summaryrefslogtreecommitdiffstats
path: root/kernel/sched
Commit message (Collapse)AuthorAgeFilesLines
* Merge tag 'sched-psi-2022-10-14' of ↵Linus Torvalds2022-10-143-74/+213
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull PSI updates from Ingo Molnar: - Various performance optimizations, resulting in a 4%-9% speedup in the mmtests/config-scheduler-perfpipe micro-benchmark. - New interface to turn PSI on/off on a per cgroup level. * tag 'sched-psi-2022-10-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/psi: Per-cgroup PSI accounting disable/re-enable interface sched/psi: Cache parent psi_group to speed up group iteration sched/psi: Consolidate cgroup_psi() sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ pressure sched/psi: Remove NR_ONCPU task accounting sched/psi: Optimize task switch inside shared cgroups again sched/psi: Move private helpers to sched/stats.h sched/psi: Save percpu memory when !psi_cgroups_enabled sched/psi: Don't create cgroup PSI files when psi_disabled sched/psi: Fix periodic aggregation shut off
| * sched/psi: Per-cgroup PSI accounting disable/re-enable interfaceChengming Zhou2022-09-091-7/+63
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PSI accounts stalls for each cgroup separately and aggregates it at each level of the hierarchy. This may cause non-negligible overhead for some workloads when under deep level of the hierarchy. commit 3958e2d0c34e ("cgroup: make per-cgroup pressure stall tracking configurable") make PSI to skip per-cgroup stall accounting, only account system-wide to avoid this each level overhead. But for our use case, we also want leaf cgroup PSI stats accounted for userspace adjustment on that cgroup, apart from only system-wide adjustment. So this patch introduce a per-cgroup PSI accounting disable/re-enable interface "cgroup.pressure", which is a read-write single value file that allowed values are "0" and "1", the defaults is "1" so per-cgroup PSI stats is enabled by default. Implementation details: It should be relatively straight-forward to disable and re-enable state aggregation, time tracking, averaging on a per-cgroup level, if we can live with losing history from while it was disabled. I.e. the avgs will restart from 0, total= will have gaps. But it's hard or complex to stop/restart groupc->tasks[] updates, which is not implemented in this patch. So we always update groupc->tasks[] and PSI_ONCPU bit in psi_group_change() even when the cgroup PSI stats is disabled. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Tejun Heo <tj@kernel.org> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lkml.kernel.org/r/20220907090332.2078-1-zhouchengming@bytedance.com
| * sched/psi: Cache parent psi_group to speed up group iterationChengming Zhou2022-09-091-30/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We use iterate_groups() to iterate each level psi_group to update PSI stats, which is a very hot path. In current code, iterate_groups() have to use multiple branches and cgroup_parent() to get parent psi_group for each level, which is not very efficient. This patch cache parent psi_group in struct psi_group, only need to get psi_group of task itself first, then just use group->parent to iterate. Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20220825164111.29534-10-zhouchengming@bytedance.com
| * sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ pressureChengming Zhou2022-09-093-2/+75
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now PSI already tracked workload pressure stall information for CPU, memory and IO. Apart from these, IRQ/SOFTIRQ could have obvious impact on some workload productivity, such as web service workload. When CONFIG_IRQ_TIME_ACCOUNTING, we can get IRQ/SOFTIRQ delta time from update_rq_clock_task(), in which we can record that delta to CPU curr task's cgroups as PSI_IRQ_FULL status. Note we don't use PSI_IRQ_SOME since IRQ/SOFTIRQ always happen in the current task on the CPU, make nothing productive could run even if it were runnable, so we only use PSI_IRQ_FULL. Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20220825164111.29534-8-zhouchengming@bytedance.com
| * sched/psi: Remove NR_ONCPU task accountingJohannes Weiner2022-09-091-11/+30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We put all fields updated by the scheduler in the first cacheline of struct psi_group_cpu for performance. Since we want add another PSI_IRQ_FULL to track IRQ/SOFTIRQ pressure, we need to reclaim space first. This patch remove NR_ONCPU task accounting in struct psi_group_cpu, use one bit in state_mask to track instead. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com> Tested-by: Chengming Zhou <zhouchengming@bytedance.com> Link: https://lore.kernel.org/r/20220825164111.29534-7-zhouchengming@bytedance.com
| * sched/psi: Optimize task switch inside shared cgroups againChengming Zhou2022-09-091-12/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Way back when PSI_MEM_FULL was accounted from the timer tick, task switching could simply iterate next and prev to the common ancestor to update TSK_ONCPU and be done. Then memstall ticks were replaced with checking curr->in_memstall directly in psi_group_change(). That meant that now if the task switch was between a memstall and a !memstall task, we had to iterate through the common ancestors at least ONCE to fix up their state_masks. We added the identical_state filter to make sure the common ancestor elimination was skipped in that case. It seems that was always a little too eager, because it caused us to walk the common ancestors *twice* instead of the required once: the iteration for next could have stopped at the common ancestor; prev could have updated TSK_ONCPU up to the common ancestor, then finish to the root without changing any flags, just to get the new curr->in_memstall into the state_masks. This patch recognizes this and makes it so that we walk to the root exactly once if state_mask needs updating, which is simply catching up on a missed optimization that could have been done in commit 7fae6c8171d2 ("psi: Use ONCPU state tracking machinery to detect reclaim") directly. Apart from this, it's also necessary for the next patch "sched/psi: remove NR_ONCPU task accounting". Suppose we walk the common ancestors twice: (1) psi_group_change(.clear = 0, .set = TSK_ONCPU) (2) psi_group_change(.clear = TSK_ONCPU, .set = 0) We previously used tasks[NR_ONCPU] to record TSK_ONCPU, tasks[NR_ONCPU]++ in (1) then tasks[NR_ONCPU]-- in (2), so tasks[NR_ONCPU] still be correct. The next patch change to use one bit in state mask to record TSK_ONCPU, PSI_ONCPU bit will be set in (1), but then be cleared in (2), which cause the psi_group_cpu has task running on CPU but without PSI_ONCPU bit set! With this patch, we will never walk the common ancestors twice, so won't have above problem. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20220825164111.29534-6-zhouchengming@bytedance.com
| * sched/psi: Move private helpers to sched/stats.hChengming Zhou2022-09-091-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch move psi_task_change/psi_task_switch declarations out of PSI public header, since they are only needed for implementing the PSI stats tracking in sched/stats.h psi_task_switch is obvious, psi_task_change can't be public helper since it doesn't check psi_disabled static key. And there is no any user now, so put it in sched/stats.h too. Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20220825164111.29534-5-zhouchengming@bytedance.com
| * sched/psi: Save percpu memory when !psi_cgroups_enabledChengming Zhou2022-09-091-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | We won't use cgroup psi_group when !psi_cgroups_enabled, so don't bother to alloc percpu memory and init for it. Also don't need to migrate task PSI stats between cgroups in cgroup_move_task(). Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20220825164111.29534-4-zhouchengming@bytedance.com
| * sched/psi: Fix periodic aggregation shut offChengming Zhou2022-09-091-14/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We don't want to wake periodic aggregation work back up if the task change is the aggregation worker itself going to sleep, or we'll ping-pong forever. Previously, we would use psi_task_change() in psi_dequeue() when task going to sleep, so this check was put in psi_task_change(). But commit 4117cebf1a9f ("psi: Optimize task switch inside shared cgroups") defer task sleep handling to psi_task_switch(), won't go through psi_task_change() anymore. So this patch move this check to psi_task_switch(). Fixes: 4117cebf1a9f ("psi: Optimize task switch inside shared cgroups") Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20220825164111.29534-2-zhouchengming@bytedance.com
* | Merge tag 'mm-stable-2022-10-08' of ↵Linus Torvalds2022-10-104-3/+189
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ...
| * | sched: use maple tree iterator to walk VMAsMatthew Wilcox (Oracle)2022-09-261-3/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The linked list is slower than walking the VMAs using the maple tree. We can't use the VMA iterator here because it doesn't support moving to an earlier position. Link: https://lkml.kernel.org/r/20220906194824.2110408-49-Liam.Howlett@oracle.com Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Yu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
| * | mm/demotion: update node_is_toptier to work with memory tiersAneesh Kumar K.V2022-09-261-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With memory tier support we can have memory only NUMA nodes in the top tier from which we want to avoid promotion tracking NUMA faults. Update node_is_toptier to work with memory tiers. All NUMA nodes are by default top tier nodes. With lower(slower) memory tiers added we consider all memory tiers above a memory tier having CPU NUMA nodes as a top memory tier [sj@kernel.org: include missed header file, memory-tiers.h] Link: https://lkml.kernel.org/r/20220820190720.248704-1-sj@kernel.org [akpm@linux-foundation.org: mm/memory.c needs linux/memory-tiers.h] [aneesh.kumar@linux.ibm.com: make toptier_distance inclusive upper bound of toptiers] Link: https://lkml.kernel.org/r/20220830081457.118960-1-aneesh.kumar@linux.ibm.com Link: https://lkml.kernel.org/r/20220818131042.113280-10-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Wei Xu <weixugc@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Bharata B Rao <bharata@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hesham Almatary <hesham.almatary@huawei.com> Cc: Jagdish Gediya <jvgediya.oss@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
| * | mm: multi-gen LRU: support page table walksYu Zhao2022-09-261-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To further exploit spatial locality, the aging prefers to walk page tables to search for young PTEs and promote hot pages. A kill switch will be added in the next patch to disable this behavior. When disabled, the aging relies on the rmap only. NB: this behavior has nothing similar with the page table scanning in the 2.4 kernel [1], which searches page tables for old PTEs, adds cold pages to swapcache and unmaps them. To avoid confusion, the term "iteration" specifically means the traversal of an entire mm_struct list; the term "walk" will be applied to page tables and the rmap, as usual. An mm_struct list is maintained for each memcg, and an mm_struct follows its owner task to the new memcg when this task is migrated. Given an lruvec, the aging iterates lruvec_memcg()->mm_list and calls walk_page_range() with each mm_struct on this list to promote hot pages before it increments max_seq. When multiple page table walkers iterate the same list, each of them gets a unique mm_struct; therefore they can run concurrently. Page table walkers ignore any misplaced pages, e.g., if an mm_struct was migrated, pages it left in the previous memcg will not be promoted when its current memcg is under reclaim. Similarly, page table walkers will not promote pages from nodes other than the one under reclaim. This patch uses the following optimizations when walking page tables: 1. It tracks the usage of mm_struct's between context switches so that page table walkers can skip processes that have been sleeping since the last iteration. 2. It uses generational Bloom filters to record populated branches so that page table walkers can reduce their search space based on the query results, e.g., to skip page tables containing mostly holes or misplaced pages. 3. It takes advantage of the accessed bit in non-leaf PMD entries when CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG=y. 4. It does not zigzag between a PGD table and the same PMD table spanning multiple VMAs. IOW, it finishes all the VMAs within the range of the same PMD table before it returns to a PGD table. This improves the cache performance for workloads that have large numbers of tiny VMAs [2], especially when CONFIG_PGTABLE_LEVELS=5. Server benchmark results: Single workload: fio (buffered I/O): no change Single workload: memcached (anon): +[8, 10]% Ops/sec KB/sec patch1-7: 1147696.57 44640.29 patch1-8: 1245274.91 48435.66 Configurations: no change Client benchmark results: kswapd profiles: patch1-7 48.16% lzo1x_1_do_compress (real work) 8.20% page_vma_mapped_walk (overhead) 7.06% _raw_spin_unlock_irq 2.92% ptep_clear_flush 2.53% __zram_bvec_write 2.11% do_raw_spin_lock 2.02% memmove 1.93% lru_gen_look_around 1.56% free_unref_page_list 1.40% memset patch1-8 49.44% lzo1x_1_do_compress (real work) 6.19% page_vma_mapped_walk (overhead) 5.97% _raw_spin_unlock_irq 3.13% get_pfn_folio 2.85% ptep_clear_flush 2.42% __zram_bvec_write 2.08% do_raw_spin_lock 1.92% memmove 1.44% alloc_zspage 1.36% memset Configurations: no change Thanks to the following developers for their efforts [3]. kernel test robot <lkp@intel.com> [1] https://lwn.net/Articles/23732/ [2] https://llvm.org/docs/ScudoHardenedAllocator.html [3] https://lore.kernel.org/r/202204160827.ekEARWQo-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220918080010.2920238-9-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
| * | memory tiering: adjust hot threshold automaticallyHuang Ying2022-09-112-5/+55
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The promotion hot threshold is workload and system configuration dependent. So in this patch, a method to adjust the hot threshold automatically is implemented. The basic idea is to control the number of the candidate promotion pages to match the promotion rate limit. If the hint page fault latency of a page is less than the hot threshold, we will try to promote the page, and the page is called the candidate promotion page. If the number of the candidate promotion pages in the statistics interval is much more than the promotion rate limit, the hot threshold will be decreased to reduce the number of the candidate promotion pages. Otherwise, the hot threshold will be increased to increase the number of the candidate promotion pages. To make the above method works, in each statistics interval, the total number of the pages to check (on which the hint page faults occur) and the hot/cold distribution need to be stable. Because the page tables are scanned linearly in NUMA balancing, but the hot/cold distribution isn't uniform along the address usually, the statistics interval should be larger than the NUMA balancing scan period. So in the patch, the max scan period is used as statistics interval and it works well in our tests. Link: https://lkml.kernel.org/r/20220713083954.34196-4-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: osalvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wei Xu <weixugc@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
| * | memory tiering: rate limit NUMA migration throughputHuang Ying2022-09-111-2/+31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In NUMA balancing memory tiering mode, if there are hot pages in slow memory node and cold pages in fast memory node, we need to promote/demote hot/cold pages between the fast and cold memory nodes. A choice is to promote/demote as fast as possible. But the CPU cycles and memory bandwidth consumed by the high promoting/demoting throughput will hurt the latency of some workload because of accessing inflating and slow memory bandwidth contention. A way to resolve this issue is to restrict the max promoting/demoting throughput. It will take longer to finish the promoting/demoting. But the workload latency will be better. This is implemented in this patch as the page promotion rate limit mechanism. The number of the candidate pages to be promoted to the fast memory node via NUMA balancing is counted, if the count exceeds the limit specified by the users, the NUMA balancing promotion will be stopped until the next second. A new sysctl knob kernel.numa_balancing_promote_rate_limit_MBps is added for the users to specify the limit. Link: https://lkml.kernel.org/r/20220713083954.34196-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: osalvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wei Xu <weixugc@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
| * | memory tiering: hot page selection with hint page fault latencyHuang Ying2022-09-113-0/+101
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "memory tiering: hot page selection", v4. To optimize page placement in a memory tiering system with NUMA balancing, the hot pages in the slow memory nodes need to be identified. Essentially, the original NUMA balancing implementation selects the mostly recently accessed (MRU) pages to promote. But this isn't a perfect algorithm to identify the hot pages. Because the pages with quite low access frequency may be accessed eventually given the NUMA balancing page table scanning period could be quite long (e.g. 60 seconds). So in this patchset, we implement a new hot page identification algorithm based on the latency between NUMA balancing page table scanning and hint page fault. Which is a kind of mostly frequently accessed (MFU) algorithm. In NUMA balancing memory tiering mode, if there are hot pages in slow memory node and cold pages in fast memory node, we need to promote/demote hot/cold pages between the fast and cold memory nodes. A choice is to promote/demote as fast as possible. But the CPU cycles and memory bandwidth consumed by the high promoting/demoting throughput will hurt the latency of some workload because of accessing inflating and slow memory bandwidth contention. A way to resolve this issue is to restrict the max promoting/demoting throughput. It will take longer to finish the promoting/demoting. But the workload latency will be better. This is implemented in this patchset as the page promotion rate limit mechanism. The promotion hot threshold is workload and system configuration dependent. So in this patchset, a method to adjust the hot threshold automatically is implemented. The basic idea is to control the number of the candidate promotion pages to match the promotion rate limit. We used the pmbench memory accessing benchmark tested the patchset on a 2-socket server system with DRAM and PMEM installed. The test results are as follows, pmbench score promote rate (accesses/s) MB/s ------------- ------------ base 146887704.1 725.6 hot selection 165695601.2 544.0 rate limit 162814569.8 165.2 auto adjustment 170495294.0 136.9 From the results above, With hot page selection patch [1/3], the pmbench score increases about 12.8%, and promote rate (overhead) decreases about 25.0%, compared with base kernel. With rate limit patch [2/3], pmbench score decreases about 1.7%, and promote rate decreases about 69.6%, compared with hot page selection patch. With threshold auto adjustment patch [3/3], pmbench score increases about 4.7%, and promote rate decrease about 17.1%, compared with rate limit patch. Baolin helped to test the patchset with MySQL on a machine which contains 1 DRAM node (30G) and 1 PMEM node (126G). sysbench /usr/share/sysbench/oltp_read_write.lua \ ...... --tables=200 \ --table-size=1000000 \ --report-interval=10 \ --threads=16 \ --time=120 The tps can be improved about 5%. This patch (of 3): To optimize page placement in a memory tiering system with NUMA balancing, the hot pages in the slow memory node need to be identified. Essentially, the original NUMA balancing implementation selects the mostly recently accessed (MRU) pages to promote. But this isn't a perfect algorithm to identify the hot pages. Because the pages with quite low access frequency may be accessed eventually given the NUMA balancing page table scanning period could be quite long (e.g. 60 seconds). The most frequently accessed (MFU) algorithm is better. So, in this patch we implemented a better hot page selection algorithm. Which is based on NUMA balancing page table scanning and hint page fault as follows, - When the page tables of the processes are scanned to change PTE/PMD to be PROT_NONE, the current time is recorded in struct page as scan time. - When the page is accessed, hint page fault will occur. The scan time is gotten from the struct page. And The hint page fault latency is defined as hint page fault time - scan time The shorter the hint page fault latency of a page is, the higher the probability of their access frequency to be higher. So the hint page fault latency is a better estimation of the page hot/cold. It's hard to find some extra space in struct page to hold the scan time. Fortunately, we can reuse some bits used by the original NUMA balancing. NUMA balancing uses some bits in struct page to store the page accessing CPU and PID (referring to page_cpupid_xchg_last()). Which is used by the multi-stage node selection algorithm to avoid to migrate pages shared accessed by the NUMA nodes back and forth. But for pages in the slow memory node, even if they are shared accessed by multiple NUMA nodes, as long as the pages are hot, they need to be promoted to the fast memory node. So the accessing CPU and PID information are unnecessary for the slow memory pages. We can reuse these bits in struct page to record the scan time. For the fast memory pages, these bits are used as before. For the hot threshold, the default value is 1 second, which works well in our performance test. All pages with hint page fault latency < hot threshold will be considered hot. It's hard for users to determine the hot threshold. So we don't provide a kernel ABI to set it, just provide a debugfs interface for advanced users to experiment. We will continue to work on a hot threshold automatic adjustment mechanism. The downside of the above method is that the response time to the workload hot spot changing may be much longer. For example, - A previous cold memory area becomes hot - The hint page fault will be triggered. But the hint page fault latency isn't shorter than the hot threshold. So the pages will not be promoted. - When the memory area is scanned again, maybe after a scan period, the hint page fault latency measured will be shorter than the hot threshold and the pages will be promoted. To mitigate this, if there are enough free space in the fast memory node, the hot threshold will not be used, all pages will be promoted upon the hint page fault for fast response. Thanks Zhong Jiang reported and tested the fix for a bug when disabling memory tiering mode dynamically. Link: https://lkml.kernel.org/r/20220713083954.34196-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220713083954.34196-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: osalvador <osalvador@suse.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | Merge tag 'bitmap-6.1-rc1' of https://github.com/norov/linuxLinus Torvalds2022-10-101-4/+1
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull bitmap updates from Yury Norov: - Fix unsigned comparison to -1 in CPUMAP_FILE_MAX_BYTES (Phil Auld) - cleanup nr_cpu_ids vs nr_cpumask_bits mess (me) This series cleans that mess and adds new config FORCE_NR_CPUS that allows to optimize cpumask subsystem if the number of CPUs is known at compile-time. - optimize find_bit() functions (me) Reworks find_bit() functions based on new FIND_{FIRST,NEXT}_BIT() macros. - add find_nth_bit() (me) Adds find_nth_bit(), which is ~70 times faster than bitcounting with for_each() loop: for_each_set_bit(bit, mask, size) if (n-- == 0) return bit; Also adds bitmap_weight_and() to let people replace this pattern: tmp = bitmap_alloc(nbits); bitmap_and(tmp, map1, map2, nbits); weight = bitmap_weight(tmp, nbits); bitmap_free(tmp); with a single bitmap_weight_and() call. - repair cpumask_check() (me) After switching cpumask to use nr_cpu_ids, cpumask_check() started generating many false-positive warnings. This series fixes it. - Add for_each_cpu_andnot() and for_each_cpu_andnot() (Valentin Schneider) Extends the API with one more function and applies it in sched/core. * tag 'bitmap-6.1-rc1' of https://github.com/norov/linux: (28 commits) sched/core: Merge cpumask_andnot()+for_each_cpu() into for_each_cpu_andnot() lib/test_cpumask: Add for_each_cpu_and(not) tests cpumask: Introduce for_each_cpu_andnot() lib/find_bit: Introduce find_next_andnot_bit() cpumask: fix checking valid cpu range lib/bitmap: add tests for for_each() loops lib/find: optimize for_each() macros lib/bitmap: introduce for_each_set_bit_wrap() macro lib/find_bit: add find_next{,_and}_bit_wrap cpumask: switch for_each_cpu{,_not} to use for_each_bit() net: fix cpu_max_bits_warn() usage in netif_attrmask_next{,_and} cpumask: add cpumask_nth_{,and,andnot} lib/bitmap: remove bitmap_ord_to_pos lib/bitmap: add tests for find_nth_bit() lib: add find_nth{,_and,_andnot}_bit() lib/bitmap: add bitmap_weight_and() lib/bitmap: don't call __bitmap_weight() in kernel code tools: sync find_bit() implementation lib/find_bit: optimize find_next_bit() functions lib/find_bit: create find_first_zero_bit_le() ...
| * | sched/core: Merge cpumask_andnot()+for_each_cpu() into for_each_cpu_andnot()Valentin Schneider2022-10-061-4/+1
| |/ | | | | | | | | | | | | This removes the second use of the sched_core_mask temporary mask. Suggested-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Valentin Schneider <vschneid@redhat.com>
* | Merge tag 'sched-core-2022-10-07' of ↵Linus Torvalds2022-10-1011-297/+265
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "Debuggability: - Change most occurances of BUG_ON() to WARN_ON_ONCE() - Reorganize & fix TASK_ state comparisons, turn it into a bitmap - Update/fix misc scheduler debugging facilities Load-balancing & regular scheduling: - Improve the behavior of the scheduler in presence of lot of SCHED_IDLE tasks - in particular they should not impact other scheduling classes. - Optimize task load tracking, cleanups & fixes - Clean up & simplify misc load-balancing code Freezer: - Rewrite the core freezer to behave better wrt thawing and be simpler in general, by replacing PF_FROZEN with TASK_FROZEN & fixing/adjusting all the fallout. Deadline scheduler: - Fix the DL capacity-aware code - Factor out dl_task_is_earliest_deadline() & replenish_dl_new_period() - Relax/optimize locking in task_non_contending() Cleanups: - Factor out the update_current_exec_runtime() helper - Various cleanups, simplifications" * tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits) sched: Fix more TASK_state comparisons sched: Fix TASK_state comparisons sched/fair: Move call to list_last_entry() in detach_tasks sched/fair: Cleanup loop_max and loop_break sched/fair: Make sure to try to detach at least one movable task sched: Show PF_flag holes freezer,sched: Rewrite core freezer logic sched: Widen TAKS_state literals sched/wait: Add wait_event_state() sched/completion: Add wait_for_completion_state() sched: Add TASK_ANY for wait_task_inactive() sched: Change wait_task_inactive()s match_state freezer,umh: Clean up freezer/initrd interaction freezer: Have {,un}lock_system_sleep() save/restore flags sched: Rename task_running() to task_on_cpu() sched/fair: Cleanup for SIS_PROP sched/fair: Default to false in test_idle_cores() sched/fair: Remove useless check in select_idle_core() sched/fair: Avoid double search on same cpu sched/fair: Remove redundant check in select_idle_smt() ...
| * | sched: Fix TASK_state comparisonsPeter Zijlstra2022-09-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Task state is fundamentally a bitmask; direct comparisons are probably not working as intended. Specifically the normal wait-state have a number of possible modifiers: TASK_UNINTERRUPTIBLE: TASK_WAKEKILL, TASK_NOLOAD, TASK_FREEZABLE TASK_INTERRUPTIBLE: TASK_FREEZABLE Specifically, the addition of TASK_FREEZABLE wrecked __wait_is_interruptible(). This however led to an audit of direct comparisons yielding the rest of the changes. Fixes: f5d39b020809 ("freezer,sched: Rewrite core freezer logic") Reported-by: Christian Borntraeger <borntraeger@linux.ibm.com> Debugged-by: Christian Borntraeger <borntraeger@linux.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Christian Borntraeger <borntraeger@linux.ibm.com>
| * | sched/fair: Move call to list_last_entry() in detach_tasksVincent Guittot2022-09-151-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | Move the call to list_last_entry() in detach_tasks() after testing loop_max and loop_break. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220825122726.20819-4-vincent.guittot@linaro.org
| * | sched/fair: Cleanup loop_max and loop_breakVincent Guittot2022-09-153-12/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | sched_nr_migrate_break is set to a fix value and never changes so we can replace it by a define SCHED_NR_MIGRATE_BREAK. Also, we adjust SCHED_NR_MIGRATE_BREAK to be aligned with the init value of sysctl_sched_nr_migrate which can be init to different values. Then, use SCHED_NR_MIGRATE_BREAK to init sysctl_sched_nr_migrate. The behavior stays unchanged unless you modify sysctl_sched_nr_migrate trough debugfs. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220825122726.20819-3-vincent.guittot@linaro.org
| * | sched/fair: Make sure to try to detach at least one movable taskVincent Guittot2022-09-151-3/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | During load balance, we try at most env->loop_max time to move a task. But it can happen that the loop_max LRU tasks (ie tail of the cfs_tasks list) can't be moved to dst_cpu because of affinity. In this case, loop in the list until we found at least one. The maximum of detached tasks remained the same as before. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220825122726.20819-2-vincent.guittot@linaro.org
| * | freezer,sched: Rewrite core freezer logicPeter Zijlstra2022-09-071-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rewrite the core freezer to behave better wrt thawing and be simpler in general. By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is ensured frozen tasks stay frozen until thawed and don't randomly wake up early, as is currently possible. As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up two PF_flags (yay!). Specifically; the current scheme works a little like: freezer_do_not_count(); schedule(); freezer_count(); And either the task is blocked, or it lands in try_to_freezer() through freezer_count(). Now, when it is blocked, the freezer considers it frozen and continues. However, on thawing, once pm_freezing is cleared, freezer_count() stops working, and any random/spurious wakeup will let a task run before its time. That is, thawing tries to thaw things in explicit order; kernel threads and workqueues before doing bringing SMP back before userspace etc.. However due to the above mentioned races it is entirely possible for userspace tasks to thaw (by accident) before SMP is back. This can be a fatal problem in asymmetric ISA architectures (eg ARMv9) where the userspace task requires a special CPU to run. As said; replace this with a special task state TASK_FROZEN and add the following state transitions: TASK_FREEZABLE -> TASK_FROZEN __TASK_STOPPED -> TASK_FROZEN __TASK_TRACED -> TASK_FROZEN The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL (IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state is already required to deal with spurious wakeups and the freezer causes one such when thawing the task (since the original state is lost). The special __TASK_{STOPPED,TRACED} states *can* be restored since their canonical state is in ->jobctl. With this, frozen tasks need an explicit TASK_FROZEN wakeup and are free of undue (early / spurious) wakeups. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
| * | sched/completion: Add wait_for_completion_state()Peter Zijlstra2022-09-071-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | Allows waiting with a custom @state. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20220822114648.922711674@infradead.org
| * | sched: Add TASK_ANY for wait_task_inactive()Peter Zijlstra2022-09-071-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that wait_task_inactive()'s @match_state argument is a mask (like ttwu()) it is possible to replace the special !match_state case with an 'all-states' value such that any blocked state will match. Suggested-by: Ingo Molnar (mingo@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/YxhkzfuFTvRnpUaH@hirez.programming.kicks-ass.net
| * | sched: Change wait_task_inactive()s match_statePeter Zijlstra2022-09-071-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make wait_task_inactive()'s @match_state work like ttwu()'s @state. That is, instead of an equal comparison, use it as a mask. This allows matching multiple block conditions. (removes the unlikely; it doesn't make sense how it's only part of the condition) Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220822114648.856734578@infradead.org
| * | sched: Rename task_running() to task_on_cpu()Peter Zijlstra2022-09-076-14/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is some ambiguity about task_running() in that it is unrelated to TASK_RUNNING but instead tests ->on_cpu. As such, rename the thing task_on_cpu(). Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/Yxhkhn55uHZx+NGl@hirez.programming.kicks-ass.net
| * | sched/fair: Cleanup for SIS_PROPAbel Wu2022-09-071-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The sched-domain of this cpu is only used for some heuristics when SIS_PROP is enabled, and it should be irrelevant whether the local sd_llc is valid or not, since all we care about is target sd_llc if !SIS_PROP. Access the local domain only when there is a need. Signed-off-by: Abel Wu <wuyun.abel@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20220907112000.1854-6-wuyun.abel@bytedance.com
| * | sched/fair: Default to false in test_idle_cores()Abel Wu2022-09-071-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It's uncertain whether idle cores exist or not if shared sched- domains are not ready, so returning "no idle cores" usually makes sense. While __update_idle_core() is an exception, it checks status of this core and set hint to shared sched-domain if necessary. So the whole logic of this function depends on the existence of shared sched-domain, and can certainly bail out early if it is not available. It's somehow a little tricky, and as Josh suggested that it should be transient while the domain isn't ready. So remove the self-defined default value to make things more clearer. Signed-off-by: Abel Wu <wuyun.abel@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Don <joshdon@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Link: https://lore.kernel.org/r/20220907112000.1854-5-wuyun.abel@bytedance.com
| * | sched/fair: Remove useless check in select_idle_core()Abel Wu2022-09-071-3/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The function select_idle_core() only gets called when has_idle_cores is true which can be possible only when sched_smt_present is enabled. This change also aligns select_idle_core() with select_idle_smt() in the way that the caller do the check if necessary. Signed-off-by: Abel Wu <wuyun.abel@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Link: https://lore.kernel.org/r/20220907112000.1854-4-wuyun.abel@bytedance.com
| * | sched/fair: Avoid double search on same cpuAbel Wu2022-09-071-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The prev cpu is checked at the beginning of SIS, and it's unlikely to be idle before the second check in select_idle_smt(). So we'd better focus on its SMT siblings. Signed-off-by: Abel Wu <wuyun.abel@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Don <joshdon@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Link: https://lore.kernel.org/r/20220907112000.1854-3-wuyun.abel@bytedance.com
| * | sched/fair: Remove redundant check in select_idle_smt()Abel Wu2022-09-071-7/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If two cpus share LLC cache, then the two cores they belong to are also in the same LLC domain. Signed-off-by: Abel Wu <wuyun.abel@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Don <joshdon@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Link: https://lore.kernel.org/r/20220907112000.1854-2-wuyun.abel@bytedance.com
| * | sched/deadline: Move __dl_clear_params out of dl_bw lockShang XiaoJing2022-09-011-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As members in sched_dl_entity are independent with dl_bw, move __dl_clear_params out of dl_bw lock. Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org> Link: https://lore.kernel.org/r/20220827020911.30641-1-shangxiaojing@huawei.com
| * | sched/deadline: Add replenish_dl_new_period helperShang XiaoJing2022-09-011-10/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wrap repeated code in helper function replenish_dl_new_period, which set the deadline and runtime of input dl_se based on pi_of(dl_se). Note that setup_new_dl_entity originally set the deadline and runtime base on dl_se, which should equals to pi_of(dl_se) for non-boosted task. Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org> Link: https://lore.kernel.org/r/20220826100037.12146-1-shangxiaojing@huawei.com
| * | sched/deadline: Add dl_task_is_earliest_deadline helperShang XiaoJing2022-09-011-12/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wrap repeated code in helper function dl_task_is_earliest_deadline, which return true if there is no deadline task on the rq at all, or task's deadline earlier than the whole rq. Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org> Link: https://lore.kernel.org/r/20220826083453.698-1-shangxiaojing@huawei.com
| * | Merge branch 'sched/warnings' into sched/core, to pick up WARN_ON_ONCE() ↵Ingo Molnar2022-08-309-46/+94
| |\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | conversion commit Merge in the BUG_ON() => WARN_ON_ONCE() conversion commit. Signed-off-by: Ingo Molnar <mingo@kernel.org>
| | * | sched/all: Change all BUG_ON() instances in the scheduler to WARN_ON_ONCE()Ingo Molnar2022-08-127-25/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There's no good reason to crash a user's system with a BUG_ON(), chances are high that they'll never even see the crash message on Xorg, and it won't make it into the syslog either. By using a WARN_ON_ONCE() we at least give the user a chance to report any bugs triggered here - instead of getting silent hangs. None of these WARN_ON_ONCE()s are supposed to trigger, ever - so we ignore cases where a NULL check is done via a BUG_ON() and we let a NULL pointer through after a WARN_ON_ONCE(). There's one exception: WARN_ON_ONCE() arguments with side-effects, such as locking - in this case we use the return value of the WARN_ON_ONCE(), such as in: - BUG_ON(!lock_task_sighand(p, &flags)); + if (WARN_ON_ONCE(!lock_task_sighand(p, &flags))) + return; Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/YvSsKcAXISmshtHo@gmail.com
| * | | sched: Add update_current_exec_runtime helperShang XiaoJing2022-08-274-17/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wrap repeated code in helper function update_current_exec_runtime for update the exec time of the current. Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220824082856.15674-1-shangxiaojing@huawei.com
| * | | sched/fair: Don't init util/runnable_avg for !fair taskChengming Zhou2022-08-231-14/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | post_init_entity_util_avg() init task util_avg according to the cpu util_avg at the time of fork, which will decay when switched_to_fair() some time later, we'd better to not set them at all in the case of !fair task. Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20220818124805.601-10-zhouchengming@bytedance.com
| * | | sched/fair: Move task sched_avg attach to enqueue_task_fair()Chengming Zhou2022-08-231-8/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When wake_up_new_task(), we use post_init_entity_util_avg() to init util_avg/runnable_avg based on cpu's util_avg at that time, and attach task sched_avg to cfs_rq. Since enqueue_task_fair() -> enqueue_entity() -> update_load_avg() loop will do attach, we can move this work to update_load_avg(). wake_up_new_task(p) post_init_entity_util_avg(p) attach_entity_cfs_rq() --> (1) activate_task(rq, p) enqueue_task() := enqueue_task_fair() enqueue_entity() loop update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH) if (!se->avg.last_update_time && (flags & DO_ATTACH)) attach_entity_load_avg() --> (2) This patch move attach from (1) to (2), update related comments too. Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20220818124805.601-9-zhouchengming@bytedance.com
| * | | sched/fair: Allow changing cgroup of new forked taskChengming Zhou2022-08-232-20/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 7dc603c9028e ("sched/fair: Fix PELT integrity for new tasks") introduce a TASK_NEW state and an unnessary limitation that would fail when changing cgroup of new forked task. Because at that time, we can't handle task_change_group_fair() for new forked fair task which hasn't been woken up by wake_up_new_task(), which will cause detach on an unattached task sched_avg problem. This patch delete this unnessary limitation by adding check before do detach or attach in task_change_group_fair(). So cpu_cgrp_subsys.can_attach() has nothing to do for fair tasks, only define it in #ifdef CONFIG_RT_GROUP_SCHED. Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20220818124805.601-8-zhouchengming@bytedance.com
| * | | sched/fair: Fix another detach on unattached task corner caseChengming Zhou2022-08-231-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 7dc603c9028e ("sched/fair: Fix PELT integrity for new tasks") fixed two load tracking problems for new task, including detach on unattached new task problem. There still left another detach on unattached task problem for the task which has been woken up by try_to_wake_up() and waiting for actually being woken up by sched_ttwu_pending(). try_to_wake_up(p) cpu = select_task_rq(p) if (task_cpu(p) != cpu) set_task_cpu(p, cpu) migrate_task_rq_fair() remove_entity_load_avg() --> unattached se->avg.last_update_time = 0; __set_task_cpu() ttwu_queue(p, cpu) ttwu_queue_wakelist() __ttwu_queue_wakelist() task_change_group_fair() detach_task_cfs_rq() detach_entity_cfs_rq() detach_entity_load_avg() --> detach on unattached task set_task_rq() attach_task_cfs_rq() attach_entity_cfs_rq() attach_entity_load_avg() The reason of this problem is similar, we should check in detach_entity_cfs_rq() that se->avg.last_update_time != 0, before do detach_entity_load_avg(). Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20220818124805.601-7-zhouchengming@bytedance.com
| * | | sched/fair: Combine detach into dequeue when migrating taskChengming Zhou2022-08-231-12/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we are migrating task out of the CPU, we can combine detach and propagation into dequeue_entity() to save the detach_entity_cfs_rq() in migrate_task_rq_fair(). This optimization is like combining DO_ATTACH in the enqueue_entity() when migrating task to the CPU. So we don't have to traverse the CFS tree extra time to do the detach_entity_cfs_rq() -> propagate_entity_cfs_rq(), which wouldn't be called anymore with this patch's change. detach_task() deactivate_task() dequeue_task_fair() for_each_sched_entity(se) dequeue_entity() update_load_avg() /* (1) */ detach_entity_load_avg() set_task_cpu() migrate_task_rq_fair() detach_entity_cfs_rq() /* (2) */ update_load_avg(); detach_entity_load_avg(); propagate_entity_cfs_rq(); for_each_sched_entity() update_load_avg() This patch save the detach_entity_cfs_rq() called in (2) by doing the detach_entity_load_avg() for a CPU migrating task inside (1) (the task being the first se in the loop) Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20220818124805.601-6-zhouchengming@bytedance.com
| * | | sched/fair: Update comments in enqueue/dequeue_entity()Chengming Zhou2022-08-231-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When reading the sched_avg related code, I found the comments in enqueue/dequeue_entity() are not updated with the current code. We don't add/subtract entity's runnable_avg from cfs_rq->runnable_avg during enqueue/dequeue_entity(), those are done only for attach/detach. This patch updates the comments to reflect the current code working. Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20220818124805.601-5-zhouchengming@bytedance.com
| * | | sched/fair: Reset sched_avg last_update_time before set_task_rq()Chengming Zhou2022-08-231-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | set_task_rq() -> set_task_rq_fair() will try to synchronize the blocked task's sched_avg when migrate, which is not needed for already detached task. task_change_group_fair() will detached the task sched_avg from prev cfs_rq first, so reset sched_avg last_update_time before set_task_rq() to avoid that. Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20220818124805.601-4-zhouchengming@bytedance.com
| * | | sched/fair: Remove redundant cpu_cgrp_subsys->fork()Chengming Zhou2022-08-233-49/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We use cpu_cgrp_subsys->fork() to set task group for the new fair task in cgroup_post_fork(). Since commit b1e8206582f9 ("sched: Fix yet more sched_fork() races") has already set_task_rq() for the new fair task in sched_cgroup_fork(), so cpu_cgrp_subsys->fork() can be removed. cgroup_can_fork() --> pin parent's sched_task_group sched_cgroup_fork() __set_task_cpu() set_task_rq() cgroup_post_fork() ss->fork() := cpu_cgroup_fork() sched_change_group(..., TASK_SET_GROUP) task_set_group_fair() set_task_rq() --> can be removed After this patch's change, task_change_group_fair() only need to care about task cgroup migration, make the code much simplier. Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20220818124805.601-3-zhouchengming@bytedance.com
| * | | sched/fair: Maintain task se depth in set_task_rq()Chengming Zhou2022-08-232-8/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously we only maintain task se depth in task_move_group_fair(), if a !fair task change task group, its se depth will not be updated, so commit eb7a59b2c888 ("sched/fair: Reset se-depth when task switched to FAIR") fix the problem by updating se depth in switched_to_fair() too. Then commit daa59407b558 ("sched/fair: Unify switched_{from,to}_fair() and task_move_group_fair()") unified these two functions, moved se.depth setting to attach_task_cfs_rq(), which further into attach_entity_cfs_rq() with commit df217913e72e ("sched/fair: Factorize attach/detach entity"). This patch move task se depth maintenance from attach_entity_cfs_rq() to set_task_rq(), which will be called when CPU/cgroup change, so its depth will always be correct. This patch is preparation for the next patch. Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20220818124805.601-2-zhouchengming@bytedance.com
| * | | sched/core: Remove superfluous semicolonXin Gao2022-08-041-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | Signed-off-by: Xin Gao <gaoxin@cdjrlc.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20220719111044.7095-1-gaoxin@cdjrlc.com
| * | | sched/fair: Make per-cpu cpumasks staticBing Huang2022-08-032-13/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The load_balance_mask and select_rq_mask percpu variables are only used in kernel/sched/fair.c. Make them static and move their allocation into init_sched_fair_class(). Replace kzalloc_node() with zalloc_cpumask_var_node() to get rid of the CONFIG_CPUMASK_OFFSTACK #ifdef and to align with per-cpu cpumask allocation for RT (local_cpu_mask in init_sched_rt_class()) and DL class (local_cpu_mask_dl in init_sched_dl_class()). [ mingo: Tidied up changelog & touched up the code. ] Signed-off-by: Bing Huang <huangbing@kylinos.cn> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20220722213609.3901-1-huangbing775@126.com