summaryrefslogtreecommitdiffstats
path: root/kernel/trace/trace_kdb.c
Commit message (Collapse)AuthorAgeFilesLines
* tracing: kdb: Fix kernel livelock with empty buffersDaniel Thompson2014-11-131-6/+6
| | | | | | | | | | | | | | | | | | | | | | | Currently kdb's ftdump command will livelock by constantly printk'ing the empty string at KERN_EMERG level if it run when the ftrace system is not in use. This occurs because trace_empty() never returns false when the ring buffers are left at the start of a non-consuming read [launched by ring_buffer_read_start()]. This patch changes the loop exit condition to use the result of trace_find_next_entry_inc(). Effectively this switches the non-consuming kdb dumper to follow the approach of the non-consuming userspace interface [s_next()] rather than the consuming ftrace_dump(). Link: http://lkml.kernel.org/r/1415277716-19419-3-git-send-email-daniel.thompson@linaro.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Jason Wessel <jason.wessel@windriver.com> Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
* tracing: kdb: Fix kernel panic during ftdumpDaniel Thompson2014-11-131-2/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently kdb's ftdump command unconditionally crashes due to a null pointer de-reference whenever the command is run. This in turn causes the kernel to panic. The abridged stacktrace (gathered with ARCH=arm) is: --- cut here --- [<c09535ac>] (panic) from [<c02132dc>] (die+0x264/0x440) [<c02132dc>] (die) from [<c0952eb8>] (__do_kernel_fault.part.11+0x74/0x84) [<c0952eb8>] (__do_kernel_fault.part.11) from [<c021f954>] (do_page_fault+0x1d0/0x3c4) [<c021f954>] (do_page_fault) from [<c020846c>] (do_DataAbort+0x48/0xac) [<c020846c>] (do_DataAbort) from [<c0213c58>] (__dabt_svc+0x38/0x60) Exception stack(0xc0deba88 to 0xc0debad0) ba80: e8c29180 00000001 e9854304 e9854300 c0f567d8 c0df2580 baa0: 00000000 00000000 00000000 c0f117b8 c0e3a3c0 c0debb0c 00000000 c0debad0 bac0: 0000672e c02f4d60 60000193 ffffffff [<c0213c58>] (__dabt_svc) from [<c02f4d60>] (kdb_ftdump+0x1e4/0x3d8) [<c02f4d60>] (kdb_ftdump) from [<c02ce328>] (kdb_parse+0x2b8/0x698) [<c02ce328>] (kdb_parse) from [<c02ceef0>] (kdb_main_loop+0x52c/0x784) [<c02ceef0>] (kdb_main_loop) from [<c02d1b0c>] (kdb_stub+0x238/0x490) --- cut here --- The NULL deref occurs due to the initialized use of struct trace_iter's buffer_iter member. This is a regression, albeit a fairly elderly one. It was introduced by commit 6d158a813efc ("tracing: Remove NR_CPUS array from trace_iterator"). This patch solves this by providing a collection of ring_buffer_iter(s) and using this to initialize buffer_iter. Note that static allocation is used solely because the trace_iter itself is also static allocated. Static allocation also means that we have to NULL-ify the pointer during cleanup to avoid use-after-free problems. Link: http://lkml.kernel.org/r/1415277716-19419-2-git-send-email-daniel.thompson@linaro.org Cc: Jason Wessel <jason.wessel@windriver.com> Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
* tracing: Consolidate max_tr into main trace_array structureSteven Rostedt (Red Hat)2013-03-151-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | Currently, the way the latency tracers and snapshot feature works is to have a separate trace_array called "max_tr" that holds the snapshot buffer. For latency tracers, this snapshot buffer is used to swap the running buffer with this buffer to save the current max latency. The only items needed for the max_tr is really just a copy of the buffer itself, the per_cpu data pointers, the time_start timestamp that states when the max latency was triggered, and the cpu that the max latency was triggered on. All other fields in trace_array are unused by the max_tr, making the max_tr mostly bloat. This change removes the max_tr completely, and adds a new structure called trace_buffer, that holds the buffer pointer, the per_cpu data pointers, the time_start timestamp, and the cpu where the latency occurred. The trace_array, now has two trace_buffers, one for the normal trace and one for the max trace or snapshot. By doing this, not only do we remove the bloat from the max_trace but the instances of traces can now use their own snapshot feature and not have just the top level global_trace have the snapshot feature and latency tracers for itself. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
* tracing: Replace the static global per_cpu arrays with allocated per_cpuSteven Rostedt2013-03-151-2/+2
| | | | | | | | | The global and max-tr currently use static per_cpu arrays for the CPU data descriptors. But in order to get new allocated trace_arrays, they need to be allocated per_cpu arrays. Instead of using the static arrays, switch the global and max-tr to use allocated data. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
* tracing: Use RING_BUFFER_ALL_CPUS for TRACE_PIPE_ALL_CPUSteven Rostedt2013-03-151-2/+2
| | | | | | | | | | | | | | Both RING_BUFFER_ALL_CPUS and TRACE_PIPE_ALL_CPU are defined as -1 and used to say that all the ring buffers are to be modified or read (instead of just a single cpu, which would be >= 0). There's no reason to keep TRACE_PIPE_ALL_CPU as it is also started to be used for more than what it was created for, and now that the ring buffer code added a generic RING_BUFFER_ALL_CPUS define, we can clean up the trace code to use that instead and remove the TRACE_PIPE_ALL_CPU macro. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
* kdb,ftdump: Remove reference to internal kdb includeJason Wessel2010-10-221-1/+0
| | | | | | | | Now that include/linux/kdb.h properly exports all the functions required to dynamically add a kdb shell command, the reference to the private kdb header can be removed. Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
* ftrace,kdb: Allow dumping a specific cpu's buffer with ftdumpJason Wessel2010-08-051-10/+27
| | | | | | | | | In systems with more than one processor it is desirable to look at the per cpu trace buffers. Signed-off-by: Jason Wessel <jason.wessel@windriver.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> CC: Frederic Weisbecker <fweisbec@gmail.com>
* ftrace,kdb: Extend kdb to be able to dump the ftrace bufferJason Wessel2010-08-051-0/+119
Add in a helper function to allow the kdb shell to dump the ftrace buffer. Modify trace.c to expose the capability to iterate over the ftrace buffer in a read only capacity. Signed-off-by: Jason Wessel <jason.wessel@windriver.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> CC: Frederic Weisbecker <fweisbec@gmail.com>