summaryrefslogtreecommitdiffstats
path: root/kernel/pid.c
Commit message (Collapse)AuthorAgeFilesLines
* [PATCH] pidhash: Refactor the pid hash tableEric W. Biederman2006-03-311-66/+146
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Simplifies the code, reduces the need for 4 pid hash tables, and makes the code more capable. In the discussions I had with Oleg it was felt that to a large extent the cleanup itself justified the work. With struct pid being dynamically allocated meant we could create the hash table entry when the pid was allocated and free the hash table entry when the pid was freed. Instead of playing with the hash lists when ever a process would attach or detach to a process. For myself the fact that it gave what my previous task_ref patch gave for free with simpler code was a big win. The problem is that if you hold a reference to struct task_struct you lock in 10K of low memory. If you do that in a user controllable way like /proc does, with an unprivileged but hostile user space application with typical resource limits of 1000 fds and 100 processes I can trigger the OOM killer by consuming all of low memory with task structs, on a machine wight 1GB of low memory. If I instead hold a reference to struct pid which holds a pointer to my task_struct, I don't suffer from that problem because struct pid is 2 orders of magnitude smaller. In fact struct pid is small enough that most other kernel data structures dwarf it, so simply limiting the number of referring data structures is enough to prevent exhaustion of low memory. This splits the current struct pid into two structures, struct pid and struct pid_link, and reduces our number of hash tables from PIDTYPE_MAX to just one. struct pid_link is the per process linkage into the hash tables and lives in struct task_struct. struct pid is given an indepedent lifetime, and holds pointers to each of the pid types. The independent life of struct pid simplifies attach_pid, and detach_pid, because we are always manipulating the list of pids and not the hash table. In addition in giving struct pid an indpendent life it makes the concept much more powerful. Kernel data structures can now embed a struct pid * instead of a pid_t and not suffer from pid wrap around problems or from keeping unnecessarily large amounts of memory allocated. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pidhash: don't count idle threadsOleg Nesterov2006-03-281-9/+1
| | | | | | | | | | | | | | | | | | | | | | | | | fork_idle() does unhash_process() just after copy_process(). Contrary, boot_cpu's idle thread explicitely registers itself for each pid_type with nr = 0. copy_process() already checks p->pid != 0 before process_counts++, I think we can just skip attach_pid() calls and job control inits for idle threads and kill unhash_process(). We don't need to cleanup ->proc_dentry in fork_idle() because with this patch idle threads are never hashed in kernel/pid.c:pid_hash[]. We don't need to hash pid == 0 in pidmap_init(). free_pidmap() is never called with pid == 0 arg, so it will never be reused. So it is still possible to use pid == 0 in any PIDTYPE_xxx namespace from kernel/pid.c's POV. However with this patch we don't hash pid == 0 for PIDTYPE_PID case. We still have have PIDTYPE_PGID/PIDTYPE_SID entries with pid == 0: /sbin/init and kernel threads which don't call daemonize(). Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] pidhash: kill switch_exec_pidsEric W. Biederman2006-03-281-30/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | switch_exec_pids is only called from de_thread by way of exec, and it is only called when we are exec'ing from a non thread group leader. Currently switch_exec_pids gives the leader the pid of the thread and unhashes and rehashes all of the process groups. The leader is already in the EXIT_DEAD state so no one cares about it's pids. The only concern for the leader is that __unhash_process called from release_task will function correctly. If we don't touch the leader at all we know that __unhash_process will work fine so there is no need to touch the leader. For the task becomming the thread group leader, we just need to give it the pid of the old thread group leader, add it to the task list, and attach it to the session and the process group of the thread group. Currently de_thread is also adding the task to the task list which is just silly. Currently the only leader of __detach_pid besides detach_pid is switch_exec_pids because of the ugly extra work that was being performed. So this patch removes switch_exec_pids because it is doing too much, it is creating an unnecessary special case in pid.c, duing work duplicated in de_thread, and generally obscuring what it is going on. The necessary work is added to de_thread, and it seems to be a little clearer there what is going on. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Kirill Korotaev <dev@sw.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] RCU signal handlingIngo Molnar2006-01-081-11/+11
| | | | | | | | | | | | | | RCU tasklist_lock and RCU signal handling: send signals RCU-read-locked instead of tasklist_lock read-locked. This is a scalability improvement on SMP and a preemption-latency improvement under PREEMPT_RCU. Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: William Irwin <wli@holomorphy.com> Cc: Roland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-161-0/+292
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!