| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
'struct timex' is one of the last users of 'struct timeval' and is
only referenced in one place in the kernel any more, to convert the
user space timex into the kernel-internal version on sparc64, with a
different tv_usec member type.
As a preparation for hiding the time_t definition and everything
using that in the kernel, change the implementation once more
to only convert the timeval member, and then enclose the
struct definition in an #ifdef.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
|
|
|
|
|
|
|
|
|
|
| |
We now use 64-bit time_t on all architectures, so the __kernel_timex,
__kernel_timeval and __kernel_timespec redirects can be removed
after having served their purpose.
This makes it all much less confusing, as the __kernel_* types
now always refer to the same layout based on 64-bit time_t across
all 32-bit and 64-bit architectures.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
struct timex uses struct timeval internally.
struct timeval is not y2038 safe.
Introduce a new UAPI type struct __kernel_timex
that is y2038 safe.
struct __kernel_timex uses a timeval type that is
similar to struct __kernel_timespec which preserves the
same structure size across 32 bit and 64 bit ABIs.
struct __kernel_timex also restructures other members of the
structure to make the structure the same on 64 bit and 32 bit
architectures.
Note that struct __kernel_timex is the same as struct timex
on a 64 bit architecture.
The above solution is similar to other new y2038 syscalls
that are being introduced: both 32 bit and 64 bit ABIs
have a common entry, and the compat entry supports the old 32 bit
syscall interface.
Alternatives considered were:
1. Add new time type to struct timex that makes use of padded
bits. This time type could be based on the struct __kernel_timespec.
modes will use a flag to notify which time structure should be
used internally.
This needs some application level changes on both 64 bit and 32 bit
architectures. Although 64 bit machines could continue to use the
older timeval structure without any changes.
2. Add a new u8 type to struct timex that makes use of padded bits. This
can be used to save higher order tv_sec bits. modes will use a flag to
notify presence of such a type.
This will need some application level changes on 32 bit architectures.
3. Add a new compat_timex structure that differs in only the size of the
time type; keep rest of struct timex the same.
This requires extra syscalls to manage all 3 cases on 64 bit
architectures. This will not need any application level changes but will
add more complexity from kernel side.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
|
|
|
|
|
|
|
|
| |
x32 adjtimex system call is the same as x86-64 adjtimex system call,
which uses 64-bit integer for long in struct timex. But x32 long is
32 bit. This patch replaces long in struct timex with __kernel_long_t.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Link: http://lkml.kernel.org/r/1388182464-28428-2-git-send-email-hjl.tools@gmail.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>
|