM True Random Number Generator (TRNG) service, with bit-0 of the
register representing mandatory features of v1.0. Other services are
momentarily added in the upcoming patches.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
[maz: reduced the scope of some helpers, tidy-up bitmap max values,
dropped error-only fast path]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220502233853.1233742-3-rananta@google.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Common hypercall firmware register handing is currently employed
by psci.c. Since the upcoming patches add more of these registers,
it's better to move the generic handling to hypercall.c for a
cleaner presentation.
While we are at it, collect all the firmware registers under
fw_reg_ids[] to help implement kvm_arm_get_fw_num_regs() and
kvm_arm_copy_fw_reg_indices() in a generic way. Also, define
KVM_REG_FEATURE_LEVEL_MASK using a GENMASK instead.
No functional change intended.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
[maz: fixed KVM_REG_FEATURE_LEVEL_MASK]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220502233853.1233742-2-rananta@google.com
|