| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have 32-bit variable overflow possibility when multiply in
task_times() and thread_group_times() functions. When the
overflow happens then the scaled utime value becomes erroneously
small and the scaled stime becomes i erroneously big.
Reported here:
https://bugzilla.redhat.com/show_bug.cgi?id=633037
https://bugzilla.kernel.org/show_bug.cgi?id=16559
Reported-by: Michael Chapman <redhat-bugzilla@very.puzzling.org>
Reported-by: Ciriaco Garcia de Celis <sysman@etherpilot.com>
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: <stable@kernel.org> # 2.6.32.19+ (partially) and 2.6.33+
LKML-Reference: <20100914143513.GB8415@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently sched_avg_update() (which updates rt_avg stats in the rq)
is getting called from scale_rt_power() (in the load balance context)
which doesn't take rq->lock.
Fix it by moving the sched_avg_update() to more appropriate
update_cpu_load() where the CFS load gets updated as well.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1282596171.2694.3.camel@sbsiddha-MOBL3>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a scalability issue for current implementation of optimistic
mutex spin in the kernel. It is found on a 8 node 64 core Nehalem-EX
system (HT mode).
The intention of the optimistic mutex spin is to busy wait and spin on a
mutex if the owner of the mutex is running, in the hope that the mutex
will be released soon and be acquired, without the thread trying to
acquire mutex going to sleep. However, when we have a large number of
threads, contending for the mutex, we could have the mutex grabbed by
other thread, and then another ……, and we will keep spinning, wasting cpu
cycles and adding to the contention. One possible fix is to quit
spinning and put the current thread on wait-list if mutex lock switch to
a new owner while we spin, indicating heavy contention (see the patch
included).
I did some testing on a 8 socket Nehalem-EX system with a total of 64
cores. Using Ingo's test-mutex program that creates/delete files with 256
threads (http://lkml.org/lkml/2006/1/8/50) , I see the following speed up
after putting in the mutex spin fix:
./mutex-test V 256 10
Ops/sec
2.6.34 62864
With fix 197200
Repeating the test with Aim7 fserver workload, again there is a speed up
with the fix:
Jobs/min
2.6.34 91657
With fix 149325
To look at the impact on the distribution of mutex acquisition time, I
collected the mutex acquisition time on Aim7 fserver workload with some
instrumentation. The average acquisition time is reduced by 48% and
number of contentions reduced by 32%.
#contentions Time to acquire mutex (cycles)
2.6.34 72973 44765791
With fix 49210 23067129
The histogram of mutex acquisition time is listed below. The acquisition
time is in 2^bin cycles. We see that without the fix, the acquisition
time is mostly around 2^26 cycles. With the fix, we the distribution get
spread out a lot more towards the lower cycles, starting from 2^13.
However, there is an increase of the tail distribution with the fix at
2^28 and 2^29 cycles. It seems a small price to pay for the reduced
average acquisition time and also getting the cpu to do useful work.
Mutex acquisition time distribution (acq time = 2^bin cycles):
2.6.34 With Fix
bin #occurrence % #occurrence %
11 2 0.00% 120 0.24%
12 10 0.01% 790 1.61%
13 14 0.02% 2058 4.18%
14 86 0.12% 3378 6.86%
15 393 0.54% 4831 9.82%
16 710 0.97% 4893 9.94%
17 815 1.12% 4667 9.48%
18 790 1.08% 5147 10.46%
19 580 0.80% 6250 12.70%
20 429 0.59% 6870 13.96%
21 311 0.43% 1809 3.68%
22 255 0.35% 2305 4.68%
23 317 0.44% 916 1.86%
24 610 0.84% 233 0.47%
25 3128 4.29% 95 0.19%
26 63902 87.69% 122 0.25%
27 619 0.85% 286 0.58%
28 0 0.00% 3536 7.19%
29 0 0.00% 903 1.83%
30 0 0.00% 0 0.00%
I've done similar experiments with 2.6.35 kernel on smaller boxes as
well. One is on a dual-socket Westmere box (12 cores total, with HT).
Another experiment is on an old dual-socket Core 2 box (4 cores total, no
HT)
On the 12-core Westmere box, I see a 250% increase for Ingo's mutex-test
program with my mutex patch but no significant difference in aim7's
fserver workload.
On the 4-core Core 2 box, I see the difference with the patch for both
mutex-test and aim7 fserver are negligible.
So far, it seems like the patch has not caused regression on smaller
systems.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: <stable@kernel.org> # .35.x
LKML-Reference: <1282168827.9542.72.camel@schen9-DESK>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (27 commits)
sched: Use correct macro to display sched_child_runs_first in /proc/sched_debug
sched: No need for bootmem special cases
sched: Revert nohz_ratelimit() for now
sched: Reduce update_group_power() calls
sched: Update rq->clock for nohz balanced cpus
sched: Fix spelling of sibling
sched, cpuset: Drop __cpuexit from cpu hotplug callbacks
sched: Fix the racy usage of thread_group_cputimer() in fastpath_timer_check()
sched: run_posix_cpu_timers: Don't check ->exit_state, use lock_task_sighand()
sched: thread_group_cputime: Simplify, document the "alive" check
sched: Remove the obsolete exit_state/signal hacks
sched: task_tick_rt: Remove the obsolete ->signal != NULL check
sched: __sched_setscheduler: Read the RLIMIT_RTPRIO value lockless
sched: Fix comments to make them DocBook happy
sched: Fix fix_small_capacity
powerpc: Exclude arch_sd_sibiling_asym_packing() on UP
powerpc: Enable asymmetric SMT scheduling on POWER7
sched: Add asymmetric group packing option for sibling domain
sched: Fix capacity calculations for SMT4
sched: Change nohz idle load balancing logic to push model
...
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Conflicts:
include/linux/sched.h
Merge reason: Add the leftover .35 urgent bits, fix the conflict.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Norbert reported that nohz_ratelimit() causes his laptop to burn about
4W (40%) extra. For now back out the change and see if we can adjust
the power management code to make better decisions.
Reported-by: Norbert Preining <preining@logic.at>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mike Galbraith <efault@gmx.de>
Cc: Arjan van de Ven <arjan@infradead.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\|
| | |
| | |
| | |
| | |
| | | |
Merge reason: Move from the -rc3 to the almost-rc6 base.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
As of commit dcce284 ("mm: Extend gfp masking to the page
allocator") and commit 7e85ee0 ("slab,slub: don't enable
interrupts during early boot"), the slab allocator makes
sure we don't attempt to sleep during boot.
Therefore, remove bootmem special cases from the scheduler
and use plain GFP_KERNEL instead.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1279225102-2572-1-git-send-email-penberg@cs.helsinki.fi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit 3a101d05 (sched: adjust when cpu_active and cpuset
configurations are updated during cpu on/offlining) added
hotplug notifiers marked with __cpuexit; however, ia64 drops
text in __cpuexit during link unlike x86.
This means that functions which are referenced during init but used
only for cpu hot unplugging afterwards shouldn't be marked with
__cpuexit. Drop __cpuexit from those functions.
Reported-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <4C1FDF5B.1040301@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
__sched_setscheduler() takes lock_task_sighand() to access task->signal.
This is not needed since ea6d290c, ->signal can't go away.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100610230944.GA25903@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In the new push model, all idle CPUs indeed go into nohz mode. There is
still the concept of idle load balancer (performing the load balancing
on behalf of all the idle cpu's in the system). Busy CPU kicks the nohz
balancer when any of the nohz CPUs need idle load balancing.
The kickee CPU does the idle load balancing on behalf of all idle CPUs
instead of the normal idle balance.
This addresses the below two problems with the current nohz ilb logic:
* the idle load balancer continued to have periodic ticks during idle and
wokeup frequently, even though it did not have any rebalancing to do on
behalf of any of the idle CPUs.
* On x86 and CPUs that have APIC timer stoppage on idle CPUs, this
periodic wakeup can result in a periodic additional interrupt on a CPU
doing the timer broadcast.
Also currently we are migrating the unpinned timers from an idle to the cpu
doing idle load balancing (when all the cpus in the system are idle,
there is no idle load balancing cpu and timers get added to the same idle cpu
where the request was made. So the existing optimization works only on semi idle
system).
And In semi idle system, we no longer have periodic ticks on the idle load
balancer CPU. Using that cpu will add more delays to the timers than intended
(as that cpu's timer base may not be uptodate wrt jiffies etc). This was
causing mysterious slowdowns during boot etc.
For now, in the semi idle case, use the nearest busy cpu for migrating timers
from an idle cpu. This is good for power-savings anyway.
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <1274486981.2840.46.camel@sbs-t61.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
tickless idle has a negative side effect on update_cpu_load(), which
in turn can affect load balancing behavior.
update_cpu_load() is supposed to be called every tick, to keep track
of various load indicies. With tickless idle, there are no scheduler
ticks called on the idle CPUs. Idle CPUs may still do load balancing
(with idle_load_balance CPU) using the stale cpu_load. It will also
cause problems when all CPUs go idle for a while and become active
again. In this case loads would not degrade as expected.
This is how rq->nr_load_updates change looks like under different
conditions:
<cpu_num> <nr_load_updates change>
All CPUS idle for 10 seconds (HZ=1000)
0 1621
10 496
11 139
12 875
13 1672
14 12
15 21
1 1472
2 2426
3 1161
4 2108
5 1525
6 701
7 249
8 766
9 1967
One CPU busy rest idle for 10 seconds
0 10003
10 601
11 95
12 966
13 1597
14 114
15 98
1 3457
2 93
3 6679
4 1425
5 1479
6 595
7 193
8 633
9 1687
All CPUs busy for 10 seconds
0 10026
10 10026
11 10026
12 10026
13 10025
14 10025
15 10025
1 10026
2 10026
3 10026
4 10026
5 10026
6 10026
7 10026
8 10026
9 10026
That is update_cpu_load works properly only when all CPUs are busy.
If all are idle, all the CPUs get way lower updates. And when few
CPUs are busy and rest are idle, only busy and ilb CPU does proper
updates and rest of the idle CPUs will do lower updates.
The patch keeps track of when a last update was done and fixes up
the load avg based on current time.
On one of my test system SPECjbb with warehouse 1..numcpus, patch
improves throughput numbers by ~1% (average of 6 runs). On another
test system (with different domain hierarchy) there is no noticable
change in perf.
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <AANLkTilLtDWQsAUrIxJ6s04WTgmw9GuOODc5AOrYsaR5@mail.gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
- Contrary to what 6d558c3a says, there is no need to reload
prev = rq->curr after the context switch. You always schedule
back to where you came from, prev must be equal to current
even if cpu/rq was changed.
- This also means reacquire_kernel_lock() can use prev instead
of current.
- No need to reassign switch_count if reacquire_kernel_lock()
reports need_resched(), we can just move the initial assignment
down, under the "need_resched_nonpreemptible:" label.
- Try to update the comment after context_switch().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100519125711.GA30199@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
For people who otherwise get to write: cpu_clock(smp_processor_id()),
there is now: local_clock().
Also, as per suggestion from Andrew, provide some documentation on
the various clock interfaces, and minimize the unsigned long long vs
u64 mess.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jens Axboe <jaxboe@fusionio.com>
LKML-Reference: <1275052414.1645.52.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq into sched/core
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Concurrency managed workqueue needs to know when workers are going to
sleep and waking up. Using these two hooks, cmwq keeps track of the
current concurrency level and throttles execution of new works if it's
too high and wakes up another worker from the sleep hook if it becomes
too low.
This patch introduces PF_WQ_WORKER to identify workqueue workers and
adds the following two hooks.
* wq_worker_waking_up(): called when a worker is woken up.
* wq_worker_sleeping(): called when a worker is going to sleep and may
return a pointer to a local task which should be woken up. The
returned task is woken up using try_to_wake_up_local() which is
simplified ttwu which is called under rq lock and can only wake up
local tasks.
Both hooks are currently defined as noop in kernel/workqueue_sched.h.
Later cmwq implementation will replace them with proper
implementation.
These hooks are hard coded as they'll always be enabled.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Ingo Molnar <mingo@elte.hu>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Factor ttwu_activate() and ttwu_woken_up() out of try_to_wake_up().
The factoring out doesn't affect try_to_wake_up() much
code-generation-wise. Depending on configuration options, it ends up
generating the same object code as before or slightly different one
due to different register assignment.
This is to help future implementation of try_to_wake_up_local().
Mike Galbraith suggested rename to ttwu_post_activation() from
ttwu_woken_up() and comment update in try_to_wake_up().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Ingo Molnar <mingo@elte.hu>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
cpu on/offlining
Currently, when a cpu goes down, cpu_active is cleared before
CPU_DOWN_PREPARE starts and cpuset configuration is updated from a
default priority cpu notifier. When a cpu is coming up, it's set
before CPU_ONLINE but cpuset configuration again is updated from the
same cpu notifier.
For cpu notifiers, this presents an inconsistent state. Threads which
a CPU_DOWN_PREPARE notifier expects to be bound to the CPU can be
migrated to other cpus because the cpu is no more inactive.
Fix it by updating cpu_active in the highest priority cpu notifier and
cpuset configuration in the second highest when a cpu is coming up.
Down path is updated similarly. This guarantees that all other cpu
notifiers see consistent cpu_active and cpuset configuration.
cpuset_track_online_cpus() notifier is converted to
cpuset_update_active_cpus() which just updates the configuration and
now called from cpuset_cpu_[in]active() notifiers registered from
sched_init_smp(). If cpuset is disabled, cpuset_update_active_cpus()
degenerates into partition_sched_domains() making separate notifier
for !CONFIG_CPUSETS unnecessary.
This problem is triggered by cmwq. During CPU_DOWN_PREPARE, hotplug
callback creates a kthread and kthread_bind()s it to the target cpu,
and the thread is expected to run on that cpu.
* Ingo's test discovered __cpuinit/exit markups were incorrect.
Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Menage <menage@google.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Instead of hardcoding priority 10 and 20 in sched and perf, collect
them into CPU_PRI_* enums.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|\ \ \ \
| | |_|/
| |/| |
| | | |
| | | |
| | | | |
Merge reason: Pick up the latest perf fixes
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: Cure nr_iowait_cpu() users
init: Fix comment
init, sched: Fix race between init and kthreadd
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Commit 0224cf4c5e (sched: Intoduce get_cpu_iowait_time_us())
broke things by not making sure preemption was indeed disabled
by the callers of nr_iowait_cpu() which took the iowait value of
the current cpu.
This resulted in a heap of preempt warnings. Cure this by making
nr_iowait_cpu() take a cpu number and fix up the callers to pass
in the right number.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Maxim Levitsky <maximlevitsky@gmail.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: linux-pm@lists.linux-foundation.org
LKML-Reference: <1277968037.1868.120.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\| | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Reason: Further changes conflict with upstream fixes
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| |\| | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: Prevent compiler from optimising the sched_avg_update() loop
sched: Fix over-scheduling bug
sched: Fix PROVE_RCU vs cpu_cgroup
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
GCC 4.4.1 on ARM has been observed to replace the while loop in
sched_avg_update with a call to uldivmod, resulting in the
following build failure at link-time:
kernel/built-in.o: In function `sched_avg_update':
kernel/sched.c:1261: undefined reference to `__aeabi_uldivmod'
kernel/sched.c:1261: undefined reference to `__aeabi_uldivmod'
make: *** [.tmp_vmlinux1] Error 1
This patch introduces a fake data hazard to the loop body to
prevent the compiler optimising the loop away.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |/ /
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Commit e70971591 ("sched: Optimize unused cgroup configuration") introduced
an imbalanced scheduling bug.
If we do not use CGROUP, function update_h_load won't update h_load. When the
system has a large number of tasks far more than logical CPU number, the
incorrect cfs_rq[cpu]->h_load value will cause load_balance() to pull too
many tasks to the local CPU from the busiest CPU. So the busiest CPU keeps
going in a round robin. That will hurt performance.
The issue was found originally by a scientific calculation workload that
developed by Yanmin. With that commit, the workload performance drops
about 40%.
CPU before after
00 : 2 : 7
01 : 1 : 7
02 : 11 : 6
03 : 12 : 7
04 : 6 : 6
05 : 11 : 7
06 : 10 : 6
07 : 12 : 7
08 : 11 : 6
09 : 12 : 6
10 : 1 : 6
11 : 1 : 6
12 : 6 : 6
13 : 2 : 6
14 : 2 : 6
15 : 1 : 6
Reviewed-by: Yanmin zhang <yanmin.zhang@intel.com>
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1276754893.9452.5442.camel@debian>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |/
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
PROVE_RCU has a few issues with the cpu_cgroup because the scheduler
typically holds rq->lock around the css rcu derefs but the generic
cgroup code doesn't (and can't) know about that lock.
Provide means to add extra checks to the css dereference and use that
in the scheduler to annotate its users.
The addition of rq->lock to these checks is correct because the
cgroup_subsys::attach() method takes the rq->lock for each task it
moves, therefore by holding that lock, we ensure the task is pinned to
the current cgroup and the RCU derefence is valid.
That leaves one genuine race in __sched_setscheduler() where we used
task_group() without holding any of the required locks and thus raced
with the cgroup code. Solve this by moving the check under the
appropriate lock.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Because cgroup_fork() is ran before sched_fork() [ from copy_process() ]
and the child's pid is not yet visible the child is pinned to its
cgroup. Therefore we can silence this warning.
A nicer solution would be moving cgroup_fork() to right after
dup_task_struct() and exclude PF_STARTING from task_subsys_state().
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|\|
| |
| |
| | |
Merge reason: Go from -rc1 base to -rc3 base, merge in fixes.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Mike reports that since e9e9250b (sched: Scale down cpu_power due to RT
tasks), wake_affine() goes funny on RT tasks due to them still having a
!0 weight and wake_affine() still subtracts that from the rq weight.
Since nobody should be using se->weight for RT tasks, set the value to
zero. Also, since we now use ->cpu_power to normalize rq weights to
account for RT cpu usage, add that factor into the imbalance computation.
Reported-by: Mike Galbraith <efault@gmx.de>
Tested-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1275316109.27810.22969.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\ \
| |/
|/|
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-2.6-trace into perf/core
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The function tracer code uses ftrace_preempt_disable() to disable
preemption instead of normal preempt_disable(). But there's a slight
race condition that may cause it to lose a preemption check.
This was made to keep the function tracer from recursing on itself
by disabling preemption then having the enable call the function tracer
again, causing infinite recursion.
The bug was assumed to happen if the call was just in schedule, but
this is incorrect. The bug is caused by preempt_schedule() which
is called by preempt_enable(). The calling of preempt_enable() when
NEED_RESCHED was set would call preempt_schedule() which would call
the function tracer again.
By making the preempt_schedule() and add_preempt_count() notrace
then this will prevent the inifinite recursion. This is because
the add_preempt_count() would stop the preempt_enable() in the
function tracer from calling preempt_schedule() again.
The sub_preempt_count() is also made notrace just to keep it
symmetric.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
|\ \
| |/
|/|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client:
ceph: clean up on forwarded aborted mds request
ceph: fix leak of osd authorizer
ceph: close out mds, osd connections before stopping auth
ceph: make lease code DN specific
fs/ceph: Use ERR_CAST
ceph: renew auth tickets before they expire
ceph: do not resend mon requests on auth ticket renewal
ceph: removed duplicated #includes
ceph: avoid possible null dereference
ceph: make mds requests killable, not interruptible
sched: add wait_for_completion_killable_timeout
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add missing _killable_timeout variant for wait_for_completion that will
return when a timeout expires or the task is killed.
CC: Ingo Molnar <mingo@elte.hu>
CC: Andreas Herrmann <andreas.herrmann3@amd.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Mike Galbraith <efault@gmx.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Sage Weil <sage@newdream.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that task->signal can't go away we can revert the horrible hack added
by ad474caca3e2a0550b7ce0706527ad5ab389a4d4 ("fix for
account_group_exec_runtime(), make sure ->signal can't be freed under
rq->lock").
And we can do more cleanups sched_stats.h/posix-cpu-timers.c later.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Alan Cox <alan@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/linux-2.6-kgdb
* 'kdb-merge' of git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/linux-2.6-kgdb: (25 commits)
kdb,debug_core: Allow the debug core to receive a panic notification
MAINTAINERS: update kgdb, kdb, and debug_core info
debug_core,kdb: Allow the debug core to process a recursive debug entry
printk,kdb: capture printk() when in kdb shell
kgdboc,kdb: Allow kdb to work on a non open console port
kgdb: Add the ability to schedule a breakpoint via a tasklet
mips,kgdb: kdb low level trap catch and stack trace
powerpc,kgdb: Introduce low level trap catching
x86,kgdb: Add low level debug hook
kgdb: remove post_primary_code references
kgdb,docs: Update the kgdb docs to include kdb
kgdboc,keyboard: Keyboard driver for kdb with kgdb
kgdb: gdb "monitor" -> kdb passthrough
sparc,sunzilog: Add console polling support for sunzilog serial driver
sh,sh-sci: Use NO_POLL_CHAR in the SCIF polled console code
kgdb,8250,pl011: Return immediately from console poll
kgdb: core changes to support kdb
kdb: core for kgdb back end (2 of 2)
kdb: core for kgdb back end (1 of 2)
kgdb,blackfin: Add in kgdb_arch_set_pc for blackfin
...
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This patch contains the hooks and instrumentation into kernel which
live outside the kernel/debug directory, which the kdb core
will call to run commands like lsmod, dmesg, bt etc...
CC: linux-arch@vger.kernel.org
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Martin Hicks <mort@sgi.com>
|
|\ \ \
| |/ /
|/| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
* git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6: (229 commits)
USB: remove unused usb_buffer_alloc and usb_buffer_free macros
usb: musb: update gfp/slab.h includes
USB: ftdi_sio: fix legacy SIO-device header
USB: kl5usb105: reimplement using generic framework
USB: kl5usb105: minor clean ups
USB: kl5usb105: fix memory leak
USB: io_ti: use kfifo to implement write buffering
USB: io_ti: remove unsused private counter
USB: ti_usb: use kfifo to implement write buffering
USB: ir-usb: fix incorrect write-buffer length
USB: aircable: fix incorrect write-buffer length
USB: safe_serial: straighten out read processing
USB: safe_serial: reimplement read using generic framework
USB: safe_serial: reimplement write using generic framework
usb-storage: always print quirks
USB: usb-storage: trivial debug improvements
USB: oti6858: use port write fifo
USB: oti6858: use kfifo to implement write buffering
USB: cypress_m8: use kfifo to implement write buffering
USB: cypress_m8: remove unused drain define
...
Fix up conflicts (due to usb_buffer_alloc/free renaming) in
drivers/input/tablet/acecad.c
drivers/input/tablet/kbtab.c
drivers/input/tablet/wacom_sys.c
drivers/media/video/gspca/gspca.c
sound/usb/usbaudio.c
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
New wait_event_interruptible{,_exclusive}_locked{,_irq} macros added.
They work just like versions without _locked* suffix but require the
wait queue's lock to be held. Also __wake_up_locked() is now exported
as to pair it with the above macros.
The use case of this new facility is when one uses wait queue's lock
to protect a data structure. This may be advantageous if the
structure needs to be protected by a spinlock anyway. In particular,
with additional spinlock the following code has to be used to wait
for a condition:
spin_lock(&data.lock);
...
for (ret = 0; !ret && !(condition); ) {
spin_unlock(&data.lock);
ret = wait_event_interruptible(data.wqh, (condition));
spin_lock(&data.lock);
}
...
spin_unlock(&data.lock);
This looks bizarre plus wait_event_interruptible() locks the wait
queue's lock anyway so there is a unlock+lock sequence where it could
be avoided.
To avoid those problems and benefit from wait queue's lock, a code
similar to the following should be used:
/* Waiting */
spin_lock(&data.wqh.lock);
...
ret = wait_event_interruptible_locked(data.wqh, (condition));
...
spin_unlock(&data.wqh.lock);
/* Waiting exclusively */
spin_lock(&data.whq.lock);
...
ret = wait_event_interruptible_exclusive_locked(data.whq, (condition));
...
spin_unlock(&data.whq.lock);
/* Waking up */
spin_lock(&data.wqh.lock);
...
wake_up_locked(&data.wqh);
...
spin_unlock(&data.wqh.lock);
When spin_lock_irq() is used matching versions of macros need to be
used (*_locked_irq()).
Signed-off-by: Michal Nazarewicz <m.nazarewicz@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (49 commits)
stop_machine: Move local variable closer to the usage site in cpu_stop_cpu_callback()
sched, wait: Use wrapper functions
sched: Remove a stale comment
ondemand: Make the iowait-is-busy time a sysfs tunable
ondemand: Solve a big performance issue by counting IOWAIT time as busy
sched: Intoduce get_cpu_iowait_time_us()
sched: Eliminate the ts->idle_lastupdate field
sched: Fold updating of the last_update_time_info into update_ts_time_stats()
sched: Update the idle statistics in get_cpu_idle_time_us()
sched: Introduce a function to update the idle statistics
sched: Add a comment to get_cpu_idle_time_us()
cpu_stop: add dummy implementation for UP
sched: Remove rq argument to the tracepoints
rcu: need barrier() in UP synchronize_sched_expedited()
sched: correctly place paranioa memory barriers in synchronize_sched_expedited()
sched: kill paranoia check in synchronize_sched_expedited()
sched: replace migration_thread with cpu_stop
stop_machine: reimplement using cpu_stop
cpu_stop: implement stop_cpu[s]()
sched: Fix select_idle_sibling() logic in select_task_rq_fair()
...
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
epoll should not touch flags in wait_queue_t. This patch introduces a new
function __add_wait_queue_exclusive(), for the users, who use wait queue as a
LIFO queue.
__add_wait_queue_tail_exclusive() is introduced too instead of
add_wait_queue_exclusive_locked(). remove_wait_queue_locked() is removed, as
it is a duplicate of __remove_wait_queue(), disliked by users, and with less
users.
Signed-off-by: Changli Gao <xiaosuo@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: <containers@lists.linux-foundation.org>
LKML-Reference: <1273214006-2979-1-git-send-email-xiaosuo@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tj/misc into sched/core
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
If synchronize_sched_expedited() is ever to be called from within
kernel/sched.c in a !SMP PREEMPT kernel, the !SMP implementation needs
a barrier().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The memory barriers must be in the SMP case, not in the !SMP case.
Also add a barrier after the atomic_inc() in order to ensure that
other CPUs see post-synchronize_sched_expedited() actions as following
the expedited grace period.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The paranoid check which verifies that the cpu_stop callback is
actually called on all online cpus is completely superflous. It's
guaranteed by cpu_stop facility and if it didn't work as advertised
other things would go horribly wrong and trying to recover using
synchronize_sched() wouldn't be very meaningful.
Kill the paranoid check. Removal of this feature is done as a
separate step so that it can serve as a bisection point if something
actually goes wrong.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Cc: Josh Triplett <josh@freedesktop.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Currently migration_thread is serving three purposes - migration
pusher, context to execute active_load_balance() and forced context
switcher for expedited RCU synchronize_sched. All three roles are
hardcoded into migration_thread() and determining which job is
scheduled is slightly messy.
This patch kills migration_thread and replaces all three uses with
cpu_stop. The three different roles of migration_thread() are
splitted into three separate cpu_stop callbacks -
migration_cpu_stop(), active_load_balance_cpu_stop() and
synchronize_sched_expedited_cpu_stop() - and each use case now simply
asks cpu_stop to execute the callback as necessary.
synchronize_sched_expedited() was implemented with private
preallocated resources and custom multi-cpu queueing and waiting
logic, both of which are provided by cpu_stop.
synchronize_sched_expedited_count is made atomic and all other shared
resources along with the mutex are dropped.
synchronize_sched_expedited() also implemented a check to detect cases
where not all the callback got executed on their assigned cpus and
fall back to synchronize_sched(). If called with cpu hotplug blocked,
cpu_stop already guarantees that and the condition cannot happen;
otherwise, stop_machine() would break. However, this patch preserves
the paranoid check using a cpumask to record on which cpus the stopper
ran so that it can serve as a bisection point if something actually
goes wrong theree.
Because the internal execution state is no longer visible,
rcu_expedited_torture_stats() is removed.
This patch also renames cpu_stop threads to from "stopper/%d" to
"migration/%d". The names of these threads ultimately don't matter
and there's no reason to make unnecessary userland visible changes.
With this patch applied, stop_machine() and sched now share the same
resources. stop_machine() is faster without wasting any resources and
sched migration users are much cleaner.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Cc: Josh Triplett <josh@freedesktop.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
struct rq isn't visible outside of sched.o so its near useless to
expose the pointer, also there are no users of it, so remove it.
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1272997616.1642.207.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Dave reported that his large SPARC machines spend lots of time in
hweight64(), try and optimize some of those needless cpumask_weight()
invocations (esp. with the large offstack cpumasks these are very
expensive indeed).
Reported-by: David Miller <davem@davemloft.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Chase reported that due to us decrementing calc_load_task prematurely
(before the next LOAD_FREQ sample), the load average could be scewed
by as much as the number of CPUs in the machine.
This patch, based on Chase's patch, cures the problem by keeping the
delta of the CPU going into NO_HZ idle separately and folding that in
on the next LOAD_FREQ update.
This restores the balance and we get strict LOAD_FREQ period samples.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Chase Douglas <chase.douglas@canonical.com>
LKML-Reference: <1271934490.1776.343.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
update_avg() is only used for SMP builds, move it to the nearest
SMP block.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <1271309399.14779.17.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|