summaryrefslogtreecommitdiffstats
path: root/kernel/fork.c
Commit message (Collapse)AuthorAgeFilesLines
* mm: check for SIGKILL inside dup_mmap() loopTetsuo Handa2018-06-151-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As a theoretical problem, dup_mmap() of an mm_struct with 60000+ vmas can loop while potentially allocating memory, with mm->mmap_sem held for write by current thread. This is bad if current thread was selected as an OOM victim, for current thread will continue allocations using memory reserves while OOM reaper is unable to reclaim memory. As an actually observable problem, it is not difficult to make OOM reaper unable to reclaim memory if the OOM victim is blocked at i_mmap_lock_write() in this loop. Unfortunately, since nobody can explain whether it is safe to use killable wait there, let's check for SIGKILL before trying to allocate memory. Even without an OOM event, there is no point with continuing the loop from the beginning if current thread is killed. I tested with debug printk(). This patch should be safe because we already fail if security_vm_enough_memory_mm() or kmem_cache_alloc(GFP_KERNEL) fails and exit_mmap() handles it. ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting exit_mmap() due to NULL mmap ***** [akpm@linux-foundation.org: add comment] Link: http://lkml.kernel.org/r/201804071938.CDE04681.SOFVQJFtMHOOLF@I-love.SAKURA.ne.jp Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Rik van Riel <riel@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variablesLinus Torvalds2018-06-141-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The changes to automatically test for working stack protector compiler support in the Kconfig files removed the special STACKPROTECTOR_AUTO option that picked the strongest stack protector that the compiler supported. That was all a nice cleanup - it makes no sense to have the AUTO case now that the Kconfig phase can just determine the compiler support directly. HOWEVER. It also meant that doing "make oldconfig" would now _disable_ the strong stackprotector if you had AUTO enabled, because in a legacy config file, the sane stack protector configuration would look like CONFIG_HAVE_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_NONE is not set # CONFIG_CC_STACKPROTECTOR_REGULAR is not set # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_STACKPROTECTOR_AUTO=y and when you ran this through "make oldconfig" with the Kbuild changes, it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version used to be disabled (because it was really enabled by AUTO), and would disable it in the new config, resulting in: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_HAS_SANE_STACKPROTECTOR=y That's dangerously subtle - people could suddenly find themselves with the weaker stack protector setup without even realizing. The solution here is to just rename not just the old RECULAR stack protector option, but also the strong one. This does that by just removing the CC_ prefix entirely for the user choices, because it really is not about the compiler support (the compiler support now instead automatially impacts _visibility_ of the options to users). This results in "make oldconfig" actually asking the user for their choice, so that we don't have any silent subtle security model changes. The end result would generally look like this: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_STACKPROTECTOR=y CONFIG_STACKPROTECTOR_STRONG=y CONFIG_CC_HAS_SANE_STACKPROTECTOR=y where the "CC_" versions really are about internal compiler infrastructure, not the user selections. Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'core-rseq-for-linus' of ↵Linus Torvalds2018-06-101-0/+2
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull restartable sequence support from Thomas Gleixner: "The restartable sequences syscall (finally): After a lot of back and forth discussion and massive delays caused by the speculative distraction of maintainers, the core set of restartable sequences has finally reached a consensus. It comes with the basic non disputed core implementation along with support for arm, powerpc and x86 and a full set of selftests It was exposed to linux-next earlier this week, so it does not fully comply with the merge window requirements, but there is really no point to drag it out for yet another cycle" * 'core-rseq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: rseq/selftests: Provide Makefile, scripts, gitignore rseq/selftests: Provide parametrized tests rseq/selftests: Provide basic percpu ops test rseq/selftests: Provide basic test rseq/selftests: Provide rseq library selftests/lib.mk: Introduce OVERRIDE_TARGETS powerpc: Wire up restartable sequences system call powerpc: Add syscall detection for restartable sequences powerpc: Add support for restartable sequences x86: Wire up restartable sequence system call x86: Add support for restartable sequences arm: Wire up restartable sequences system call arm: Add syscall detection for restartable sequences arm: Add restartable sequences support rseq: Introduce restartable sequences system call uapi/headers: Provide types_32_64.h
| * rseq: Introduce restartable sequences system callMathieu Desnoyers2018-06-061-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Expose a new system call allowing each thread to register one userspace memory area to be used as an ABI between kernel and user-space for two purposes: user-space restartable sequences and quick access to read the current CPU number value from user-space. * Restartable sequences (per-cpu atomics) Restartables sequences allow user-space to perform update operations on per-cpu data without requiring heavy-weight atomic operations. The restartable critical sections (percpu atomics) work has been started by Paul Turner and Andrew Hunter. It lets the kernel handle restart of critical sections. [1] [2] The re-implementation proposed here brings a few simplifications to the ABI which facilitates porting to other architectures and speeds up the user-space fast path. Here are benchmarks of various rseq use-cases. Test hardware: arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading The following benchmarks were all performed on a single thread. * Per-CPU statistic counter increment getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 344.0 31.4 11.0 x86-64: 15.3 2.0 7.7 * LTTng-UST: write event 32-bit header, 32-bit payload into tracer per-cpu buffer getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 2502.0 2250.0 1.1 x86-64: 117.4 98.0 1.2 * liburcu percpu: lock-unlock pair, dereference, read/compare word getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 751.0 128.5 5.8 x86-64: 53.4 28.6 1.9 * jemalloc memory allocator adapted to use rseq Using rseq with per-cpu memory pools in jemalloc at Facebook (based on rseq 2016 implementation): The production workload response-time has 1-2% gain avg. latency, and the P99 overall latency drops by 2-3%. * Reading the current CPU number Speeding up reading the current CPU number on which the caller thread is running is done by keeping the current CPU number up do date within the cpu_id field of the memory area registered by the thread. This is done by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the current thread. Upon return to user-space, a notify-resume handler updates the current CPU value within the registered user-space memory area. User-space can then read the current CPU number directly from memory. Keeping the current cpu id in a memory area shared between kernel and user-space is an improvement over current mechanisms available to read the current CPU number, which has the following benefits over alternative approaches: - 35x speedup on ARM vs system call through glibc - 20x speedup on x86 compared to calling glibc, which calls vdso executing a "lsl" instruction, - 14x speedup on x86 compared to inlined "lsl" instruction, - Unlike vdso approaches, this cpu_id value can be read from an inline assembly, which makes it a useful building block for restartable sequences. - The approach of reading the cpu id through memory mapping shared between kernel and user-space is portable (e.g. ARM), which is not the case for the lsl-based x86 vdso. On x86, yet another possible approach would be to use the gs segment selector to point to user-space per-cpu data. This approach performs similarly to the cpu id cache, but it has two disadvantages: it is not portable, and it is incompatible with existing applications already using the gs segment selector for other purposes. Benchmarking various approaches for reading the current CPU number: ARMv7 Processor rev 4 (v7l) Machine model: Cubietruck - Baseline (empty loop): 8.4 ns - Read CPU from rseq cpu_id: 16.7 ns - Read CPU from rseq cpu_id (lazy register): 19.8 ns - glibc 2.19-0ubuntu6.6 getcpu: 301.8 ns - getcpu system call: 234.9 ns x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz: - Baseline (empty loop): 0.8 ns - Read CPU from rseq cpu_id: 0.8 ns - Read CPU from rseq cpu_id (lazy register): 0.8 ns - Read using gs segment selector: 0.8 ns - "lsl" inline assembly: 13.0 ns - glibc 2.19-0ubuntu6 getcpu: 16.6 ns - getcpu system call: 53.9 ns - Speed (benchmark taken on v8 of patchset) Running 10 runs of hackbench -l 100000 seems to indicate, contrary to expectations, that enabling CONFIG_RSEQ slightly accelerates the scheduler: Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1 kernel parameter), with a Linux v4.6 defconfig+localyesconfig, restartable sequences series applied. * CONFIG_RSEQ=n avg.: 41.37 s std.dev.: 0.36 s * CONFIG_RSEQ=y avg.: 40.46 s std.dev.: 0.33 s - Size On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is 567 bytes, and the data size increase of vmlinux is 5696 bytes. [1] https://lwn.net/Articles/650333/ [2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Joel Fernandes <joelaf@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Watson <davejwatson@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Chris Lameter <cl@linux.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Andrew Hunter <ahh@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Paul Turner <pjt@google.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Maurer <bmaurer@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-api@vger.kernel.org Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
* | mm: introduce arg_lock to protect arg_start|end and env_start|end in mm_structYang Shi2018-06-071-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mmap_sem is on the hot path of kernel, and it very contended, but it is abused too. It is used to protect arg_start|end and evn_start|end when reading /proc/$PID/cmdline and /proc/$PID/environ, but it doesn't make sense since those proc files just expect to read 4 values atomically and not related to VM, they could be set to arbitrary values by C/R. And, the mmap_sem contention may cause unexpected issue like below: INFO: task ps:14018 blocked for more than 120 seconds. Tainted: G E 4.9.79-009.ali3000.alios7.x86_64 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. ps D 0 14018 1 0x00000004 Call Trace: schedule+0x36/0x80 rwsem_down_read_failed+0xf0/0x150 call_rwsem_down_read_failed+0x18/0x30 down_read+0x20/0x40 proc_pid_cmdline_read+0xd9/0x4e0 __vfs_read+0x37/0x150 vfs_read+0x96/0x130 SyS_read+0x55/0xc0 entry_SYSCALL_64_fastpath+0x1a/0xc5 Both Alexey Dobriyan and Michal Hocko suggested to use dedicated lock for them to mitigate the abuse of mmap_sem. So, introduce a new spinlock in mm_struct to protect the concurrent access to arg_start|end, env_start|end and others, as well as replace write map_sem to read to protect the race condition between prctl and sys_brk which might break check_data_rlimit(), and makes prctl more friendly to other VM operations. This patch just eliminates the abuse of mmap_sem, but it can't resolve the above hung task warning completely since the later access_remote_vm() call needs acquire mmap_sem. The mmap_sem scalability issue will be solved in the future. [yang.shi@linux.alibaba.com: add comment about mmap_sem and arg_lock] Link: http://lkml.kernel.org/r/1524077799-80690-1-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1523730291-109696-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge tag 'audit-pr-20180605' of ↵Linus Torvalds2018-06-061-1/+1
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit Pull audit updates from Paul Moore: "Another reasonable chunk of audit changes for v4.18, thirteen patches in total. The thirteen patches can mostly be broken down into one of four categories: general bug fixes, accessor functions for audit state stored in the task_struct, negative filter matches on executable names, and extending the (relatively) new seccomp logging knobs to the audit subsystem. The main driver for the accessor functions from Richard are the changes we're working on to associate audit events with containers, but I think they have some standalone value too so I figured it would be good to get them in now. The seccomp/audit patches from Tyler apply the seccomp logging improvements from a few releases ago to audit's seccomp logging; starting with this patchset the changes in /proc/sys/kernel/seccomp/actions_logged should apply to both the standard kernel logging and audit. As usual, everything passes the audit-testsuite and it happens to merge cleanly with your tree" [ Heh, except it had trivial merge conflicts with the SELinux tree that also came in from Paul - Linus ] * tag 'audit-pr-20180605' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit: audit: Fix wrong task in comparison of session ID audit: use existing session info function audit: normalize loginuid read access audit: use new audit_context access funciton for seccomp_actions_logged audit: use inline function to set audit context audit: use inline function to get audit context audit: convert sessionid unset to a macro seccomp: Don't special case audited processes when logging seccomp: Audit attempts to modify the actions_logged sysctl seccomp: Configurable separator for the actions_logged string seccomp: Separate read and write code for actions_logged sysctl audit: allow not equal op for audit by executable audit: add syscall information to FEATURE_CHANGE records
| * audit: use inline function to set audit contextRichard Guy Briggs2018-05-141-1/+1
| | | | | | | | | | | | | | | | | | | | Recognizing that the audit context is an internal audit value, use an access function to set the audit context pointer for the task rather than reaching directly into the task struct to set it. Signed-off-by: Richard Guy Briggs <rgb@redhat.com> [PM: merge fuzz in audit.h] Signed-off-by: Paul Moore <paul@paul-moore.com>
* | fork: unconditionally clear stack on forkKees Cook2018-04-201-2/+1
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | One of the classes of kernel stack content leaks[1] is exposing the contents of prior heap or stack contents when a new process stack is allocated. Normally, those stacks are not zeroed, and the old contents remain in place. In the face of stack content exposure flaws, those contents can leak to userspace. Fixing this will make the kernel no longer vulnerable to these flaws, as the stack will be wiped each time a stack is assigned to a new process. There's not a meaningful change in runtime performance; it almost looks like it provides a benefit. Performing back-to-back kernel builds before: Run times: 157.86 157.09 158.90 160.94 160.80 Mean: 159.12 Std Dev: 1.54 and after: Run times: 159.31 157.34 156.71 158.15 160.81 Mean: 158.46 Std Dev: 1.46 Instead of making this a build or runtime config, Andy Lutomirski recommended this just be enabled by default. [1] A noisy search for many kinds of stack content leaks can be seen here: https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel+stack+leak I did some more with perf and cycle counts on running 100,000 execs of /bin/true. before: Cycles: 218858861551 218853036130 214727610969 227656844122 224980542841 Mean: 221015379122.60 Std Dev: 4662486552.47 after: Cycles: 213868945060 213119275204 211820169456 224426673259 225489986348 Mean: 217745009865.40 Std Dev: 5935559279.99 It continues to look like it's faster, though the deviation is rather wide, but I'm not sure what I could do that would be less noisy. I'm open to ideas! Link: http://lkml.kernel.org/r/20180221021659.GA37073@beast Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Rasmus Villemoes <rasmus.villemoes@prevas.dk> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* kernel/fork.c: detect early free of a live mmMark Rutland2018-04-051-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | KASAN splats indicate that in some cases we free a live mm, then continue to access it, with potentially disastrous results. This is likely due to a mismatched mmdrop() somewhere in the kernel, but so far the culprit remains elusive. Let's have __mmdrop() verify that the mm isn't live for the current task, similar to the existing check for init_mm. This way, we can catch this class of issue earlier, and without requiring KASAN. Currently, idle_task_exit() leaves active_mm stale after it switches to init_mm. This isn't harmful, but will trigger the new assertions, so we must adjust idle_task_exit() to update active_mm. Link: http://lkml.kernel.org/r/20180312140103.19235-1-mark.rutland@arm.com Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* kernel: add ksys_unshare() helper; remove in-kernel calls to sys_unshare()Dominik Brodowski2018-04-021-1/+6
| | | | | | | | | | | | | | | | Using this helper allows us to avoid the in-kernel calls to the sys_unshare() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_unshare(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
* mm: use do_futex() instead of sys_futex() in mm_release()Dominik Brodowski2018-04-021-2/+2
| | | | | | | | | | | | | | | | | | | | | | | sys_futex() is a wrapper to do_futex() which does not modify any values here: - uaddr, val and val3 are kept the same - op is masked with FUTEX_CMD_MASK, but is always set to FUTEX_WAKE. Therefore, val2 is always 0. - as utime is set to NULL, *timeout is NULL This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Darren Hart <dvhart@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
* include/linux/sched/mm.h: re-inline mmdrop()Andrew Morton2018-02-211-13/+2
| | | | | | | | | | | | As Peter points out, Doing a CALL+RET for just the decrement is a bit silly. Fixes: d70f2a14b72a4bc ("include/linux/sched/mm.h: uninline mmdrop_async(), etc") Acked-by: Peter Zijlstra (Intel) <peterz@infraded.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'akpm' (patches from Andrew)Linus Torvalds2018-02-061-26/+29
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Merge misc updates from Andrew Morton: - kasan updates - procfs - lib/bitmap updates - other lib/ updates - checkpatch tweaks - rapidio - ubsan - pipe fixes and cleanups - lots of other misc bits * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits) Documentation/sysctl/user.txt: fix typo MAINTAINERS: update ARM/QUALCOMM SUPPORT patterns MAINTAINERS: update various PALM patterns MAINTAINERS: update "ARM/OXNAS platform support" patterns MAINTAINERS: update Cortina/Gemini patterns MAINTAINERS: remove ARM/CLKDEV SUPPORT file pattern MAINTAINERS: remove ANDROID ION pattern mm: docs: add blank lines to silence sphinx "Unexpected indentation" errors mm: docs: fix parameter names mismatch mm: docs: fixup punctuation pipe: read buffer limits atomically pipe: simplify round_pipe_size() pipe: reject F_SETPIPE_SZ with size over UINT_MAX pipe: fix off-by-one error when checking buffer limits pipe: actually allow root to exceed the pipe buffer limits pipe, sysctl: remove pipe_proc_fn() pipe, sysctl: drop 'min' parameter from pipe-max-size converter kasan: rework Kconfig settings crash_dump: is_kdump_kernel can be boolean kernel/mutex: mutex_is_locked can be boolean ...
| * kernel/fork.c: add comment about usage of CLONE_FS flags and namespacesMarcos Paulo de Souza2018-02-061-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | All other places that deals with namespaces have an explanation of why the restriction is there. The description added in this commit was based on commit e66eded8309e ("userns: Don't allow CLONE_NEWUSER | CLONE_FS"). Link: http://lkml.kernel.org/r/20171112151637.13258-1-marcos.souza.org@gmail.com Signed-off-by: Marcos Paulo de Souza <marcos.souza.org@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * kernel/fork.c: check error and return earlyMarcos Paulo de Souza2018-02-061-26/+25
| | | | | | | | | | | | | | | | | | | | Thus reducing one indentation level while maintaining the same rationale. Link: http://lkml.kernel.org/r/20171117002929.5155-1-marcos.souza.org@gmail.com Signed-off-by: Marcos Paulo de Souza <marcos.souza.org@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge branch 'linus' into sched/urgent, to resolve conflictsIngo Molnar2018-02-061-217/+267
|\| | | | | | | | | | | | | | | | | | | Conflicts: arch/arm64/kernel/entry.S arch/x86/Kconfig include/linux/sched/mm.h kernel/fork.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * Merge tag 'usercopy-v4.16-rc1' of ↵Linus Torvalds2018-02-031-5/+26
| |\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull hardened usercopy whitelisting from Kees Cook: "Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass all hardened usercopy checks since these sizes cannot change at runtime.) This new check is WARN-by-default, so any mistakes can be found over the next several releases without breaking anyone's system. The series has roughly the following sections: - remove %p and improve reporting with offset - prepare infrastructure and whitelist kmalloc - update VFS subsystem with whitelists - update SCSI subsystem with whitelists - update network subsystem with whitelists - update process memory with whitelists - update per-architecture thread_struct with whitelists - update KVM with whitelists and fix ioctl bug - mark all other allocations as not whitelisted - update lkdtm for more sensible test overage" * tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits) lkdtm: Update usercopy tests for whitelisting usercopy: Restrict non-usercopy caches to size 0 kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl kvm: whitelist struct kvm_vcpu_arch arm: Implement thread_struct whitelist for hardened usercopy arm64: Implement thread_struct whitelist for hardened usercopy x86: Implement thread_struct whitelist for hardened usercopy fork: Provide usercopy whitelisting for task_struct fork: Define usercopy region in thread_stack slab caches fork: Define usercopy region in mm_struct slab caches net: Restrict unwhitelisted proto caches to size 0 sctp: Copy struct sctp_sock.autoclose to userspace using put_user() sctp: Define usercopy region in SCTP proto slab cache caif: Define usercopy region in caif proto slab cache ip: Define usercopy region in IP proto slab cache net: Define usercopy region in struct proto slab cache scsi: Define usercopy region in scsi_sense_cache slab cache cifs: Define usercopy region in cifs_request slab cache vxfs: Define usercopy region in vxfs_inode slab cache ufs: Define usercopy region in ufs_inode_cache slab cache ...
| | * fork: Provide usercopy whitelisting for task_structKees Cook2018-01-151-2/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | While the blocked and saved_sigmask fields of task_struct are copied to userspace (via sigmask_to_save() and setup_rt_frame()), it is always copied with a static length (i.e. sizeof(sigset_t)). The only portion of task_struct that is potentially dynamically sized and may be copied to userspace is in the architecture-specific thread_struct at the end of task_struct. cache object allocation: kernel/fork.c: alloc_task_struct_node(...): return kmem_cache_alloc_node(task_struct_cachep, ...); dup_task_struct(...): ... tsk = alloc_task_struct_node(node); copy_process(...): ... dup_task_struct(...) _do_fork(...): ... copy_process(...) example usage trace: arch/x86/kernel/fpu/signal.c: __fpu__restore_sig(...): ... struct task_struct *tsk = current; struct fpu *fpu = &tsk->thread.fpu; ... __copy_from_user(&fpu->state.xsave, ..., state_size); fpu__restore_sig(...): ... return __fpu__restore_sig(...); arch/x86/kernel/signal.c: restore_sigcontext(...): ... fpu__restore_sig(...) This introduces arch_thread_struct_whitelist() to let an architecture declare specifically where the whitelist should be within thread_struct. If undefined, the entire thread_struct field is left whitelisted. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Laura Abbott <labbott@redhat.com> Cc: "Mickaël Salaün" <mic@digikod.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Rik van Riel <riel@redhat.com>
| | * fork: Define usercopy region in thread_stack slab cachesDavid Windsor2018-01-151-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In support of usercopy hardening, this patch defines a region in the thread_stack slab caches in which userspace copy operations are allowed. Since the entire thread_stack needs to be available to userspace, the entire slab contents are whitelisted. Note that the slab-based thread stack is only present on systems with THREAD_SIZE < PAGE_SIZE and !CONFIG_VMAP_STACK. cache object allocation: kernel/fork.c: alloc_thread_stack_node(...): return kmem_cache_alloc_node(thread_stack_cache, ...) dup_task_struct(...): ... stack = alloc_thread_stack_node(...) ... tsk->stack = stack; copy_process(...): ... dup_task_struct(...) _do_fork(...): ... copy_process(...) This region is known as the slab cache's usercopy region. Slab caches can now check that each dynamically sized copy operation involving cache-managed memory falls entirely within the slab's usercopy region. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split patch, provide usage trace] Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Rik van Riel <riel@redhat.com>
| | * fork: Define usercopy region in mm_struct slab cachesDavid Windsor2018-01-151-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In support of usercopy hardening, this patch defines a region in the mm_struct slab caches in which userspace copy operations are allowed. Only the auxv field is copied to userspace. cache object allocation: kernel/fork.c: #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) dup_mm(): ... mm = allocate_mm(); copy_mm(...): ... dup_mm(); copy_process(...): ... copy_mm(...) _do_fork(...): ... copy_process(...) example usage trace: fs/binfmt_elf.c: create_elf_tables(...): ... elf_info = (elf_addr_t *)current->mm->saved_auxv; ... copy_to_user(..., elf_info, ei_index * sizeof(elf_addr_t)) load_elf_binary(...): ... create_elf_tables(...); This region is known as the slab cache's usercopy region. Slab caches can now check that each dynamically sized copy operation involving cache-managed memory falls entirely within the slab's usercopy region. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split patch, provide usage trace] Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Rik van Riel <riel@redhat.com>
| * | include/linux/sched/mm.h: uninline mmdrop_async(), etcAndrew Morton2018-01-311-212/+236
|/ / | | | | | | | | | | | | | | | | | | | | | | | | | | mmdrop_async() is only used in fork.c. Move that and its support functions into fork.c, uninline it all. Quite a lot of code gets moved around to avoid forward declarations. Cc: Ingo Molnar <mingo@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge branch 'x86-pti-for-linus' of ↵Linus Torvalds2017-12-231-2/+1
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 PTI preparatory patches from Thomas Gleixner: "Todays Advent calendar window contains twentyfour easy to digest patches. The original plan was to have twenty three matching the date, but a late fixup made that moot. - Move the cpu_entry_area mapping out of the fixmap into a separate address space. That's necessary because the fixmap becomes too big with NRCPUS=8192 and this caused already subtle and hard to diagnose failures. The top most patch is fresh from today and cures a brain slip of that tall grumpy german greybeard, who ignored the intricacies of 32bit wraparounds. - Limit the number of CPUs on 32bit to 64. That's insane big already, but at least it's small enough to prevent address space issues with the cpu_entry_area map, which have been observed and debugged with the fixmap code - A few TLB flush fixes in various places plus documentation which of the TLB functions should be used for what. - Rename the SYSENTER stack to CPU_ENTRY_AREA stack as it is used for more than sysenter now and keeping the name makes backtraces confusing. - Prevent LDT inheritance on exec() by moving it to arch_dup_mmap(), which is only invoked on fork(). - Make vysycall more robust. - A few fixes and cleanups of the debug_pagetables code. Check PAGE_PRESENT instead of checking the PTE for 0 and a cleanup of the C89 initialization of the address hint array which already was out of sync with the index enums. - Move the ESPFIX init to a different place to prepare for PTI. - Several code moves with no functional change to make PTI integration simpler and header files less convoluted. - Documentation fixes and clarifications" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits) x86/cpu_entry_area: Prevent wraparound in setup_cpu_entry_area_ptes() on 32bit init: Invoke init_espfix_bsp() from mm_init() x86/cpu_entry_area: Move it out of the fixmap x86/cpu_entry_area: Move it to a separate unit x86/mm: Create asm/invpcid.h x86/mm: Put MMU to hardware ASID translation in one place x86/mm: Remove hard-coded ASID limit checks x86/mm: Move the CR3 construction functions to tlbflush.h x86/mm: Add comments to clarify which TLB-flush functions are supposed to flush what x86/mm: Remove superfluous barriers x86/mm: Use __flush_tlb_one() for kernel memory x86/microcode: Dont abuse the TLB-flush interface x86/uv: Use the right TLB-flush API x86/entry: Rename SYSENTER_stack to CPU_ENTRY_AREA_entry_stack x86/doc: Remove obvious weirdnesses from the x86 MM layout documentation x86/mm/64: Improve the memory map documentation x86/ldt: Prevent LDT inheritance on exec x86/ldt: Rework locking arch, mm: Allow arch_dup_mmap() to fail x86/vsyscall/64: Warn and fail vsyscall emulation in NATIVE mode ...
| * arch, mm: Allow arch_dup_mmap() to failThomas Gleixner2017-12-221-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to sanitize the LDT initialization on x86 arch_dup_mmap() must be allowed to fail. Fix up all instances. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: dan.j.williams@intel.com Cc: hughd@google.com Cc: keescook@google.com Cc: kirill.shutemov@linux.intel.com Cc: linux-mm@kvack.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | pid: remove pidhashGargi Sharma2017-11-171-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | pidhash is no longer required as all the information can be looked up from idr tree. nr_hashed represented the number of pids that had been hashed. Since, nr_hashed and PIDNS_HASH_ADDING are no longer relevant, it has been renamed to pid_allocated and PIDNS_ADDING respectively. [gs051095@gmail.com: v6] Link: http://lkml.kernel.org/r/1507760379-21662-3-git-send-email-gs051095@gmail.com Link: http://lkml.kernel.org/r/1507583624-22146-3-git-send-email-gs051095@gmail.com Signed-off-by: Gargi Sharma <gs051095@gmail.com> Reviewed-by: Rik van Riel <riel@redhat.com> Tested-by: Tony Luck <tony.luck@intel.com> [ia64] Cc: Julia Lawall <julia.lawall@lip6.fr> Cc: Ingo Molnar <mingo@kernel.org> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | kmemcheck: stop using GFP_NOTRACK and SLAB_NOTRACKLevin, Alexander (Sasha Levin)2017-11-151-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Convert all allocations that used a NOTRACK flag to stop using it. Link: http://lkml.kernel.org/r/20171007030159.22241-3-alexander.levin@verizon.com Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Cc: Alexander Potapenko <glider@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Hansen <devtimhansen@gmail.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: consolidate page table accountingKirill A. Shutemov2017-11-151-12/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, we account page tables separately for each page table level, but that's redundant -- we only make use of total memory allocated to page tables for oom_badness calculation. We also provide the information to userspace, but it has dubious value there too. This patch switches page table accounting to single counter. mm->pgtables_bytes is now used to account all page table levels. We use bytes, because page table size for different levels of page table tree may be different. The change has user-visible effect: we don't have VmPMD and VmPUD reported in /proc/[pid]/status. Not sure if anybody uses them. (As alternative, we can always report 0 kB for them.) OOM-killer report is also slightly changed: we now report pgtables_bytes instead of nr_ptes, nr_pmd, nr_puds. Apart from reducing number of counters per-mm, the benefit is that we now calculate oom_badness() more correctly for machines which have different size of page tables depending on level or where page tables are less than a page in size. The only downside can be debuggability because we do not know which page table level could leak. But I do not remember many bugs that would be caught by separate counters so I wouldn't lose sleep over this. [akpm@linux-foundation.org: fix mm/huge_memory.c] Link: http://lkml.kernel.org/r/20171006100651.44742-2-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> [kirill.shutemov@linux.intel.com: fix build] Link: http://lkml.kernel.org/r/20171016150113.ikfxy3e7zzfvsr4w@black.fi.intel.com Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: introduce wrappers to access mm->nr_ptesKirill A. Shutemov2017-11-151-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Let's add wrappers for ->nr_ptes with the same interface as for nr_pmd and nr_pud. The patch also makes nr_ptes accounting dependent onto CONFIG_MMU. Page table accounting doesn't make sense if you don't have page tables. It's preparation for consolidation of page-table counters in mm_struct. Link: http://lkml.kernel.org/r/20171006100651.44742-1-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mm: account pud page tablesKirill A. Shutemov2017-11-151-0/+4
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | On a machine with 5-level paging support a process can allocate significant amount of memory and stay unnoticed by oom-killer and memory cgroup. The trick is to allocate a lot of PUD page tables. We don't account PUD page tables, only PMD and PTE. We already addressed the same issue for PMD page tables, see commit dc6c9a35b66b ("mm: account pmd page tables to the process"). Introduction of 5-level paging brings the same issue for PUD page tables. The patch expands accounting to PUD level. [kirill.shutemov@linux.intel.com: s/pmd_t/pud_t/] Link: http://lkml.kernel.org/r/20171004074305.x35eh5u7ybbt5kar@black.fi.intel.com [heiko.carstens@de.ibm.com: s390/mm: fix pud table accounting] Link: http://lkml.kernel.org/r/20171103090551.18231-1-heiko.carstens@de.ibm.com Link: http://lkml.kernel.org/r/20171002080427.3320-1-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* kmemleak: clear stale pointers from task stacksKonstantin Khlebnikov2017-10-131-0/+4
| | | | | | | | | | | Kmemleak considers any pointers on task stacks as references. This patch clears newly allocated and reused vmap stacks. Link: http://lkml.kernel.org/r/150728990124.744199.8403409836394318684.stgit@buzz Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* android: binder: drop lru lock in isolate callbackSherry Yang2017-10-031-0/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Drop the global lru lock in isolate callback before calling zap_page_range which calls cond_resched, and re-acquire the global lru lock before returning. Also change return code to LRU_REMOVED_RETRY. Use mmput_async when fail to acquire mmap sem in an atomic context. Fix "BUG: sleeping function called from invalid context" errors when CONFIG_DEBUG_ATOMIC_SLEEP is enabled. Also restore mmput_async, which was initially introduced in commit ec8d7c14ea14 ("mm, oom_reaper: do not mmput synchronously from the oom reaper context"), and was removed in commit 212925802454 ("mm: oom: let oom_reap_task and exit_mmap run concurrently"). Link: http://lkml.kernel.org/r/20170914182231.90908-1-sherryy@android.com Fixes: f2517eb76f1f2 ("android: binder: Add global lru shrinker to binder") Signed-off-by: Sherry Yang <sherryy@android.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reported-by: Kyle Yan <kyan@codeaurora.org> Acked-by: Arve Hjønnevåg <arve@android.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Martijn Coenen <maco@google.com> Cc: Todd Kjos <tkjos@google.com> Cc: Riley Andrews <riandrews@android.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hdanton@sina.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Hoeun Ryu <hoeun.ryu@gmail.com> Cc: Christopher Lameter <cl@linux.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'selinux-pr-20170831' of ↵Linus Torvalds2017-09-121-4/+0
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux Pull selinux updates from Paul Moore: "A relatively quiet period for SELinux, 11 patches with only two/three having any substantive changes. These noteworthy changes include another tweak to the NNP/nosuid handling, per-file labeling for cgroups, and an object class fix for AF_UNIX/SOCK_RAW sockets; the rest of the changes are minor tweaks or administrative updates (Stephen's email update explains the file explosion in the diffstat). Everything passes the selinux-testsuite" [ Also a couple of small patches from the security tree from Tetsuo Handa for Tomoyo and LSM cleanup. The separation of security policy updates wasn't all that clean - Linus ] * tag 'selinux-pr-20170831' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux: selinux: constify nf_hook_ops selinux: allow per-file labeling for cgroupfs lsm_audit: update my email address selinux: update my email address MAINTAINERS: update the NetLabel and Labeled Networking information selinux: use GFP_NOWAIT in the AVC kmem_caches selinux: Generalize support for NNP/nosuid SELinux domain transitions selinux: genheaders should fail if too many permissions are defined selinux: update the selinux info in MAINTAINERS credits: update Paul Moore's info selinux: Assign proper class to PF_UNIX/SOCK_RAW sockets tomoyo: Update URLs in Documentation/admin-guide/LSM/tomoyo.rst LSM: Remove security_task_create() hook.
| * sync to Linus v4.13-rc2 for subsystem developers to work againstJames Morris2017-07-251-24/+29
| |\
| * | LSM: Remove security_task_create() hook.Tetsuo Handa2017-07-181-4/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | Since commit a79be238600d1a03 ("selinux: Use task_alloc hook rather than task_create hook") changed to use task_alloc hook, task_create hook is no longer used. Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: James Morris <james.l.morris@oracle.com>
* | | locking/rtmutex: replace top-waiter and pi_waiters leftmost cachingDavidlohr Bueso2017-09-081-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ... with the generic rbtree flavor instead. No changes in semantics whatsoever. Link: http://lkml.kernel.org/r/20170719014603.19029-10-dave@stgolabs.net Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm/hmm: heterogeneous memory management (HMM for short)Jérôme Glisse2017-09-081-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | HMM provides 3 separate types of functionality: - Mirroring: synchronize CPU page table and device page table - Device memory: allocating struct page for device memory - Migration: migrating regular memory to device memory This patch introduces some common helpers and definitions to all of those 3 functionality. Link: http://lkml.kernel.org/r/20170817000548.32038-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Sherry Cheung <SCheung@nvidia.com> Signed-off-by: Subhash Gutti <sgutti@nvidia.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm,fork: introduce MADV_WIPEONFORKRik van Riel2017-09-061-2/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce MADV_WIPEONFORK semantics, which result in a VMA being empty in the child process after fork. This differs from MADV_DONTFORK in one important way. If a child process accesses memory that was MADV_WIPEONFORK, it will get zeroes. The address ranges are still valid, they are just empty. If a child process accesses memory that was MADV_DONTFORK, it will get a segmentation fault, since those address ranges are no longer valid in the child after fork. Since MADV_DONTFORK also seems to be used to allow very large programs to fork in systems with strict memory overcommit restrictions, changing the semantics of MADV_DONTFORK might break existing programs. MADV_WIPEONFORK only works on private, anonymous VMAs. The use case is libraries that store or cache information, and want to know that they need to regenerate it in the child process after fork. Examples of this would be: - systemd/pulseaudio API checks (fail after fork) (replacing a getpid check, which is too slow without a PID cache) - PKCS#11 API reinitialization check (mandated by specification) - glibc's upcoming PRNG (reseed after fork) - OpenSSL PRNG (reseed after fork) The security benefits of a forking server having a re-inialized PRNG in every child process are pretty obvious. However, due to libraries having all kinds of internal state, and programs getting compiled with many different versions of each library, it is unreasonable to expect calling programs to re-initialize everything manually after fork. A further complication is the proliferation of clone flags, programs bypassing glibc's functions to call clone directly, and programs calling unshare, causing the glibc pthread_atfork hook to not get called. It would be better to have the kernel take care of this automatically. The patch also adds MADV_KEEPONFORK, to undo the effects of a prior MADV_WIPEONFORK. This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO: https://man.openbsd.org/minherit.2 [akpm@linux-foundation.org: numerically order arch/parisc/include/uapi/asm/mman.h #defines] Link: http://lkml.kernel.org/r/20170811212829.29186-3-riel@redhat.com Signed-off-by: Rik van Riel <riel@redhat.com> Reported-by: Florian Weimer <fweimer@redhat.com> Reported-by: Colm MacCártaigh <colm@allcosts.net> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: Kees Cook <keescook@chromium.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: oom: let oom_reap_task and exit_mmap run concurrentlyAndrea Arcangeli2017-09-061-17/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is purely required because exit_aio() may block and exit_mmap() may never start, if the oom_reap_task cannot start running on a mm with mm_users == 0. At the same time if the OOM reaper doesn't wait at all for the memory of the current OOM candidate to be freed by exit_mmap->unmap_vmas, it would generate a spurious OOM kill. If it wasn't because of the exit_aio or similar blocking functions in the last mmput, it would be enough to change the oom_reap_task() in the case it finds mm_users == 0, to wait for a timeout or to wait for __mmput to set MMF_OOM_SKIP itself, but it's not just exit_mmap the problem here so the concurrency of exit_mmap and oom_reap_task is apparently warranted. It's a non standard runtime, exit_mmap() runs without mmap_sem, and oom_reap_task runs with the mmap_sem for reading as usual (kind of MADV_DONTNEED). The race between the two is solved with a combination of tsk_is_oom_victim() (serialized by task_lock) and MMF_OOM_SKIP (serialized by a dummy down_write/up_write cycle on the same lines of the ksm_exit method). If the oom_reap_task() may be running concurrently during exit_mmap, exit_mmap will wait it to finish in down_write (before taking down mm structures that would make the oom_reap_task fail with use after free). If exit_mmap comes first, oom_reap_task() will skip the mm if MMF_OOM_SKIP is already set and in turn all memory is already freed and furthermore the mm data structures may already have been taken down by free_pgtables. [aarcange@redhat.com: incremental one liner] Link: http://lkml.kernel.org/r/20170726164319.GC29716@redhat.com [rientjes@google.com: remove unused mmput_async] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708141733130.50317@chino.kir.corp.google.com [aarcange@redhat.com: microoptimization] Link: http://lkml.kernel.org/r/20170817171240.GB5066@redhat.com Link: http://lkml.kernel.org/r/20170726162912.GA29716@redhat.com Fixes: 26db62f179d1 ("oom: keep mm of the killed task available") Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: David Rientjes <rientjes@google.com> Tested-by: David Rientjes <rientjes@google.com> Reviewed-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | Merge tag 'arm64-upstream' of ↵Linus Torvalds2017-09-051-1/+2
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - VMAP_STACK support, allowing the kernel stacks to be allocated in the vmalloc space with a guard page for trapping stack overflows. One of the patches introduces THREAD_ALIGN and changes the generic alloc_thread_stack_node() to use this instead of THREAD_SIZE (no functional change for other architectures) - Contiguous PTE hugetlb support re-enabled (after being reverted a couple of times). We now have the semantics agreed in the generic mm layer together with API improvements so that the architecture code can detect between contiguous and non-contiguous huge PTEs - Initial support for persistent memory on ARM: DC CVAP instruction exposed to user space (HWCAP) and the in-kernel pmem API implemented - raid6 improvements for arm64: faster algorithm for the delta syndrome and implementation of the recovery routines using Neon - FP/SIMD refactoring and removal of support for Neon in interrupt context. This is in preparation for full SVE support - PTE accessors converted from inline asm to cmpxchg so that we can use LSE atomics if available (ARMv8.1) - Perf support for Cortex-A35 and A73 - Non-urgent fixes and cleanups * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (75 commits) arm64: cleanup {COMPAT_,}SET_PERSONALITY() macro arm64: introduce separated bits for mm_context_t flags arm64: hugetlb: Cleanup setup_hugepagesz arm64: Re-enable support for contiguous hugepages arm64: hugetlb: Override set_huge_swap_pte_at() to support contiguous hugepages arm64: hugetlb: Override huge_pte_clear() to support contiguous hugepages arm64: hugetlb: Handle swap entries in huge_pte_offset() for contiguous hugepages arm64: hugetlb: Add break-before-make logic for contiguous entries arm64: hugetlb: Spring clean huge pte accessors arm64: hugetlb: Introduce pte_pgprot helper arm64: hugetlb: set_huge_pte_at Add WARN_ON on !pte_present arm64: kexec: have own crash_smp_send_stop() for crash dump for nonpanic cores arm64: dma-mapping: Mark atomic_pool as __ro_after_init arm64: dma-mapping: Do not pass data to gen_pool_set_algo() arm64: Remove the !CONFIG_ARM64_HW_AFDBM alternative code paths arm64: Ignore hardware dirty bit updates in ptep_set_wrprotect() arm64: Move PTE_RDONLY bit handling out of set_pte_at() kvm: arm64: Convert kvm_set_s2pte_readonly() from inline asm to cmpxchg() arm64: Convert pte handling from inline asm to using (cmp)xchg arm64: neon/efi: Make EFI fpsimd save/restore variables static ...
| * | | fork: allow arch-override of VMAP stack alignmentMark Rutland2017-08-151-1/+2
| | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In some cases, an architecture might wish its stacks to be aligned to a boundary larger than THREAD_SIZE. For example, using an alignment of double THREAD_SIZE can allow for stack overflows smaller than THREAD_SIZE to be detected by checking a single bit of the stack pointer. This patch allows architectures to override the alignment of VMAP'd stacks, by defining THREAD_ALIGN. Where not defined, this defaults to THREAD_SIZE, as is the case today. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Will Deacon <will.deacon@arm.com> Tested-by: Laura Abbott <labbott@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: linux-kernel@vger.kernel.org
* | | Merge branch 'linus' into locking/core, to fix up conflictsIngo Molnar2017-09-041-0/+9
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | Conflicts: mm/page_alloc.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | mm, uprobes: fix multiple free of ->uprobes_state.xol_areaEric Biggers2017-08-311-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 7c051267931a ("mm, fork: make dup_mmap wait for mmap_sem for write killable") made it possible to kill a forking task while it is waiting to acquire its ->mmap_sem for write, in dup_mmap(). However, it was overlooked that this introduced an new error path before the new mm_struct's ->uprobes_state.xol_area has been set to NULL after being copied from the old mm_struct by the memcpy in dup_mm(). For a task that has previously hit a uprobe tracepoint, this resulted in the 'struct xol_area' being freed multiple times if the task was killed at just the right time while forking. Fix it by setting ->uprobes_state.xol_area to NULL in mm_init() rather than in uprobe_dup_mmap(). With CONFIG_UPROBE_EVENTS=y, the bug can be reproduced by the same C program given by commit 2b7e8665b4ff ("fork: fix incorrect fput of ->exe_file causing use-after-free"), provided that a uprobe tracepoint has been set on the fork_thread() function. For example: $ gcc reproducer.c -o reproducer -lpthread $ nm reproducer | grep fork_thread 0000000000400719 t fork_thread $ echo "p $PWD/reproducer:0x719" > /sys/kernel/debug/tracing/uprobe_events $ echo 1 > /sys/kernel/debug/tracing/events/uprobes/enable $ ./reproducer Here is the use-after-free reported by KASAN: BUG: KASAN: use-after-free in uprobe_clear_state+0x1c4/0x200 Read of size 8 at addr ffff8800320a8b88 by task reproducer/198 CPU: 1 PID: 198 Comm: reproducer Not tainted 4.13.0-rc7-00015-g36fde05f3fb5 #255 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014 Call Trace: dump_stack+0xdb/0x185 print_address_description+0x7e/0x290 kasan_report+0x23b/0x350 __asan_report_load8_noabort+0x19/0x20 uprobe_clear_state+0x1c4/0x200 mmput+0xd6/0x360 do_exit+0x740/0x1670 do_group_exit+0x13f/0x380 get_signal+0x597/0x17d0 do_signal+0x99/0x1df0 exit_to_usermode_loop+0x166/0x1e0 syscall_return_slowpath+0x258/0x2c0 entry_SYSCALL_64_fastpath+0xbc/0xbe ... Allocated by task 199: save_stack_trace+0x1b/0x20 kasan_kmalloc+0xfc/0x180 kmem_cache_alloc_trace+0xf3/0x330 __create_xol_area+0x10f/0x780 uprobe_notify_resume+0x1674/0x2210 exit_to_usermode_loop+0x150/0x1e0 prepare_exit_to_usermode+0x14b/0x180 retint_user+0x8/0x20 Freed by task 199: save_stack_trace+0x1b/0x20 kasan_slab_free+0xa8/0x1a0 kfree+0xba/0x210 uprobe_clear_state+0x151/0x200 mmput+0xd6/0x360 copy_process.part.8+0x605f/0x65d0 _do_fork+0x1a5/0xbd0 SyS_clone+0x19/0x20 do_syscall_64+0x22f/0x660 return_from_SYSCALL_64+0x0/0x7a Note: without KASAN, you may instead see a "Bad page state" message, or simply a general protection fault. Link: http://lkml.kernel.org/r/20170830033303.17927-1-ebiggers3@gmail.com Fixes: 7c051267931a ("mm, fork: make dup_mmap wait for mmap_sem for write killable") Signed-off-by: Eric Biggers <ebiggers@google.com> Reported-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> [4.7+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * | | fork: fix incorrect fput of ->exe_file causing use-after-freeEric Biggers2017-08-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 7c051267931a ("mm, fork: make dup_mmap wait for mmap_sem for write killable") made it possible to kill a forking task while it is waiting to acquire its ->mmap_sem for write, in dup_mmap(). However, it was overlooked that this introduced an new error path before a reference is taken on the mm_struct's ->exe_file. Since the ->exe_file of the new mm_struct was already set to the old ->exe_file by the memcpy() in dup_mm(), it was possible for the mmput() in the error path of dup_mm() to drop a reference to ->exe_file which was never taken. This caused the struct file to later be freed prematurely. Fix it by updating mm_init() to NULL out the ->exe_file, in the same place it clears other things like the list of mmaps. This bug was found by syzkaller. It can be reproduced using the following C program: #define _GNU_SOURCE #include <pthread.h> #include <stdlib.h> #include <sys/mman.h> #include <sys/syscall.h> #include <sys/wait.h> #include <unistd.h> static void *mmap_thread(void *_arg) { for (;;) { mmap(NULL, 0x1000000, PROT_READ, MAP_POPULATE|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); } } static void *fork_thread(void *_arg) { usleep(rand() % 10000); fork(); } int main(void) { fork(); fork(); fork(); for (;;) { if (fork() == 0) { pthread_t t; pthread_create(&t, NULL, mmap_thread, NULL); pthread_create(&t, NULL, fork_thread, NULL); usleep(rand() % 10000); syscall(__NR_exit_group, 0); } wait(NULL); } } No special kernel config options are needed. It usually causes a NULL pointer dereference in __remove_shared_vm_struct() during exit, or in dup_mmap() (which is usually inlined into copy_process()) during fork. Both are due to a vm_area_struct's ->vm_file being used after it's already been freed. Google Bug Id: 64772007 Link: http://lkml.kernel.org/r/20170823211408.31198-1-ebiggers3@gmail.com Fixes: 7c051267931a ("mm, fork: make dup_mmap wait for mmap_sem for write killable") Signed-off-by: Eric Biggers <ebiggers@google.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> [v4.7+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | | Merge branch 'linus' into locking/core, to resolve conflictsIngo Molnar2017-08-111-1/+1
|\| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Conflicts: include/linux/mm_types.h mm/huge_memory.c I removed the smp_mb__before_spinlock() like the following commit does: 8b1b436dd1cc ("mm, locking: Rework {set,clear,mm}_tlb_flush_pending()") and fixed up the affected commits. Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | mm: migrate: prevent racy access to tlb_flush_pendingNadav Amit2017-08-101-1/+1
| |/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "fixes of TLB batching races", v6. It turns out that Linux TLB batching mechanism suffers from various races. Races that are caused due to batching during reclamation were recently handled by Mel and this patch-set deals with others. The more fundamental issue is that concurrent updates of the page-tables allow for TLB flushes to be batched on one core, while another core changes the page-tables. This other core may assume a PTE change does not require a flush based on the updated PTE value, while it is unaware that TLB flushes are still pending. This behavior affects KSM (which may result in memory corruption) and MADV_FREE and MADV_DONTNEED (which may result in incorrect behavior). A proof-of-concept can easily produce the wrong behavior of MADV_DONTNEED. Memory corruption in KSM is harder to produce in practice, but was observed by hacking the kernel and adding a delay before flushing and replacing the KSM page. Finally, there is also one memory barrier missing, which may affect architectures with weak memory model. This patch (of 7): Setting and clearing mm->tlb_flush_pending can be performed by multiple threads, since mmap_sem may only be acquired for read in task_numa_work(). If this happens, tlb_flush_pending might be cleared while one of the threads still changes PTEs and batches TLB flushes. This can lead to the same race between migration and change_protection_range() that led to the introduction of tlb_flush_pending. The result of this race was data corruption, which means that this patch also addresses a theoretically possible data corruption. An actual data corruption was not observed, yet the race was was confirmed by adding assertion to check tlb_flush_pending is not set by two threads, adding artificial latency in change_protection_range() and using sysctl to reduce kernel.numa_balancing_scan_delay_ms. Link: http://lkml.kernel.org/r/20170802000818.4760-2-namit@vmware.com Fixes: 20841405940e ("mm: fix TLB flush race between migration, and change_protection_range") Signed-off-by: Nadav Amit <namit@vmware.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Russell King <linux@armlinux.org.uk> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* / / locking/lockdep: Implement the 'crossrelease' featureByungchul Park2017-08-101-0/+4
|/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lockdep is a runtime locking correctness validator that detects and reports a deadlock or its possibility by checking dependencies between locks. It's useful since it does not report just an actual deadlock but also the possibility of a deadlock that has not actually happened yet. That enables problems to be fixed before they affect real systems. However, this facility is only applicable to typical locks, such as spinlocks and mutexes, which are normally released within the context in which they were acquired. However, synchronization primitives like page locks or completions, which are allowed to be released in any context, also create dependencies and can cause a deadlock. So lockdep should track these locks to do a better job. The 'crossrelease' implementation makes these primitives also be tracked. Signed-off-by: Byungchul Park <byungchul.park@lge.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: boqun.feng@gmail.com Cc: kernel-team@lge.com Cc: kirill@shutemov.name Cc: npiggin@gmail.com Cc: walken@google.com Cc: willy@infradead.org Link: http://lkml.kernel.org/r/1502089981-21272-6-git-send-email-byungchul.park@lge.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | fork,random: use get_random_canary() to set tsk->stack_canaryRik van Riel2017-07-121-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use the ascii-armor canary to prevent unterminated C string overflows from being able to successfully overwrite the canary, even if they somehow obtain the canary value. Inspired by execshield ascii-armor and Daniel Micay's linux-hardened tree. Link: http://lkml.kernel.org/r/20170524155751.424-3-riel@redhat.com Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | fault-inject: support systematic fault injectionDmitry Vyukov2017-07-121-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add /proc/self/task/<current-tid>/fail-nth file that allows failing 0-th, 1-st, 2-nd and so on calls systematically. Excerpt from the added documentation: "Write to this file of integer N makes N-th call in the current task fail (N is 0-based). Read from this file returns a single char 'Y' or 'N' that says if the fault setup with a previous write to this file was injected or not, and disables the fault if it wasn't yet injected. Note that this file enables all types of faults (slab, futex, etc). This setting takes precedence over all other generic settings like probability, interval, times, etc. But per-capability settings (e.g. fail_futex/ignore-private) take precedence over it. This feature is intended for systematic testing of faults in a single system call. See an example below" Why add a new setting: 1. Existing settings are global rather than per-task. So parallel testing is not possible. 2. attr->interval is close but it depends on attr->count which is non reset to 0, so interval does not work as expected. 3. Trying to model this with existing settings requires manipulations of all of probability, interval, times, space, task-filter and unexposed count and per-task make-it-fail files. 4. Existing settings are per-failure-type, and the set of failure types is potentially expanding. 5. make-it-fail can't be changed by unprivileged user and aggressive stress testing better be done from an unprivileged user. Similarly, this would require opening the debugfs files to the unprivileged user, as he would need to reopen at least times file (not possible to pre-open before dropping privs). The proposed interface solves all of the above (see the example). We want to integrate this into syzkaller fuzzer. A prototype has found 10 bugs in kernel in first day of usage: https://groups.google.com/forum/#!searchin/syzkaller/%22FAULT_INJECTION%22%7Csort:relevance I've made the current interface work with all types of our sandboxes. For setuid the secret sauce was prctl(PR_SET_DUMPABLE, 1, 0, 0, 0) to make /proc entries non-root owned. So I am fine with the current version of the code. [akpm@linux-foundation.org: fix build] Link: http://lkml.kernel.org/r/20170328130128.101773-1-dvyukov@google.com Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | kernel/fork.c: virtually mapped stacks: do not disable interruptsChristoph Lameter2017-07-121-11/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | The reason to disable interrupts seems to be to avoid switching to a different processor while handling per cpu data using individual loads and stores. If we use per cpu RMV primitives we will not have to disable interrupts. Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1705171055130.5898@east.gentwo.org Signed-off-by: Christoph Lameter <cl@linux.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds2017-07-091-3/+3
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Thomas Gleixner: "This scheduler update provides: - The (hopefully) final fix for the vtime accounting issues which were around for quite some time - Use types known to user space in UAPI headers to unbreak user space builds - Make load balancing respect the current scheduling domain again instead of evaluating unrelated CPUs" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/headers/uapi: Fix linux/sched/types.h userspace compilation errors sched/fair: Fix load_balance() affinity redo path sched/cputime: Accumulate vtime on top of nsec clocksource sched/cputime: Move the vtime task fields to their own struct sched/cputime: Rename vtime fields sched/cputime: Always set tsk->vtime_snap_whence after accounting vtime vtime, sched/cputime: Remove vtime_account_user() Revert "sched/cputime: Refactor the cputime_adjust() code"
| * | sched/cputime: Move the vtime task fields to their own structFrederic Weisbecker2017-07-051-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We are about to add vtime accumulation fields to the task struct. Let's avoid more bloatification and gather vtime information to their own struct. Tested-by: Luiz Capitulino <lcapitulino@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1498756511-11714-5-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>