summaryrefslogtreecommitdiffstats
path: root/include/linux/cpuset.h
Commit message (Collapse)AuthorAgeFilesLines
* [PATCH] gfp flags annotations - part 1Al Viro2005-10-081-3/+2
| | | | | | | | | | | | - added typedef unsigned int __nocast gfp_t; - replaced __nocast uses for gfp flags with gfp_t - it gives exactly the same warnings as far as sparse is concerned, doesn't change generated code (from gcc point of view we replaced unsigned int with typedef) and documents what's going on far better. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpusets: confine oom_killer to mem_exclusive cpusetPaul Jackson2005-09-071-0/+6
| | | | | | | | | | | | | | | | | | | | | Now the real motivation for this cpuset mem_exclusive patch series seems trivial. This patch keeps a task in or under one mem_exclusive cpuset from provoking an oom kill of a task under a non-overlapping mem_exclusive cpuset. Since only interrupt and GFP_ATOMIC allocations are allowed to escape mem_exclusive containment, there is little to gain from oom killing a task under a non-overlapping mem_exclusive cpuset, as almost all kernel and user memory allocation must come from disjoint memory nodes. This patch enables configuring a system so that a runaway job under one mem_exclusive cpuset cannot cause the killing of a job in another such cpuset that might be using very high compute and memory resources for a prolonged time. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpusets: formalize intermediate GFP_KERNEL containmentPaul Jackson2005-09-071-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch makes use of the previously underutilized cpuset flag 'mem_exclusive' to provide what amounts to another layer of memory placement resolution. With this patch, there are now the following four layers of memory placement available: 1) The whole system (interrupt and GFP_ATOMIC allocations can use this), 2) The nearest enclosing mem_exclusive cpuset (GFP_KERNEL allocations can use), 3) The current tasks cpuset (GFP_USER allocations constrained to here), and 4) Specific node placement, using mbind and set_mempolicy. These nest - each layer is a subset (same or within) of the previous. Layer (2) above is new, with this patch. The call used to check whether a zone (its node, actually) is in a cpuset (in its mems_allowed, actually) is extended to take a gfp_mask argument, and its logic is extended, in the case that __GFP_HARDWALL is not set in the flag bits, to look up the cpuset hierarchy for the nearest enclosing mem_exclusive cpuset, to determine if placement is allowed. The definition of GFP_USER, which used to be identical to GFP_KERNEL, is changed to also set the __GFP_HARDWALL bit, in the previous cpuset_gfp_hardwall_flag patch. GFP_ATOMIC and GFP_KERNEL allocations will stay within the current tasks cpuset, so long as any node therein is not too tight on memory, but will escape to the larger layer, if need be. The intended use is to allow something like a batch manager to handle several jobs, each job in its own cpuset, but using common kernel memory for caches and such. Swapper and oom_kill activity is also constrained to Layer (2). A task in or below one mem_exclusive cpuset should not cause swapping on nodes in another non-overlapping mem_exclusive cpuset, nor provoke oom_killing of a task in another such cpuset. Heavy use of kernel memory for i/o caching and such by one job should not impact the memory available to jobs in other non-overlapping mem_exclusive cpusets. This patch enables providing hardwall, inescapable cpusets for memory allocations of each job, while sharing kernel memory allocations between several jobs, in an enclosing mem_exclusive cpuset. Like Dinakar's patch earlier to enable administering sched domains using the cpu_exclusive flag, this patch also provides a useful meaning to a cpuset flag that had previously done nothing much useful other than restrict what cpuset configurations were allowed. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] cpuset: remove function attribute constBenoit Boissinot2005-04-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | gcc-4 warns with include/linux/cpuset.h:21: warning: type qualifiers ignored on function return type cpuset_cpus_allowed is declared with const extern const cpumask_t cpuset_cpus_allowed(const struct task_struct *p); First const should be __attribute__((const)), but the gcc manual explains that: "Note that a function that has pointer arguments and examines the data pointed to must not be declared const. Likewise, a function that calls a non-const function usually must not be const. It does not make sense for a const function to return void." The following patch remove const from the function declaration. Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Acked-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-161-0/+64
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!