summaryrefslogtreecommitdiffstats
path: root/include/linux/dsa
Commit message (Collapse)AuthorAgeFilesLines
* net: dsa: free skb->cb usage in core driverYangbo Lu2021-04-271-1/+2
| | | | | | | | | | | | | | | | | Free skb->cb usage in core driver and let device drivers decide to use or not. The reason having a DSA_SKB_CB(skb)->clone was because dsa_skb_tx_timestamp() which may set the clone pointer was called before p->xmit() which would use the clone if any, and the device driver has no way to initialize the clone pointer. This patch just put memset(skb->cb, 0, sizeof(skb->cb)) at beginning of dsa_slave_xmit(). Some new features in the future, like one-step timestamp may need more bytes of skb->cb to use in dsa_skb_tx_timestamp(), and p->xmit(). Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com> Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: ocelot: Remove ocelot_xfh_get_cpuqHoratiu Vultur2021-03-161-5/+0
| | | | | | | | Now when extracting frames from CPU the cpuq is not used anymore so remove it. Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: mscc: ocelot: Add support for MRPHoratiu Vultur2021-02-161-0/+5
| | | | | | | | | | | | | | | | Add basic support for MRP. The HW will just trap all MRP frames on the ring ports to CPU and allow the SW to process them. In this way it is possible to for this node to behave both as MRM and MRC. Current limitations are: - it doesn't support Interconnect roles. - it supports only a single ring. - the HW should be able to do forwarding of MRP Test frames so the SW will not need to do this. So it would be able to have the role MRC without SW support. Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: tag_ocelot: create separate tagger for SevilleVladimir Oltean2021-02-141-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The ocelot tagger is a hot mess currently, it relies on memory initialized by the attached driver for basic frame transmission. This is against all that DSA tagging protocols stand for, which is that the transmission and reception of a DSA-tagged frame, the data path, should be independent from the switch control path, because the tag protocol is in principle hot-pluggable and reusable across switches (even if in practice it wasn't until very recently). But if another driver like dsa_loop wants to make use of tag_ocelot, it couldn't. This was done to have common code between Felix and Ocelot, which have one bit difference in the frame header format. Quoting from commit 67c2404922c2 ("net: dsa: felix: create a template for the DSA tags on xmit"): Other alternatives have been analyzed, such as: - Create a separate tag_seville.c: too much code duplication for just 1 bit field difference. - Create a separate DSA_TAG_PROTO_SEVILLE under tag_ocelot.c, just like tag_brcm.c, which would have a separate .xmit function. Again, too much code duplication for just 1 bit field difference. - Allocate the template from the init function of the tag_ocelot.c module, instead of from the driver: couldn't figure out a method of accessing the correct port template corresponding to the correct tagger in the .xmit function. The really interesting part is that Seville should have had its own tagging protocol defined - it is not compatible on the wire with Ocelot, even for that single bit. In principle, a packet generated by DSA_TAG_PROTO_OCELOT when booted on NXP LS1028A would look in a certain way, but when booted on NXP T1040 it would look differently. The reverse is also true: a packet generated by a Seville switch would be interpreted incorrectly by Wireshark if it was told it was generated by an Ocelot switch. Actually things are a bit more nuanced. If we concentrate only on the DSA tag, what I said above is true, but Ocelot/Seville also support an optional DSA tag prefix, which can be short or long, and it is possible to distinguish the two taggers based on an integer constant put in that prefix. Nonetheless, creating a separate tagger is still justified, since the tag prefix is optional, and without it, there is again no way to distinguish. Claiming backwards binary compatibility is a bit more tough, since I've already changed the format of tag_ocelot once, in commit 5124197ce58b ("net: dsa: tag_ocelot: use a short prefix on both ingress and egress"). Therefore I am not very concerned with treating this as a bugfix and backporting it to stable kernels (which would be another mess due to the fact that there would be lots of conflicts with the other DSA_TAG_PROTO* definitions). It's just simpler to say that the string values of the taggers have ABI value starting with kernel 5.12, which will be when the changing of tag protocol via /sys/class/net/<dsa-master>/dsa/tagging goes live. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: mscc: ocelot: use common tag parsing code with DSAVladimir Oltean2021-02-141-0/+208
| | | | | | | | | | | | | | | | | | | | The Injection Frame Header and Extraction Frame Header that the switch prepends to frames over the NPI port is also prepended to frames delivered over the CPU port module's queues. Let's unify the handling of the frame headers by making the ocelot driver call some helpers exported by the DSA tagger. Among other things, this allows us to get rid of the strange cpu_to_be32 when transmitting the Injection Frame Header on ocelot, since the packing API uses network byte order natively (when "quirks" is 0). The comments above ocelot_gen_ifh talk about setting pop_cnt to 3, and the cpu extraction queue mask to something, but the code doesn't do it, so we don't do it either. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: tag_8021q: add helpers to deduce whether a VLAN ID is RX or TX VLANVladimir Oltean2021-01-291-0/+14
| | | | | | | | | | | The sja1105 implementation can be blind about this, but the felix driver doesn't do exactly what it's being told, so it needs to know whether it is a TX or an RX VLAN, so it can install the appropriate type of TCAM rule. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
* net: dsa: move the Broadcom tag information in a separate header fileVladimir Oltean2021-01-071-0/+16
| | | | | | | | | | It is a bit strange to see something as specific as Broadcom SYSTEMPORT bits in the main DSA include file. Move these away into a separate header, and have the tagger and the SYSTEMPORT driver include them. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
* net: dsa: tag_8021q: add VLANs to the master interface tooVladimir Oltean2020-09-201-0/+2
| | | | | | | | | | | | | | | | | | | | The whole purpose of tag_8021q is to send VLAN-tagged traffic to the CPU, from which the driver can decode the source port and switch id. Currently this only works if the VLAN filtering on the master is disabled. Change that by explicitly adding code to tag_8021q.c to add the VLANs corresponding to the tags to the filter of the master interface. Because we now need to call vlan_vid_add, then we also need to hold the RTNL mutex. Propagate that requirement to the callers of dsa_8021q_setup and modify the existing call sites as appropriate. Note that one call path, sja1105_best_effort_vlan_filtering_set -> sja1105_vlan_filtering -> sja1105_setup_8021q_tagging, was already holding this lock. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: tag_8021q: add a context structureVladimir Oltean2020-09-111-19/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | While working on another tag_8021q driver implementation, some things became apparent: - It is not mandatory for a DSA driver to offload the tag_8021q VLANs by using the VLAN table per se. For example, it can add custom TCAM rules that simply encapsulate RX traffic, and redirect & decapsulate rules for TX traffic. For such a driver, it makes no sense to receive the tag_8021q configuration through the same callback as it receives the VLAN configuration from the bridge and the 8021q modules. - Currently, sja1105 (the only tag_8021q user) sets a priv->expect_dsa_8021q variable to distinguish between the bridge calling, and tag_8021q calling. That can be improved, to say the least. - The crosschip bridging operations are, in fact, stateful already. The list of crosschip_links must be kept by the caller and passed to the relevant tag_8021q functions. So it would be nice if the tag_8021q configuration was more self-contained. This patch attempts to do that. Create a struct dsa_8021q_context which encapsulates a struct dsa_switch, and has 2 function pointers for adding and deleting a VLAN. These will replace the previous channel to the driver, which was through the .port_vlan_add and .port_vlan_del callbacks of dsa_switch_ops. Also put the list of crosschip_links into this dsa_8021q_context. Drivers that don't support cross-chip bridging can simply omit to initialize this list, as long as they dont call any cross-chip function. The sja1105_vlan_add and sja1105_vlan_del functions are refactored into a smaller sja1105_vlan_add_one, which now has 2 entry points: - sja1105_vlan_add, from struct dsa_switch_ops - sja1105_dsa_8021q_vlan_add, from the tag_8021q ops But even this change is fairly trivial. It just reflects the fact that for sja1105, the VLANs from these 2 channels end up in the same hardware table. However that is not necessarily true in the general sense (and that's the reason for making this change). The rest of the patch is mostly plain refactoring of "ds" -> "ctx". The dsa_8021q_context structure needs to be propagated because adding a VLAN is now done through the ops function pointers inside of it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: tag_8021q: setup tagging via a single function callVladimir Oltean2020-09-111-4/+2
| | | | | | | | | | | There is no point in calling dsa_port_setup_8021q_tagging for each individual port. Additionally, it will become more difficult to do that when we'll have a context structure to tag_8021q (next patch). So refactor this now. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: tag_8021q: include missing refcount.hVladimir Oltean2020-09-111-0/+1
| | | | | | | | | The previous assumption was that the caller would already have this header file included. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: loop: Wire-up MTU callbacksFlorian Fainelli2020-08-031-0/+1
| | | | | | | | For now we simply store the port MTU into a per-port member. Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: loop: Move data structures to headerFlorian Fainelli2020-08-031-0/+40
| | | | | | | | | In preparation for adding support for a mockup data path, move the driver data structures to include/linux/dsa/loop.h such that we can share them between net/dsa/ and drivers/net/dsa/ later on. Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: tag_sja1105: implement sub-VLAN decodingVladimir Oltean2020-05-121-0/+2
| | | | | | | | | | | | | Create a subvlan_map as part of each port's tagger private structure. This keeps reverse mappings of bridge-to-dsa_8021q VLAN retagging rules. Note that as of this patch, this piece of code is never engaged, due to the fact that the driver hasn't installed any retagging rule, so we'll always see packets with a subvlan code of 0 (untagged). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: tag_8021q: support up to 8 VLANs per port using sub-VLANsVladimir Oltean2020-05-121-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For switches that support VLAN retagging, such as sja1105, we extend dsa_8021q by encoding a "sub-VLAN" into the remaining 3 free bits in the dsa_8021q tag. A sub-VLAN is nothing more than a number in the range 0-7, which serves as an index into a per-port driver lookup table. The sub-VLAN value of zero means that traffic is untagged (this is also backwards-compatible with dsa_8021q without retagging). The switch should be configured to retag VLAN-tagged traffic that gets transmitted towards the CPU port (and towards the CPU only). Example: bridge vlan add dev sw1p0 vid 100 The switch retags frames received on port 0, going to the CPU, and having VID 100, to the VID of 1104 (0x0450). In dsa_8021q language: | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | +-----------+-----+-----------------+-----------+-----------------------+ | DIR | SVL | SWITCH_ID | SUBVLAN | PORT | +-----------+-----+-----------------+-----------+-----------------------+ 0x0450 means: - DIR = 0b01: this is an RX VLAN - SUBVLAN = 0b001: this is subvlan #1 - SWITCH_ID = 0b001: this is switch 1 (see the name "sw1p0") - PORT = 0b0000: this is port 0 (see the name "sw1p0") The driver also remembers the "1 -> 100" mapping. In the hotpath, if the sub-VLAN from the tag encodes a non-untagged frame, this mapping is used to create a VLAN hwaccel tag, with the value of 100. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: prepare tagger for handling DSA tags and VLAN simultaneouslyVladimir Oltean2020-05-121-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In VLAN-unaware mode, sja1105 uses VLAN tags with a custom TPID of 0xdadb. While in the yet-to-be introduced best_effort_vlan_filtering mode, it needs to work with normal VLAN TPID values. A complication arises when we must transmit a VLAN-tagged packet to the switch when it's in VLAN-aware mode. We need to construct a packet with 2 VLAN tags, and the switch will use the outer header for routing and pop it on egress. But sadly, here the 2 hardware generations don't behave the same: - E/T switches won't pop an ETH_P_8021AD tag on egress, it seems (packets will remain double-tagged). - P/Q/R/S switches will drop a packet with 2 ETH_P_8021Q tags (it looks like it tries to prevent VLAN hopping). But looks like the reverse is also true: - E/T switches have no problem popping the outer tag from packets with 2 ETH_P_8021Q tags. - P/Q/R/S will have no problem popping a single tag even if that is ETH_P_8021AD. So it is clear that if we want the hardware to work with dsa_8021q tagging in VLAN-aware mode, we need to send different TPIDs depending on revision. Keep that information in priv->info->qinq_tpid. The per-port tagger structure will hold an xmit_tpid value that depends not only upon the qinq_tpid, but also upon the VLAN awareness state itself (in case we must transmit using 0xdadb). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: save/restore VLANs using a delta commit methodVladimir Oltean2020-05-121-15/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Managing the VLAN table that is present in hardware will become very difficult once we add a third operating state (best_effort_vlan_filtering). That is because correct cleanup (not too little, not too much) becomes virtually impossible, when VLANs can be added from the bridge layer, from dsa_8021q for basic tagging, for cross-chip bridging, as well as retagging rules for sub-VLANs and cross-chip sub-VLANs. So we need to rethink VLAN interaction with the switch in a more scalable way. In preparation for that, use the priv->expect_dsa_8021q boolean to classify any VLAN request received through .port_vlan_add or .port_vlan_del towards either one of 2 internal lists: bridge VLANs and dsa_8021q VLANs. Then, implement a central sja1105_build_vlan_table method that creates a VLAN configuration from scratch based on the 2 lists of VLANs kept by the driver, and based on the VLAN awareness state. Currently, if we are VLAN-unaware, install the dsa_8021q VLANs, otherwise the bridge VLANs. Then, implement a delta commit procedure that identifies which VLANs from this new configuration are actually different from the config previously committed to hardware. We apply the delta through the dynamic configuration interface (we don't reset the switch). The result is that the hardware should see the exact sequence of operations as before this patch. This also helps remove the "br" argument passed to dsa_8021q_crosschip_bridge_join, which it was only using to figure out whether it should commit the configuration back to us or not, based on the VLAN awareness state of the bridge. We can simplify that, by always allowing those VLANs inside of our dsa_8021q_vlans list, and committing those to hardware when necessary. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: tag_8021q: introduce a vid_is_dsa_8021q helperVladimir Oltean2020-05-121-0/+7
| | | | | | | | | | This function returns a boolean denoting whether the VLAN passed as argument is part of the 1024-3071 range that the dsa_8021q tagging scheme uses. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: implement cross-chip bridging operationsVladimir Oltean2020-05-101-0/+45
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | sja1105 uses dsa_8021q for DSA tagging, a format which is VLAN at heart and which is compatible with cascading. A complete description of this tagging format is in net/dsa/tag_8021q.c, but a quick summary is that each external-facing port tags incoming frames with a unique pvid, and this special VLAN is transmitted as tagged towards the inside of the system, and as untagged towards the exterior. The tag encodes the switch id and the source port index. This means that cross-chip bridging for dsa_8021q only entails adding the dsa_8021q pvids of one switch to the RX filter of the other switches. Everything else falls naturally into place, as long as the bottom-end of ports (the leaves in the tree) is comprised exclusively of dsa_8021q-compatible (i.e. sja1105 switches). Otherwise, there would be a chance that a front-panel switch transmits a packet tagged with a dsa_8021q header, header which it wouldn't be able to remove, and which would hence "leak" out. The only use case I tested (due to lack of board availability) was when the sja1105 switches are part of disjoint trees (however, this doesn't change the fact that multiple sja1105 switches still need unique switch identifiers in such a system). But in principle, even "true" single-tree setups (with DSA links) should work just as fine, except for a small change which I can't test: dsa_towards_port should be used instead of dsa_upstream_port (I made the assumption that the routing port that any sja1105 should use towards its neighbours is the CPU port. That might not hold true in other setups). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
* net: dsa: tag_8021q: replace dsa_8021q_remove_header with __skb_vlan_popVladimir Oltean2020-03-241-7/+0
| | | | | | | | | | | | | | | | | | | Not only did this wheel did not need reinventing, but there is also an issue with it: It doesn't remove the VLAN header in a way that preserves the L2 payload checksum when that is being provided by the DSA master hw. It should recalculate checksum both for the push, before removing the header, and for the pull afterwards. But the current implementation is quite dizzying, with pulls followed immediately afterwards by pushes, the memmove is done before the push, etc. This makes a DSA master with RX checksumming offload to print stack traces with the infamous 'hw csum failure' message. So remove the dsa_8021q_remove_header function and replace it with something that actually works with inet checksumming. Fixes: d461933638ae ("net: dsa: tag_8021q: Create helper function for removing VLAN header") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: Make deferred_xmit private to sja1105Vladimir Oltean2020-01-051-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are 3 things that are wrong with the DSA deferred xmit mechanism: 1. Its introduction has made the DSA hotpath ever so slightly more inefficient for everybody, since DSA_SKB_CB(skb)->deferred_xmit needs to be initialized to false for every transmitted frame, in order to figure out whether the driver requested deferral or not (a very rare occasion, rare even for the only driver that does use this mechanism: sja1105). That was necessary to avoid kfree_skb from freeing the skb. 2. Because L2 PTP is a link-local protocol like STP, it requires management routes and deferred xmit with this switch. But as opposed to STP, the deferred work mechanism needs to schedule the packet rather quickly for the TX timstamp to be collected in time and sent to user space. But there is no provision for controlling the scheduling priority of this deferred xmit workqueue. Too bad this is a rather specific requirement for a feature that nobody else uses (more below). 3. Perhaps most importantly, it makes the DSA core adhere a bit too much to the NXP company-wide policy "Innovate Where It Doesn't Matter". The sja1105 is probably the only DSA switch that requires some frames sent from the CPU to be routed to the slave port via an out-of-band configuration (register write) rather than in-band (DSA tag). And there are indeed very good reasons to not want to do that: if that out-of-band register is at the other end of a slow bus such as SPI, then you limit that Ethernet flow's throughput to effectively the throughput of the SPI bus. So hardware vendors should definitely not be encouraged to design this way. We do _not_ want more widespread use of this mechanism. Luckily we have a solution for each of the 3 issues: For 1, we can just remove that variable in the skb->cb and counteract the effect of kfree_skb with skb_get, much to the same effect. The advantage, of course, being that anybody who doesn't use deferred xmit doesn't need to do any extra operation in the hotpath. For 2, we can create a kernel thread for each port's deferred xmit work. If the user switch ports are named swp0, swp1, swp2, the kernel threads will be named swp0_xmit, swp1_xmit, swp2_xmit (there appears to be a 15 character length limit on kernel thread names). With this, the user can change the scheduling priority with chrt $(pidof swp2_xmit). For 3, we can actually move the entire implementation to the sja1105 driver. So this patch deletes the generic implementation from the DSA core and adds a new one, more adequate to the requirements of PTP TX timestamping, in sja1105_main.c. Suggested-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: Always send through management routes in slot 0Vladimir Oltean2020-01-051-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I finally found out how the 4 management route slots are supposed to be used, but.. it's not worth it. The description from the comment I've just deleted in this commit is still true: when more than 1 management slot is active at the same time, the switch will match frames incoming [from the CPU port] on the lowest numbered management slot that matches the frame's DMAC. My issue was that one was not supposed to statically assign each port a slot. Yes, there are 4 slots and also 4 non-CPU ports, but that is a mere coincidence. Instead, the switch can be used like this: every management frame gets a slot at the right of the most recently assigned slot: Send mgmt frame 1 through S0: S0 x x x Send mgmt frame 2 through S1: S0 S1 x x Send mgmt frame 3 through S2: S0 S1 S2 x Send mgmt frame 4 through S3: S0 S1 S2 S3 The difference compared to the old usage is that the transmission of frames 1-4 doesn't need to wait until the completion of the management route. It is safe to use a slot to the right of the most recently used one, because by protocol nobody will program a slot to your left and "steal" your route towards the correct egress port. So there is a potential throughput benefit here. But mgmt frame 5 has no more free slot to use, so it has to wait until _all_ of S0, S1, S2, S3 are full, in order to use S0 again. And that's actually exactly the problem: I was looking for something that would bring more predictable transmission latency, but this is exactly the opposite: 3 out of 4 frames would be transmitted quicker, but the 4th would draw the short straw and have a worse worst-case latency than before. Useless. Things are made even worse by PTP TX timestamping, which is something I won't go deeply into here. Suffice to say that the fact there is a driver-level lock on the SPI bus offsets any potential throughput gains that parallelism might bring. So there's no going back to the multi-slot scheme, remove the "mgmt_slot" variable from sja1105_port and the dummy static assignment made at probe time. While passing by, also remove the assignment to casc_port altogether. Don't pretend that we support cascaded setups. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: Use PTP core's dedicated kernel thread for RX timestampingVladimir Oltean2019-12-301-2/+0
| | | | | | | | And move the queue of skb's waiting for RX timestamps into the ptp_data structure, since it isn't needed if PTP is not compiled. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: Fix sleeping while atomic in .port_hwtstamp_setVladimir Oltean2019-10-021-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently this stack trace can be seen with CONFIG_DEBUG_ATOMIC_SLEEP=y: [ 41.568348] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:909 [ 41.576757] in_atomic(): 1, irqs_disabled(): 0, pid: 208, name: ptp4l [ 41.583212] INFO: lockdep is turned off. [ 41.587123] CPU: 1 PID: 208 Comm: ptp4l Not tainted 5.3.0-rc6-01445-ge950f2d4bc7f-dirty #1827 [ 41.599873] [<c0313d7c>] (unwind_backtrace) from [<c030e13c>] (show_stack+0x10/0x14) [ 41.607584] [<c030e13c>] (show_stack) from [<c1212d50>] (dump_stack+0xd4/0x100) [ 41.614863] [<c1212d50>] (dump_stack) from [<c037dfc8>] (___might_sleep+0x1c8/0x2b4) [ 41.622574] [<c037dfc8>] (___might_sleep) from [<c122ea90>] (__mutex_lock+0x48/0xab8) [ 41.630368] [<c122ea90>] (__mutex_lock) from [<c122f51c>] (mutex_lock_nested+0x1c/0x24) [ 41.638340] [<c122f51c>] (mutex_lock_nested) from [<c0c6fe08>] (sja1105_static_config_reload+0x30/0x27c) [ 41.647779] [<c0c6fe08>] (sja1105_static_config_reload) from [<c0c7015c>] (sja1105_hwtstamp_set+0x108/0x1cc) [ 41.657562] [<c0c7015c>] (sja1105_hwtstamp_set) from [<c0feb650>] (dev_ifsioc+0x18c/0x330) [ 41.665788] [<c0feb650>] (dev_ifsioc) from [<c0febbd8>] (dev_ioctl+0x320/0x6e8) [ 41.673064] [<c0febbd8>] (dev_ioctl) from [<c0f8b1f4>] (sock_ioctl+0x334/0x5e8) [ 41.680340] [<c0f8b1f4>] (sock_ioctl) from [<c05404a8>] (do_vfs_ioctl+0xb0/0xa10) [ 41.687789] [<c05404a8>] (do_vfs_ioctl) from [<c0540e3c>] (ksys_ioctl+0x34/0x58) [ 41.695151] [<c0540e3c>] (ksys_ioctl) from [<c0301000>] (ret_fast_syscall+0x0/0x28) [ 41.702768] Exception stack(0xe8495fa8 to 0xe8495ff0) [ 41.707796] 5fa0: beff4a8c 00000001 00000011 000089b0 beff4a8c beff4a80 [ 41.715933] 5fc0: beff4a8c 00000001 0000000c 00000036 b6fa98c8 004e19c1 00000001 00000000 [ 41.724069] 5fe0: 004dcedc beff4a6c 004c0738 b6e7af4c [ 41.729860] BUG: scheduling while atomic: ptp4l/208/0x00000002 [ 41.735682] INFO: lockdep is turned off. Enabling RX timestamping will logically disturb the fastpath (processing of meta frames). Replace bool hwts_rx_en with a bit that is checked atomically from the fastpath and temporarily unset from the sleepable context during a change of the RX timestamping process (a destructive operation anyways, requires switch reset). If found unset, the fastpath (net/dsa/tag_sja1105.c) will just drop any received meta frame and not take the meta_lock at all. Fixes: a602afd200f5 ("net: dsa: sja1105: Expose PTP timestamping ioctls to userspace") Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: Add a state machine for RX timestampingVladimir Oltean2019-06-081-0/+7
| | | | | | | | | | | | | Meta frame reception relies on the hardware keeping its promise that it will send no other traffic towards the CPU port between a link-local frame and a meta frame. Otherwise there is no other way to associate the meta frame with the link-local frame it's holding a timestamp of. The receive function is made stateful, and buffers a timestampable frame until its meta frame arrives, then merges the two, drops the meta and releases the link-local frame up the stack. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: Add a global sja1105_tagger_data structureVladimir Oltean2019-06-081-0/+15
| | | | | | | | | | | This will be used to keep state for RX timestamping. It is global because the switch serializes timestampable and meta frames when trapping them towards the CPU port (lower port indices have higher priority) and therefore having one state machine per port would create unnecessary complications. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: Build a minimal understanding of meta framesVladimir Oltean2019-06-081-0/+11
| | | | | | | | | | | | | | | | | Meta frames are sent on the CPU port by the switch if RX timestamping is enabled. They contain a partial timestamp of the previous frame. They are Ethernet frames with the Ethernet header constructed out of: - SJA1105_META_DMAC - SJA1105_META_SMAC - ETH_P_SJA1105_META The Ethernet payload will be decoded in a follow-up patch. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: Add logic for TX timestampingVladimir Oltean2019-06-081-0/+1
| | | | | | | | | | | | | | On TX, timestamping is performed synchronously from the port_deferred_xmit worker thread. In management routes, the switch is requested to take egress timestamps (again partial), which are reconstructed and appended to a clone of the skb that was just sent. The cloning is done by DSA and we retrieve the pointer from the structure that DSA keeps in skb->cb. Then these clones are enqueued to the socket's error queue for application-level processing. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: tag_8021q: Create helper function for removing VLAN headerVladimir Oltean2019-06-081-9/+7
| | | | | | | | | | | | | | | This removes the existing implementation from tag_sja1105, which was partially incorrect (it was not changing the MAC header offset, thereby leaving it to point 4 bytes earlier than it should have). This overwrites the VLAN tag by moving the Ethernet source and destination MACs 4 bytes to the right. Then skb->data (assumed to be pointing immediately after the EtherType) is temporarily pushed to the beginning of the new Ethernet header, the new Ethernet header offset and length are recorded, then skb->data is moved back to where it was. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: Don't store frame type in skb->cbVladimir Oltean2019-05-311-12/+0
| | | | | | | | | | | | | | | | | | | | Due to a confusion I thought that eth_type_trans() was called by the network stack whereas it can actually be called by network drivers to figure out the skb protocol and next packet_type handlers. In light of the above, it is not safe to store the frame type from the DSA tagger's .filter callback (first entry point on RX path), since GRO is yet to be invoked on the received traffic. Hence it is very likely that the skb->cb will actually get overwritten between eth_type_trans() and the actual DSA packet_type handler. Of course, what this patch fixes is the actual overwriting of the SJA1105_SKB_CB(skb)->type field from the GRO layer, which made all frames be seen as SJA1105_FRAME_TYPE_NORMAL (0). Fixes: 227d07a07ef1 ("net: dsa: sja1105: Add support for traffic through standalone ports") Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: Add support for traffic through standalone portsVladimir Oltean2019-05-051-9/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to support this, we are creating a make-shift switch tag out of a VLAN trunk configured on the CPU port. Termination of normal traffic on switch ports only works when not under a vlan_filtering bridge. Termination of management (PTP, BPDU) traffic works under all circumstances because it uses a different tagging mechanism (incl_srcpt). We are making use of the generic CONFIG_NET_DSA_TAG_8021Q code and leveraging it from our own CONFIG_NET_DSA_TAG_SJA1105. There are two types of traffic: regular and link-local. The link-local traffic received on the CPU port is trapped from the switch's regular forwarding decisions because it matched one of the two DMAC filters for management traffic. On transmission, the switch requires special massaging for these link-local frames. Due to a weird implementation of the switching IP, by default it drops link-local frames that originate on the CPU port. It needs to be told where to forward them to, through an SPI command ("management route") that is valid for only a single frame. So when we're sending link-local traffic, we are using the dsa_defer_xmit mechanism. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: Optional VLAN-based port separation for switches without taggingVladimir Oltean2019-05-051-0/+76
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch provides generic DSA code for using VLAN (802.1Q) tags for the same purpose as a dedicated switch tag for injection/extraction. It is based on the discussions and interest that has been so far expressed in https://www.spinics.net/lists/netdev/msg556125.html. Unlike all other DSA-supported tagging protocols, CONFIG_NET_DSA_TAG_8021Q does not offer a complete solution for drivers (nor can it). Instead, it provides generic code that driver can opt into calling: - dsa_8021q_xmit: Inserts a VLAN header with the specified contents. Can be called from another tagging protocol's xmit function. Currently the LAN9303 driver is inserting headers that are simply 802.1Q with custom fields, so this is an opportunity for code reuse. - dsa_8021q_rcv: Retrieves the TPID and TCI from a VLAN-tagged skb. Removing the VLAN header is left as a decision for the caller to make. - dsa_port_setup_8021q_tagging: For each user port, installs an Rx VID and a Tx VID, for proper untagged traffic identification on ingress and steering on egress. Also sets up the VLAN trunk on the upstream (CPU or DSA) port. Drivers are intentionally left to call this function explicitly, depending on the context and hardware support. The expected switch behavior and VLAN semantics should not be violated under any conditions. That is, after calling dsa_port_setup_8021q_tagging, the hardware should still pass all ingress traffic, be it tagged or untagged. For uniformity with the other tagging protocols, a module for the dsa_8021q_netdev_ops structure is registered, but the typical usage is to set up another tagging protocol which selects CONFIG_NET_DSA_TAG_8021Q, and calls the API from tag_8021q.h. Null function definitions are also provided so that a "depends on" is not forced in the Kconfig. This tagging protocol only works when switch ports are standalone, or when they are added to a VLAN-unaware bridge. It will probably remain this way for the reasons below. When added to a bridge that has vlan_filtering 1, the bridge core will install its own VLANs and reset the pvids through switchdev. For the bridge core, switchdev is a write-only pipe. All VLAN-related state is kept in the bridge core and nothing is read from DSA/switchdev or from the driver. So the bridge core will break this port separation because it will install the vlan_default_pvid into all switchdev ports. Even if we could teach the bridge driver about switchdev preference of a certain vlan_default_pvid (task difficult in itself since the current setting is per-bridge but we would need it per-port), there would still exist many other challenges. Firstly, in the DSA rcv callback, a driver would have to perform an iterative reverse lookup to find the correct switch port. That is because the port is a bridge slave, so its Rx VID (port PVID) is subject to user configuration. How would we ensure that the user doesn't reset the pvid to a different value (which would make an O(1) translation impossible), or to a non-unique value within this DSA switch tree (which would make any translation impossible)? Finally, not all switch ports are equal in DSA, and that makes it difficult for the bridge to be completely aware of this anyway. The CPU port needs to transmit tagged packets (VLAN trunk) in order for the DSA rcv code to be able to decode source information. But the bridge code has absolutely no idea which switch port is the CPU port, if nothing else then just because there is no netdevice registered by DSA for the CPU port. Also DSA does not currently allow the user to specify that they want the CPU port to do VLAN trunking anyway. VLANs are added to the CPU port using the same flags as they were added on the user port. So the VLANs installed by dsa_port_setup_8021q_tagging per driver request should remain private from the bridge's and user's perspective, and should not alter the VLAN semantics observed by the user. In the current implementation a VLAN range ending at 4095 (VLAN_N_VID) is reserved for this purpose. Each port receives a unique Rx VLAN and a unique Tx VLAN. Separate VLANs are needed for Rx and Tx because they serve different purposes: on Rx the switch must process traffic as untagged and process it with a port-based VLAN, but with care not to hinder bridging. On the other hand, the Tx VLAN is where the reachability restrictions are imposed, since by tagging frames in the xmit callback we are telling the switch onto which port to steer the frame. Some general guidance on how this support might be employed for real-life hardware (some comments made by Florian Fainelli): - If the hardware supports VLAN tag stacking, it should somehow back up its private VLAN settings when the bridge tries to override them. Then the driver could re-apply them as outer tags. Dedicating an outer tag per bridge device would allow identical inner tag VID numbers to co-exist, yet preserve broadcast domain isolation. - If the switch cannot handle VLAN tag stacking, it should disable this port separation when added as slave to a vlan_filtering bridge, in that case having reduced functionality. - Drivers for old switches that don't support the entire VLAN_N_VID range will need to rework the current range selection mechanism. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Vivien Didelot <vivien.didelot@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: sja1105: Add support for VLAN operationsVladimir Oltean2019-05-031-0/+4
| | | | | | | | | | | | | | | | | VLAN filtering cannot be properly disabled in SJA1105. So in order to emulate the "no VLAN awareness" behavior (not dropping traffic that is tagged with a VID that isn't configured on the port), we need to hack another switch feature: programmable TPID (which is 0x8100 for 802.1Q). We are reprogramming the TPID to a bogus value which leaves the switch thinking that all traffic is untagged, and therefore accepts it. Under a vlan_filtering bridge, the proper TPID of ETH_P_8021Q is installed again, and the switch starts identifying 802.1Q-tagged traffic. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: Introduce driver for NXP SJA1105 5-port L2 switchVladimir Oltean2019-05-031-0/+19
| | | | | | | | | | | | | | | At this moment the following is supported: * Link state management through phylib * Autonomous L2 forwarding managed through iproute2 bridge commands. IP termination must be done currently through the master netdevice, since the switch is unmanaged at this point and using DSA_TAG_PROTO_NONE. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: Georg Waibel <georg.waibel@sensor-technik.de> Acked-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: lan9303: phy_addr_sel_strap rename and retypeEgil Hjelmeland2018-01-041-1/+1
| | | | | | | | | | chip->phy_addr_sel_strap is declared as a bool, but is also used as an integer address base. Rename 'phy_addr_sel_strap' to 'phy_addr_base', and change type to int. Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: lan9303: Protect ALR operations with mutexEgil Hjelmeland2017-12-081-0/+1
| | | | | | | | | | ALR table operations are a sequence of related register operations which should be protected from concurrent access. The alr_cache should also be protected. Add alr_mutex doing that. Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: lan9303: Correct register names in commentsEgil Hjelmeland2017-11-081-3/+5
| | | | | | | | | Two comments refer to registers, but lack the LAN9303_ prefix. Fix that. Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no> Reviewed-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: Define eth_stp_addr in linux/etherdevice.hEgil Hjelmeland2017-11-031-2/+0
| | | | | | | | | | | | | | | | | | | The lan9303 driver defines eth_stp_addr as a synonym to eth_reserved_addr_base to get the STP ethernet address 01:80:c2:00:00:00. eth_reserved_addr_base is also used to define the start of Bridge Reserved ethernet address range, which happen to be the STP address. br_dev_setup refer to eth_reserved_addr_base as a definition of STP address. Clean up by: - Move the eth_stp_addr definition to linux/etherdevice.h - Use eth_stp_addr instead of eth_reserved_addr_base in br_dev_setup. Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: lan9303: Add STP ALR entry on port 0Egil Hjelmeland2017-11-011-0/+2
| | | | | | | | | | | STP BPDUs arriving on user ports must sent to CPU port only, for processing by the SW bridge. Add an ALR entry with STP state override to fix that. Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: dsa: lan9303: Move struct lan9303 to include/linux/dsa/lan9303.hEgil Hjelmeland2017-10-271-0/+36
The next patch require net/dsa/tag_lan9303.c to access struct lan9303. Therefore move struct lan9303 definitions from drivers/net/dsa/lan9303.h to new file include/linux/dsa/lan9303.h. Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>