| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CONFIG_BASE_SMALL is currently a type int but is only used as a boolean.
So, change its type to bool and adapt all usages:
CONFIG_BASE_SMALL == 0 becomes !IS_ENABLED(CONFIG_BASE_SMALL) and
CONFIG_BASE_SMALL != 0 becomes IS_ENABLED(CONFIG_BASE_SMALL).
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Yoann Congal <yoann.congal@smile.fr>
Link: https://lore.kernel.org/r/20240505080343.1471198-3-yoann.congal@smile.fr
Signed-off-by: Petr Mladek <pmladek@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Enable unprivileged sandboxes to create their own binfmt_misc mounts.
This is based on Laurent's work in [1] but has been significantly
reworked to fix various issues we identified in earlier versions.
While binfmt_misc can currently only be mounted in the initial user
namespace, binary types registered in this binfmt_misc instance are
available to all sandboxes (Either by having them installed in the
sandbox or by registering the binary type with the F flag causing the
interpreter to be opened right away). So binfmt_misc binary types are
already delegated to sandboxes implicitly.
However, while a sandbox has access to all registered binary types in
binfmt_misc a sandbox cannot currently register its own binary types
in binfmt_misc. This has prevented various use-cases some of which were
already outlined in [1] but we have a range of issues associated with
this (cf. [3]-[5] below which are just a small sample).
Extend binfmt_misc to be mountable in non-initial user namespaces.
Similar to other filesystem such as nfsd, mqueue, and sunrpc we use
keyed superblock management. The key determines whether we need to
create a new superblock or can reuse an already existing one. We use the
user namespace of the mount as key. This means a new binfmt_misc
superblock is created once per user namespace creation. Subsequent
mounts of binfmt_misc in the same user namespace will mount the same
binfmt_misc instance. We explicitly do not create a new binfmt_misc
superblock on every binfmt_misc mount as the semantics for
load_misc_binary() line up with the keying model. This also allows us to
retrieve the relevant binfmt_misc instance based on the caller's user
namespace which can be done in a simple (bounded to 32 levels) loop.
Similar to the current binfmt_misc semantics allowing access to the
binary types in the initial binfmt_misc instance we do allow sandboxes
access to their parent's binfmt_misc mounts if they do not have created
a separate binfmt_misc instance.
Overall, this will unblock the use-cases mentioned below and in general
will also allow to support and harden execution of another
architecture's binaries in tight sandboxes. For instance, using the
unshare binary it possible to start a chroot of another architecture and
configure the binfmt_misc interpreter without being root to run the
binaries in this chroot and without requiring the host to modify its
binary type handlers.
Henning had already posted a few experiments in the cover letter at [1].
But here's an additional example where an unprivileged container
registers qemu-user-static binary handlers for various binary types in
its separate binfmt_misc mount and is then seamlessly able to start
containers with a different architecture without affecting the host:
root [lxc monitor] /var/snap/lxd/common/lxd/containers f1
1000000 \_ /sbin/init
1000000 \_ /lib/systemd/systemd-journald
1000000 \_ /lib/systemd/systemd-udevd
1000100 \_ /lib/systemd/systemd-networkd
1000101 \_ /lib/systemd/systemd-resolved
1000000 \_ /usr/sbin/cron -f
1000103 \_ /usr/bin/dbus-daemon --system --address=systemd: --nofork --nopidfile --systemd-activation --syslog-only
1000000 \_ /usr/bin/python3 /usr/bin/networkd-dispatcher --run-startup-triggers
1000104 \_ /usr/sbin/rsyslogd -n -iNONE
1000000 \_ /lib/systemd/systemd-logind
1000000 \_ /sbin/agetty -o -p -- \u --noclear --keep-baud console 115200,38400,9600 vt220
1000107 \_ dnsmasq --conf-file=/dev/null -u lxc-dnsmasq --strict-order --bind-interfaces --pid-file=/run/lxc/dnsmasq.pid --liste
1000000 \_ [lxc monitor] /var/lib/lxc f1-s390x
1100000 \_ /usr/bin/qemu-s390x-static /sbin/init
1100000 \_ /usr/bin/qemu-s390x-static /lib/systemd/systemd-journald
1100000 \_ /usr/bin/qemu-s390x-static /usr/sbin/cron -f
1100103 \_ /usr/bin/qemu-s390x-static /usr/bin/dbus-daemon --system --address=systemd: --nofork --nopidfile --systemd-ac
1100000 \_ /usr/bin/qemu-s390x-static /usr/bin/python3 /usr/bin/networkd-dispatcher --run-startup-triggers
1100104 \_ /usr/bin/qemu-s390x-static /usr/sbin/rsyslogd -n -iNONE
1100000 \_ /usr/bin/qemu-s390x-static /lib/systemd/systemd-logind
1100000 \_ /usr/bin/qemu-s390x-static /sbin/agetty -o -p -- \u --noclear --keep-baud console 115200,38400,9600 vt220
1100000 \_ /usr/bin/qemu-s390x-static /sbin/agetty -o -p -- \u --noclear --keep-baud pts/0 115200,38400,9600 vt220
1100000 \_ /usr/bin/qemu-s390x-static /sbin/agetty -o -p -- \u --noclear --keep-baud pts/1 115200,38400,9600 vt220
1100000 \_ /usr/bin/qemu-s390x-static /sbin/agetty -o -p -- \u --noclear --keep-baud pts/2 115200,38400,9600 vt220
1100000 \_ /usr/bin/qemu-s390x-static /sbin/agetty -o -p -- \u --noclear --keep-baud pts/3 115200,38400,9600 vt220
1100000 \_ /usr/bin/qemu-s390x-static /lib/systemd/systemd-udevd
[1]: https://lore.kernel.org/all/20191216091220.465626-1-laurent@vivier.eu
[2]: https://discuss.linuxcontainers.org/t/binfmt-misc-permission-denied
[3]: https://discuss.linuxcontainers.org/t/lxd-binfmt-support-for-qemu-static-interpreters
[4]: https://discuss.linuxcontainers.org/t/3-1-0-binfmt-support-service-in-unprivileged-guest-requires-write-access-on-hosts-proc-sys-fs-binfmt-misc
[5]: https://discuss.linuxcontainers.org/t/qemu-user-static-not-working-4-11
Link: https://lore.kernel.org/r/20191216091220.465626-2-laurent@vivier.eu (origin)
Link: https://lore.kernel.org/r/20211028103114.2849140-2-brauner@kernel.org (v1)
Cc: Sargun Dhillon <sargun@sargun.me>
Cc: Serge Hallyn <serge@hallyn.com>
Cc: Jann Horn <jannh@google.com>
Cc: Henning Schild <henning.schild@siemens.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Laurent Vivier <laurent@vivier.eu>
Cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
---
/* v2 */
- Serge Hallyn <serge@hallyn.com>:
- Use GFP_KERNEL_ACCOUNT for userspace triggered allocations when a
new binary type handler is registered.
- Christian Brauner <christian.brauner@ubuntu.com>:
- Switch authorship to me. I refused to do that earlier even though
Laurent said I should do so because I think it's genuinely bad form.
But by now I have changed so many things that it'd be unfair to
blame Laurent for any potential bugs in here.
- Add more comments that explain what's going on.
- Rename functions while changing them to better reflect what they are
doing to make the code easier to understand.
- In the first version when a specific binary type handler was removed
either through a write to the entry's file or all binary type
handlers were removed by a write to the binfmt_misc mount's status
file all cleanup work happened during inode eviction.
That includes removal of the relevant entries from entry list. While
that works fine I disliked that model after thinking about it for a
bit. Because it means that there was a window were someone has
already removed a or all binary handlers but they could still be
safely reached from load_misc_binary() when it has managed to take
the read_lock() on the entries list while inode eviction was already
happening. Again, that perfectly benign but it's cleaner to remove
the binary handler from the list immediately meaning that ones the
write to then entry's file or the binfmt_misc status file returns
the binary type cannot be executed anymore. That gives stronger
guarantees to the user.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Following the pattern of io_uring, perf, skb, and bpf, iommfd will use
user->locked_vm for accounting pinned pages. Ensure the value is included
in the struct and export free_uid() as iommufd is modular.
user->locked_vm is the good accounting to use for ulimit because it is
per-user, and the security sandboxing of locked pages is not supposed to
be per-process. Other places (vfio, vdpa and infiniband) have used
mm->pinned_vm and/or mm->locked_vm for accounting pinned pages, but this
is only per-process and inconsistent with the new FOLL_LONGTERM users in
the kernel.
Concurrent work is underway to try to put this in a cgroup, so everything
can be consistent and the kernel can provide a FOLL_LONGTERM limit that
actually provides security.
Link: https://lore.kernel.org/r/7-v6-a196d26f289e+11787-iommufd_jgg@nvidia.com
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Yi Liu <yi.l.liu@intel.com>
Tested-by: Lixiao Yang <lixiao.yang@intel.com>
Tested-by: Matthew Rosato <mjrosato@linux.ibm.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This counter tracks the number of watches a user has, to compare against
the 'max_user_watches' limit. This causes a scalability bottleneck on
SPECjbb2015 on large systems as there is only one user. Changing to a
per-cpu counter increases throughput of the benchmark by about 30% on a
16-socket, > 1000 thread system.
[rdunlap@infradead.org: fix build errors in kernel/user.c when CONFIG_EPOLL=n]
[npiggin@gmail.com: move ifdefs into wrapper functions, slightly improve panic message]
Link: https://lkml.kernel.org/r/1628051945.fens3r99ox.astroid@bobo.none
[akpm@linux-foundation.org: tweak user_epoll_alloc(), per Guenter]
Link: https://lkml.kernel.org/r/20210804191421.GA1900577@roeck-us.net
Link: https://lkml.kernel.org/r/20210802032013.2751916-1-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reported-by: Anton Blanchard <anton@ozlabs.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The rlimit counter is tied to uid in the user_namespace. This allows
rlimit values to be specified in userns even if they are already
globally exceeded by the user. However, the value of the previous
user_namespaces cannot be exceeded.
Changelog
v11:
* Fix issue found by lkp robot.
v8:
* Fix issues found by lkp-tests project.
v7:
* Keep only ucounts for RLIMIT_MEMLOCK checks instead of struct cred.
v6:
* Fix bug in hugetlb_file_setup() detected by trinity.
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/970d50c70c71bfd4496e0e8d2a0a32feebebb350.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The rlimit counter is tied to uid in the user_namespace. This allows
rlimit values to be specified in userns even if they are already
globally exceeded by the user. However, the value of the previous
user_namespaces cannot be exceeded.
Changelog
v11:
* Revert most of changes to fix performance issues.
v10:
* Fix memory leak on get_ucounts failure.
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/df9d7764dddd50f28616b7840de74ec0f81711a8.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The rlimit counter is tied to uid in the user_namespace. This allows
rlimit values to be specified in userns even if they are already
globally exceeded by the user. However, the value of the previous
user_namespaces cannot be exceeded.
To illustrate the impact of rlimits, let's say there is a program that
does not fork. Some service-A wants to run this program as user X in
multiple containers. Since the program never fork the service wants to
set RLIMIT_NPROC=1.
service-A
\- program (uid=1000, container1, rlimit_nproc=1)
\- program (uid=1000, container2, rlimit_nproc=1)
The service-A sets RLIMIT_NPROC=1 and runs the program in container1.
When the service-A tries to run a program with RLIMIT_NPROC=1 in
container2 it fails since user X already has one running process.
We cannot use existing inc_ucounts / dec_ucounts because they do not
allow us to exceed the maximum for the counter. Some rlimits can be
overlimited by root or if the user has the appropriate capability.
Changelog
v11:
* Change inc_rlimit_ucounts() which now returns top value of ucounts.
* Drop inc_rlimit_ucounts_and_test() because the return code of
inc_rlimit_ucounts() can be checked.
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/c5286a8aa16d2d698c222f7532f3d735c82bc6bc.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Switch over user namespaces to use the newly introduced common lifetime
counter.
Currently every namespace type has its own lifetime counter which is stored
in the specific namespace struct. The lifetime counters are used
identically for all namespaces types. Namespaces may of course have
additional unrelated counters and these are not altered.
This introduces a common lifetime counter into struct ns_common. The
ns_common struct encompasses information that all namespaces share. That
should include the lifetime counter since its common for all of them.
It also allows us to unify the type of the counters across all namespaces.
Most of them use refcount_t but one uses atomic_t and at least one uses
kref. Especially the last one doesn't make much sense since it's just a
wrapper around refcount_t since 2016 and actually complicates cleanup
operations by having to use container_of() to cast the correct namespace
struct out of struct ns_common.
Having the lifetime counter for the namespaces in one place reduces
maintenance cost. Not just because after switching all namespaces over we
will have removed more code than we added but also because the logic is
more easily understandable and we indicate to the user that the basic
lifetime requirements for all namespaces are currently identical.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Link: https://lore.kernel.org/r/159644979754.604812.601625186726406922.stgit@localhost.localdomain
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix the following sparse warning:
kernel/user.c:85:19: warning: symbol 'uidhash_table' was not declared.
Should it be static?
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Jason Yan <yanaijie@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20200413082146.22737-1-yanaijie@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull keyring namespacing from David Howells:
"These patches help make keys and keyrings more namespace aware.
Firstly some miscellaneous patches to make the process easier:
- Simplify key index_key handling so that the word-sized chunks
assoc_array requires don't have to be shifted about, making it
easier to add more bits into the key.
- Cache the hash value in the key so that we don't have to calculate
on every key we examine during a search (it involves a bunch of
multiplications).
- Allow keying_search() to search non-recursively.
Then the main patches:
- Make it so that keyring names are per-user_namespace from the point
of view of KEYCTL_JOIN_SESSION_KEYRING so that they're not
accessible cross-user_namespace.
keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEYRING_NAME for this.
- Move the user and user-session keyrings to the user_namespace
rather than the user_struct. This prevents them propagating
directly across user_namespaces boundaries (ie. the KEY_SPEC_*
flags will only pick from the current user_namespace).
- Make it possible to include the target namespace in which the key
shall operate in the index_key. This will allow the possibility of
multiple keys with the same description, but different target
domains to be held in the same keyring.
keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEY_TAG for this.
- Make it so that keys are implicitly invalidated by removal of a
domain tag, causing them to be garbage collected.
- Institute a network namespace domain tag that allows keys to be
differentiated by the network namespace in which they operate. New
keys that are of a type marked 'KEY_TYPE_NET_DOMAIN' are assigned
the network domain in force when they are created.
- Make it so that the desired network namespace can be handed down
into the request_key() mechanism. This allows AFS, NFS, etc. to
request keys specific to the network namespace of the superblock.
This also means that the keys in the DNS record cache are
thenceforth namespaced, provided network filesystems pass the
appropriate network namespace down into dns_query().
For DNS, AFS and NFS are good, whilst CIFS and Ceph are not. Other
cache keyrings, such as idmapper keyrings, also need to set the
domain tag - for which they need access to the network namespace of
the superblock"
* tag 'keys-namespace-20190627' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
keys: Pass the network namespace into request_key mechanism
keys: Network namespace domain tag
keys: Garbage collect keys for which the domain has been removed
keys: Include target namespace in match criteria
keys: Move the user and user-session keyrings to the user_namespace
keys: Namespace keyring names
keys: Add a 'recurse' flag for keyring searches
keys: Cache the hash value to avoid lots of recalculation
keys: Simplify key description management
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Move the user and user-session keyrings to the user_namespace struct rather
than pinning them from the user_struct struct. This prevents these
keyrings from propagating across user-namespaces boundaries with regard to
the KEY_SPEC_* flags, thereby making them more useful in a containerised
environment.
The issue is that a single user_struct may be represent UIDs in several
different namespaces.
The way the patch does this is by attaching a 'register keyring' in each
user_namespace and then sticking the user and user-session keyrings into
that. It can then be searched to retrieve them.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Jann Horn <jannh@google.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Keyring names are held in a single global list that any process can pick
from by means of keyctl_join_session_keyring (provided the keyring grants
Search permission). This isn't very container friendly, however.
Make the following changes:
(1) Make default session, process and thread keyring names begin with a
'.' instead of '_'.
(2) Keyrings whose names begin with a '.' aren't added to the list. Such
keyrings are system specials.
(3) Replace the global list with per-user_namespace lists. A keyring adds
its name to the list for the user_namespace that it is currently in.
(4) When a user_namespace is deleted, it just removes itself from the
keyring name list.
The global keyring_name_lock is retained for accessing the name lists.
This allows (4) to work.
This can be tested by:
# keyctl newring foo @s
995906392
# unshare -U
$ keyctl show
...
995906392 --alswrv 65534 65534 \_ keyring: foo
...
$ keyctl session foo
Joined session keyring: 935622349
As can be seen, a new session keyring was created.
The capability bit KEYCTL_CAPS1_NS_KEYRING_NAME is set if the kernel is
employing this feature.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric W. Biederman <ebiederm@xmission.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The out_unlock label is misleading; no unlocking happens after it, so
just return NULL directly.
Also, nothing between the kmem_cache_zalloc() that creates new and the
two key_put() can initialize new->uid_keyring or new->session_keyring,
so those calls are no-ops.
Link: http://lkml.kernel.org/r/20190424200404.9114-1-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The irqsave variant of refcount_dec_and_lock handles irqsave/restore when
taking/releasing the spin lock. With this variant the call of
local_irq_save/restore is no longer required.
[bigeasy@linutronix.de: s@atomic_dec_and_lock@refcount_dec_and_lock@g]
Link: http://lkml.kernel.org/r/20180703200141.28415-7-bigeasy@linutronix.de
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
refcount_t type and corresponding API should be used instead of atomic_t
wh en the variable is used as a reference counter. This avoids accidental
refcounter overflows that might lead to use-after-free situations.
Link: http://lkml.kernel.org/r/20180703200141.28415-6-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Each read from a file in efivarfs results in two calls to EFI
(one to get the file size, another to get the actual data).
On X86 these EFI calls result in broadcast system management
interrupts (SMI) which affect performance of the whole system.
A malicious user can loop performing reads from efivarfs bringing
the system to its knees.
Linus suggested per-user rate limit to solve this.
So we add a ratelimit structure to "user_struct" and initialize
it for the root user for no limit. When allocating user_struct for
other users we set the limit to 100 per second. This could be used
for other places that want to limit the rate of some detrimental
user action.
In efivarfs if the limit is exceeded when reading, we take an
interruptible nap for 50ms and check the rate limit again.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
- Add a struct containing two pointer to extents and wrap both the static extent
array and the struct into a union. This is done in preparation for bumping the
{g,u}idmap limits for user namespaces.
- Add brackets around anonymous union when using designated initializers to
initialize members in order to please gcc <= 4.4.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
<linux/sched/user.h>
We are going to split <linux/sched/user.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/user.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace related fixes from Eric Biederman:
"As these are bug fixes almost all of thes changes are marked for
backporting to stable.
The first change (implicitly adding MNT_NODEV on remount) addresses a
regression that was created when security issues with unprivileged
remount were closed. I go on to update the remount test to make it
easy to detect if this issue reoccurs.
Then there are a handful of mount and umount related fixes.
Then half of the changes deal with the a recently discovered design
bug in the permission checks of gid_map. Unix since the beginning has
allowed setting group permissions on files to less than the user and
other permissions (aka ---rwx---rwx). As the unix permission checks
stop as soon as a group matches, and setgroups allows setting groups
that can not later be dropped, results in a situtation where it is
possible to legitimately use a group to assign fewer privileges to a
process. Which means dropping a group can increase a processes
privileges.
The fix I have adopted is that gid_map is now no longer writable
without privilege unless the new file /proc/self/setgroups has been
set to permanently disable setgroups.
The bulk of user namespace using applications even the applications
using applications using user namespaces without privilege remain
unaffected by this change. Unfortunately this ix breaks a couple user
space applications, that were relying on the problematic behavior (one
of which was tools/selftests/mount/unprivileged-remount-test.c).
To hopefully prevent needing a regression fix on top of my security
fix I rounded folks who work with the container implementations mostly
like to be affected and encouraged them to test the changes.
> So far nothing broke on my libvirt-lxc test bed. :-)
> Tested with openSUSE 13.2 and libvirt 1.2.9.
> Tested-by: Richard Weinberger <richard@nod.at>
> Tested on Fedora20 with libvirt 1.2.11, works fine.
> Tested-by: Chen Hanxiao <chenhanxiao@cn.fujitsu.com>
> Ok, thanks - yes, unprivileged lxc is working fine with your kernels.
> Just to be sure I was testing the right thing I also tested using
> my unprivileged nsexec testcases, and they failed on setgroup/setgid
> as now expected, and succeeded there without your patches.
> Tested-by: Serge Hallyn <serge.hallyn@ubuntu.com>
> I tested this with Sandstorm. It breaks as is and it works if I add
> the setgroups thing.
> Tested-by: Andy Lutomirski <luto@amacapital.net> # breaks things as designed :("
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
userns: Unbreak the unprivileged remount tests
userns; Correct the comment in map_write
userns: Allow setting gid_maps without privilege when setgroups is disabled
userns: Add a knob to disable setgroups on a per user namespace basis
userns: Rename id_map_mutex to userns_state_mutex
userns: Only allow the creator of the userns unprivileged mappings
userns: Check euid no fsuid when establishing an unprivileged uid mapping
userns: Don't allow unprivileged creation of gid mappings
userns: Don't allow setgroups until a gid mapping has been setablished
userns: Document what the invariant required for safe unprivileged mappings.
groups: Consolidate the setgroups permission checks
mnt: Clear mnt_expire during pivot_root
mnt: Carefully set CL_UNPRIVILEGED in clone_mnt
mnt: Move the clear of MNT_LOCKED from copy_tree to it's callers.
umount: Do not allow unmounting rootfs.
umount: Disallow unprivileged mount force
mnt: Update unprivileged remount test
mnt: Implicitly add MNT_NODEV on remount when it was implicitly added by mount
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
- Expose the knob to user space through a proc file /proc/<pid>/setgroups
A value of "deny" means the setgroups system call is disabled in the
current processes user namespace and can not be enabled in the
future in this user namespace.
A value of "allow" means the segtoups system call is enabled.
- Descendant user namespaces inherit the value of setgroups from
their parents.
- A proc file is used (instead of a sysctl) as sysctls currently do
not allow checking the permissions at open time.
- Writing to the proc file is restricted to before the gid_map
for the user namespace is set.
This ensures that disabling setgroups at a user namespace
level will never remove the ability to call setgroups
from a process that already has that ability.
A process may opt in to the setgroups disable for itself by
creating, entering and configuring a user namespace or by calling
setns on an existing user namespace with setgroups disabled.
Processes without privileges already can not call setgroups so this
is a noop. Prodcess with privilege become processes without
privilege when entering a user namespace and as with any other path
to dropping privilege they would not have the ability to call
setgroups. So this remains within the bounds of what is possible
without a knob to disable setgroups permanently in a user namespace.
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
| |
| |
| |
| | |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|/
|
|
|
|
|
| |
for now - just move corresponding ->proc_inum instances over there
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
| |
Nobody seems uses it for a long time. Let's drop it.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Code that is obj-y (always built-in) or dependent on a bool Kconfig
(built-in or absent) can never be modular. So using module_init as an
alias for __initcall can be somewhat misleading.
Fix these up now, so that we can relocate module_init from init.h into
module.h in the future. If we don't do this, we'd have to add module.h
to obviously non-modular code, and that would be a worse thing.
The audit targets the following module_init users for change:
kernel/user.c obj-y
kernel/kexec.c bool KEXEC (one instance per arch)
kernel/profile.c bool PROFILING
kernel/hung_task.c bool DETECT_HUNG_TASK
kernel/sched/stats.c bool SCHEDSTATS
kernel/user_namespace.c bool USER_NS
Note that direct use of __initcall is discouraged, vs. one of the
priority categorized subgroups. As __initcall gets mapped onto
device_initcall, our use of subsys_initcall (which makes sense for these
files) will thus change this registration from level 6-device to level
4-subsys (i.e. slightly earlier). However no observable impact of that
difference has been observed during testing.
Also, two instances of missing ";" at EOL are fixed in kexec.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We run into this bug:
[ 2736.063245] Unable to handle kernel paging request for data at address 0x00000000
[ 2736.063293] Faulting instruction address: 0xc00000000037efb0
[ 2736.063300] Oops: Kernel access of bad area, sig: 11 [#1]
[ 2736.063303] SMP NR_CPUS=2048 NUMA pSeries
[ 2736.063310] Modules linked in: sg nfsv3 rpcsec_gss_krb5 nfsv4 dns_resolver nfs fscache nf_conntrack_netbios_ns nf_conntrack_broadcast ipt_MASQUERADE ip6table_mangle ip6table_security ip6table_raw ip6t_REJECT iptable_nat nf_nat_ipv4 iptable_mangle iptable_security iptable_raw ipt_REJECT nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack ebtable_filter ebtables ip6table_filter iptable_filter ip_tables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 nf_nat nf_conntrack ip6_tables ibmveth pseries_rng nx_crypto nfsd auth_rpcgss nfs_acl lockd sunrpc binfmt_misc xfs libcrc32c dm_service_time sd_mod crc_t10dif crct10dif_common ibmvfc scsi_transport_fc scsi_tgt dm_mirror dm_region_hash dm_log dm_multipath dm_mod
[ 2736.063383] CPU: 1 PID: 7128 Comm: ssh Not tainted 3.10.0-48.el7.ppc64 #1
[ 2736.063389] task: c000000131930120 ti: c0000001319a0000 task.ti: c0000001319a0000
[ 2736.063394] NIP: c00000000037efb0 LR: c0000000006c40f8 CTR: 0000000000000000
[ 2736.063399] REGS: c0000001319a3870 TRAP: 0300 Not tainted (3.10.0-48.el7.ppc64)
[ 2736.063403] MSR: 8000000000009032 <SF,EE,ME,IR,DR,RI> CR: 28824242 XER: 20000000
[ 2736.063415] SOFTE: 0
[ 2736.063418] CFAR: c00000000000908c
[ 2736.063421] DAR: 0000000000000000, DSISR: 40000000
[ 2736.063425]
GPR00: c0000000006c40f8 c0000001319a3af0 c000000001074788 c0000001319a3bf0
GPR04: 0000000000000000 0000000000000000 0000000000000020 000000000000000a
GPR08: fffffffe00000002 00000000ffff0000 0000000080000001 c000000000924888
GPR12: 0000000028824248 c000000007e00400 00001fffffa0f998 0000000000000000
GPR16: 0000000000000022 00001fffffa0f998 0000010022e92470 0000000000000000
GPR20: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
GPR24: 0000000000000000 c000000000f4a828 00003ffffe527108 0000000000000000
GPR28: c000000000f4a730 c000000000f4a828 0000000000000000 c0000001319a3bf0
[ 2736.063498] NIP [c00000000037efb0] .__list_add+0x30/0x110
[ 2736.063504] LR [c0000000006c40f8] .rwsem_down_write_failed+0x78/0x264
[ 2736.063508] PACATMSCRATCH [800000000280f032]
[ 2736.063511] Call Trace:
[ 2736.063516] [c0000001319a3af0] [c0000001319a3b80] 0xc0000001319a3b80 (unreliable)
[ 2736.063523] [c0000001319a3b80] [c0000000006c40f8] .rwsem_down_write_failed+0x78/0x264
[ 2736.063530] [c0000001319a3c50] [c0000000006c1bb0] .down_write+0x70/0x78
[ 2736.063536] [c0000001319a3cd0] [c0000000002e5ffc] .keyctl_get_persistent+0x20c/0x320
[ 2736.063542] [c0000001319a3dc0] [c0000000002e2388] .SyS_keyctl+0x238/0x260
[ 2736.063548] [c0000001319a3e30] [c000000000009e7c] syscall_exit+0x0/0x7c
[ 2736.063553] Instruction dump:
[ 2736.063556] 7c0802a6 fba1ffe8 fbc1fff0 fbe1fff8 7cbd2b78 7c9e2378 7c7f1b78 f8010010
[ 2736.063566] f821ff71 e8a50008 7fa52040 40de00c0 <e8be0000> 7fbd2840 40de0094 7fbff040
[ 2736.063579] ---[ end trace 2708241785538296 ]---
It's caused by uninitialized persistent_keyring_register_sem.
The bug was introduced by commit f36f8c75, two typos are in that commit:
CONFIG_KEYS_KERBEROS_CACHE should be CONFIG_PERSISTENT_KEYRINGS and
krb_cache_register_sem should be persistent_keyring_register_sem.
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for per-user_namespace registers of persistent per-UID kerberos
caches held within the kernel.
This allows the kerberos cache to be retained beyond the life of all a user's
processes so that the user's cron jobs can work.
The kerberos cache is envisioned as a keyring/key tree looking something like:
struct user_namespace
\___ .krb_cache keyring - The register
\___ _krb.0 keyring - Root's Kerberos cache
\___ _krb.5000 keyring - User 5000's Kerberos cache
\___ _krb.5001 keyring - User 5001's Kerberos cache
\___ tkt785 big_key - A ccache blob
\___ tkt12345 big_key - Another ccache blob
Or possibly:
struct user_namespace
\___ .krb_cache keyring - The register
\___ _krb.0 keyring - Root's Kerberos cache
\___ _krb.5000 keyring - User 5000's Kerberos cache
\___ _krb.5001 keyring - User 5001's Kerberos cache
\___ tkt785 keyring - A ccache
\___ krbtgt/REDHAT.COM@REDHAT.COM big_key
\___ http/REDHAT.COM@REDHAT.COM user
\___ afs/REDHAT.COM@REDHAT.COM user
\___ nfs/REDHAT.COM@REDHAT.COM user
\___ krbtgt/KERNEL.ORG@KERNEL.ORG big_key
\___ http/KERNEL.ORG@KERNEL.ORG big_key
What goes into a particular Kerberos cache is entirely up to userspace. Kernel
support is limited to giving you the Kerberos cache keyring that you want.
The user asks for their Kerberos cache by:
krb_cache = keyctl_get_krbcache(uid, dest_keyring);
The uid is -1 or the user's own UID for the user's own cache or the uid of some
other user's cache (requires CAP_SETUID). This permits rpc.gssd or whatever to
mess with the cache.
The cache returned is a keyring named "_krb.<uid>" that the possessor can read,
search, clear, invalidate, unlink from and add links to. Active LSMs get a
chance to rule on whether the caller is permitted to make a link.
Each uid's cache keyring is created when it first accessed and is given a
timeout that is extended each time this function is called so that the keyring
goes away after a while. The timeout is configurable by sysctl but defaults to
three days.
Each user_namespace struct gets a lazily-created keyring that serves as the
register. The cache keyrings are added to it. This means that standard key
search and garbage collection facilities are available.
The user_namespace struct's register goes away when it does and anything left
in it is then automatically gc'd.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Simo Sorce <simo@redhat.com>
cc: Serge E. Hallyn <serge.hallyn@ubuntu.com>
cc: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rely on the fact that another flavor of the filesystem is already
mounted and do not rely on state in the user namespace.
Verify that the mounted filesystem is not covered in any significant
way. I would love to verify that the previously mounted filesystem
has no mounts on top but there are at least the directories
/proc/sys/fs/binfmt_misc and /sys/fs/cgroup/ that exist explicitly
for other filesystems to mount on top of.
Refactor the test into a function named fs_fully_visible and call that
function from the mount routines of proc and sysfs. This makes this
test local to the filesystems involved and the results current of when
the mounts take place, removing a weird threading of the user
namespace, the mount namespace and the filesystems themselves.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull VFS updates from Al Viro,
Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).
7kloc removed.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
don't bother with deferred freeing of fdtables
proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
proc: Make the PROC_I() and PDE() macros internal to procfs
proc: Supply a function to remove a proc entry by PDE
take cgroup_open() and cpuset_open() to fs/proc/base.c
ppc: Clean up scanlog
ppc: Clean up rtas_flash driver somewhat
hostap: proc: Use remove_proc_subtree()
drm: proc: Use remove_proc_subtree()
drm: proc: Use minor->index to label things, not PDE->name
drm: Constify drm_proc_list[]
zoran: Don't print proc_dir_entry data in debug
reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
proc: Supply an accessor for getting the data from a PDE's parent
airo: Use remove_proc_subtree()
rtl8192u: Don't need to save device proc dir PDE
rtl8187se: Use a dir under /proc/net/r8180/
proc: Add proc_mkdir_data()
proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
proc: Move PDE_NET() to fs/proc/proc_net.c
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Split the proc namespace stuff out into linux/proc_ns.h.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: netdev@vger.kernel.org
cc: Serge E. Hallyn <serge.hallyn@ubuntu.com>
cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Only allow unprivileged mounts of proc and sysfs if they are already
mounted when the user namespace is created.
proc and sysfs are interesting because they have content that is
per namespace, and so fresh mounts are needed when new namespaces
are created while at the same time proc and sysfs have content that
is shared between every instance.
Respect the policy of who may see the shared content of proc and sysfs
by only allowing new mounts if there was an existing mount at the time
the user namespace was created.
In practice there are only two interesting cases: proc and sysfs are
mounted at their usual places, proc and sysfs are not mounted at all
(some form of mount namespace jail).
Cc: stable@vger.kernel.org
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I'm not sure why, but the hlist for each entry iterators were conceived
list_for_each_entry(pos, head, member)
The hlist ones were greedy and wanted an extra parameter:
hlist_for_each_entry(tpos, pos, head, member)
Why did they need an extra pos parameter? I'm not quite sure. Not only
they don't really need it, it also prevents the iterator from looking
exactly like the list iterator, which is unfortunate.
Besides the semantic patch, there was some manual work required:
- Fix up the actual hlist iterators in linux/list.h
- Fix up the declaration of other iterators based on the hlist ones.
- A very small amount of places were using the 'node' parameter, this
was modified to use 'obj->member' instead.
- Coccinelle didn't handle the hlist_for_each_entry_safe iterator
properly, so those had to be fixed up manually.
The semantic patch which is mostly the work of Peter Senna Tschudin is here:
@@
iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host;
type T;
expression a,c,d,e;
identifier b;
statement S;
@@
-T b;
<+... when != b
(
hlist_for_each_entry(a,
- b,
c, d) S
|
hlist_for_each_entry_continue(a,
- b,
c) S
|
hlist_for_each_entry_from(a,
- b,
c) S
|
hlist_for_each_entry_rcu(a,
- b,
c, d) S
|
hlist_for_each_entry_rcu_bh(a,
- b,
c, d) S
|
hlist_for_each_entry_continue_rcu_bh(a,
- b,
c) S
|
for_each_busy_worker(a, c,
- b,
d) S
|
ax25_uid_for_each(a,
- b,
c) S
|
ax25_for_each(a,
- b,
c) S
|
inet_bind_bucket_for_each(a,
- b,
c) S
|
sctp_for_each_hentry(a,
- b,
c) S
|
sk_for_each(a,
- b,
c) S
|
sk_for_each_rcu(a,
- b,
c) S
|
sk_for_each_from
-(a, b)
+(a)
S
+ sk_for_each_from(a) S
|
sk_for_each_safe(a,
- b,
c, d) S
|
sk_for_each_bound(a,
- b,
c) S
|
hlist_for_each_entry_safe(a,
- b,
c, d, e) S
|
hlist_for_each_entry_continue_rcu(a,
- b,
c) S
|
nr_neigh_for_each(a,
- b,
c) S
|
nr_neigh_for_each_safe(a,
- b,
c, d) S
|
nr_node_for_each(a,
- b,
c) S
|
nr_node_for_each_safe(a,
- b,
c, d) S
|
- for_each_gfn_sp(a, c, d, b) S
+ for_each_gfn_sp(a, c, d) S
|
- for_each_gfn_indirect_valid_sp(a, c, d, b) S
+ for_each_gfn_indirect_valid_sp(a, c, d) S
|
for_each_host(a,
- b,
c) S
|
for_each_host_safe(a,
- b,
c, d) S
|
for_each_mesh_entry(a,
- b,
c, d) S
)
...+>
[akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c]
[akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c]
[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: fix warnings]
[akpm@linux-foudnation.org: redo intrusive kvm changes]
Tested-by: Peter Senna Tschudin <peter.senna@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When freeing a deeply nested user namespace free_user_ns calls
put_user_ns on it's parent which may in turn call free_user_ns again.
When -fno-optimize-sibling-calls is passed to gcc one stack frame per
user namespace is left on the stack, potentially overflowing the
kernel stack. CONFIG_FRAME_POINTER forces -fno-optimize-sibling-calls
so we can't count on gcc to optimize this code.
Remove struct kref and use a plain atomic_t. Making the code more
flexible and easier to comprehend. Make the loop in free_user_ns
explict to guarantee that the stack does not overflow with
CONFIG_FRAME_POINTER enabled.
I have tested this fix with a simple program that uses unshare to
create a deeply nested user namespace structure and then calls exit.
With 1000 nesteuser namespaces before this change running my test
program causes the kernel to die a horrible death. With 10,000,000
nested user namespaces after this change my test program runs to
completion and causes no harm.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Pointed-out-by: Vasily Kulikov <segoon@openwall.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Assign a unique proc inode to each namespace, and use that
inode number to ensure we only allocate at most one proc
inode for every namespace in proc.
A single proc inode per namespace allows userspace to test
to see if two processes are in the same namespace.
This has been a long requested feature and only blocked because
a naive implementation would put the id in a global space and
would ultimately require having a namespace for the names of
namespaces, making migration and certain virtualization tricks
impossible.
We still don't have per superblock inode numbers for proc, which
appears necessary for application unaware checkpoint/restart and
migrations (if the application is using namespace file descriptors)
but that is now allowd by the design if it becomes important.
I have preallocated the ipc and uts initial proc inode numbers so
their structures can be statically initialized.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement kprojid_t a cousin of the kuid_t and kgid_t.
The per user namespace mapping of project id values can be set with
/proc/<pid>/projid_map.
A full compliment of helpers is provided: make_kprojid, from_kprojid,
from_kprojid_munged, kporjid_has_mapping, projid_valid, projid_eq,
projid_eq, projid_lt.
Project identifiers are part of the generic disk quota interface,
although it appears only xfs implements project identifiers currently.
The xfs code allows anyone who has permission to set the project
identifier on a file to use any project identifier so when
setting up the user namespace project identifier mappings I do
not require a capability.
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
| |
On 32bit builds gcc says:
kernel/user.c:30:4: warning: this decimal constant is unsigned only in ISO C90 [enabled by default]
kernel/user.c:38:4: warning: this decimal constant is unsigned only in ISO C90 [enabled by default]
Silence gcc by changing the constant 4294967295 to 4294967295U.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Convert the old uid mapping functions into compatibility wrappers
- Add a uid/gid mapping layer from user space uid and gids to kernel
internal uids and gids that is extent based for simplicty and speed.
* Working with number space after mapping uids/gids into their kernel
internal version adds only mapping complexity over what we have today,
leaving the kernel code easy to understand and test.
- Add proc files /proc/self/uid_map /proc/self/gid_map
These files display the mapping and allow a mapping to be added
if a mapping does not exist.
- Allow entering the user namespace without a uid or gid mapping.
Since we are starting with an existing user our uids and gids
still have global mappings so are still valid and useful they just don't
have local mappings. The requirement for things to work are global uid
and gid so it is odd but perfectly fine not to have a local uid
and gid mapping.
Not requiring global uid and gid mappings greatly simplifies
the logic of setting up the uid and gid mappings by allowing
the mappings to be set after the namespace is created which makes the
slight weirdness worth it.
- Make the mappings in the initial user namespace to the global
uid/gid space explicit. Today it is an identity mapping
but in the future we may want to twist this for debugging, similar
to what we do with jiffies.
- Document the memory ordering requirements of setting the uid and
gid mappings. We only allow the mappings to be set once
and there are no pointers involved so the requirments are
trivial but a little atypical.
Performance:
In this scheme for the permission checks the performance is expected to
stay the same as the actuall machine instructions should remain the same.
The worst case I could think of is ls -l on a large directory where
all of the stat results need to be translated with from kuids and
kgids to uids and gids. So I benchmarked that case on my laptop
with a dual core hyperthread Intel i5-2520M cpu with 3M of cpu cache.
My benchmark consisted of going to single user mode where nothing else
was running. On an ext4 filesystem opening 1,000,000 files and looping
through all of the files 1000 times and calling fstat on the
individuals files. This was to ensure I was benchmarking stat times
where the inodes were in the kernels cache, but the inode values were
not in the processors cache. My results:
v3.4-rc1: ~= 156ns (unmodified v3.4-rc1 with user namespace support disabled)
v3.4-rc1-userns-: ~= 155ns (v3.4-rc1 with my user namespace patches and user namespace support disabled)
v3.4-rc1-userns+: ~= 164ns (v3.4-rc1 with my user namespace patches and user namespace support enabled)
All of the configurations ran in roughly 120ns when I performed tests
that ran in the cpu cache.
So in summary the performance impact is:
1ns improvement in the worst case with user namespace support compiled out.
8ns aka 5% slowdown in the worst case with user namespace support compiled in.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Transform userns->creator from a user_struct reference to a simple
kuid_t, kgid_t pair.
In cap_capable this allows the check to see if we are the creator of
a namespace to become the classic suser style euid permission check.
This allows us to remove the need for a struct cred in the mapping
functions and still be able to dispaly the user namespace creators
uid and gid as 0.
- Remove the now unnecessary delayed_work in free_user_ns.
All that is left for free_user_ns to do is to call kmem_cache_free
and put_user_ns. Those functions can be called in any context
so call them directly from free_user_ns removing the need for delayed work.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Modify alloc_uid to take a kuid and make the user hash table global.
Stop holding a reference to the user namespace in struct user_struct.
This simplifies the code and makes the per user accounting not
care about which user namespace a uid happens to appear in.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With a user_ns reference in struct cred the only user of the user namespace
reference in struct user_struct is to keep the uid hash table alive.
The user_namespace reference in struct user_struct will be going away soon, and
I have removed all of the references. Rename the field from user_ns to _user_ns
so that the compiler can verify nothing follows the user struct to the user
namespace anymore.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The changed files were only including linux/module.h for the
EXPORT_SYMBOL infrastructure, and nothing else. Revector them
onto the isolated export header for faster compile times.
Nothing to see here but a whole lot of instances of:
-#include <linux/module.h>
+#include <linux/export.h>
This commit is only changing the kernel dir; next targets
will probably be mm, fs, the arch dirs, etc.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The expected course of development for user namespaces targeted
capabilities is laid out at https://wiki.ubuntu.com/UserNamespace.
Goals:
- Make it safe for an unprivileged user to unshare namespaces. They
will be privileged with respect to the new namespace, but this should
only include resources which the unprivileged user already owns.
- Provide separate limits and accounting for userids in different
namespaces.
Status:
Currently (as of 2.6.38) you can clone with the CLONE_NEWUSER flag to
get a new user namespace if you have the CAP_SYS_ADMIN, CAP_SETUID, and
CAP_SETGID capabilities. What this gets you is a whole new set of
userids, meaning that user 500 will have a different 'struct user' in
your namespace than in other namespaces. So any accounting information
stored in struct user will be unique to your namespace.
However, throughout the kernel there are checks which
- simply check for a capability. Since root in a child namespace
has all capabilities, this means that a child namespace is not
constrained.
- simply compare uid1 == uid2. Since these are the integer uids,
uid 500 in namespace 1 will be said to be equal to uid 500 in
namespace 2.
As a result, the lxc implementation at lxc.sf.net does not use user
namespaces. This is actually helpful because it leaves us free to
develop user namespaces in such a way that, for some time, user
namespaces may be unuseful.
Bugs aside, this patchset is supposed to not at all affect systems which
are not actively using user namespaces, and only restrict what tasks in
child user namespace can do. They begin to limit privilege to a user
namespace, so that root in a container cannot kill or ptrace tasks in the
parent user namespace, and can only get world access rights to files.
Since all files currently belong to the initila user namespace, that means
that child user namespaces can only get world access rights to *all*
files. While this temporarily makes user namespaces bad for system
containers, it starts to get useful for some sandboxing.
I've run the 'runltplite.sh' with and without this patchset and found no
difference.
This patch:
copy_process() handles CLONE_NEWUSER before the rest of the namespaces.
So in the case of clone(CLONE_NEWUSER|CLONE_NEWUTS) the new uts namespace
will have the new user namespace as its owner. That is what we want,
since we want root in that new userns to be able to have privilege over
it.
Changelog:
Feb 15: don't set uts_ns->user_ns if we didn't create
a new uts_ns.
Feb 23: Move extern init_user_ns declaration from
init/version.c to utsname.h.
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When racing on adding into user cache, the new allocated from mm slab
is freed without putting user namespace.
Since the user namespace is already operated by getting, putting has
to be issued.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
free_user() releases uidhash_lock but was missing annotation. Add it.
This removes following sparse warnings:
include/linux/spinlock.h:339:9: warning: context imbalance in 'free_user' - unexpected unlock
kernel/user.c:120:6: warning: context imbalance in 'free_uid' - wrong count at exit
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Dhaval Giani <dhaval.giani@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
This comment should have been removed together with uids_mutex
when removing user sched.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dhaval Giani <dhaval.giani@gmail.com>
LKML-Reference: <4BE77C6B.5010402@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
| |
This is left over from commit 7c9414385e ("sched: Remove USER_SCHED"")
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Dhaval Giani <dhaval.giani@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Howells <dhowells@redhat.com>
LKML-Reference: <4BA9A05F.7010407@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
| |
This was left over from "7c9414385e sched: Remove USER_SCHED"
Signed-off-by: Dan Carpenter <error27@gmail.com>
Acked-by: Dhaval Giani <dhaval.giani@gmail.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
LKML-Reference: <20100315082148.GD18181@bicker>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
| |
Remove the USER_SCHED feature. It has been scheduled to be removed in
2.6.34 as per http://marc.info/?l=linux-kernel&m=125728479022976&w=2
Signed-off-by: Dhaval Giani <dhaval.giani@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1263990378.24844.3.camel@localhost>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ingo triggered the following warning:
WARNING: at lib/debugobjects.c:255 debug_print_object+0x42/0x50()
Hardware name: System Product Name
ODEBUG: init active object type: timer_list
Modules linked in:
Pid: 2619, comm: dmesg Tainted: G W 2.6.32-rc5-tip+ #5298
Call Trace:
[<81035443>] warn_slowpath_common+0x6a/0x81
[<8120e483>] ? debug_print_object+0x42/0x50
[<81035498>] warn_slowpath_fmt+0x29/0x2c
[<8120e483>] debug_print_object+0x42/0x50
[<8120ec2a>] __debug_object_init+0x279/0x2d7
[<8120ecb3>] debug_object_init+0x13/0x18
[<810409d2>] init_timer_key+0x17/0x6f
[<81041526>] free_uid+0x50/0x6c
[<8104ed2d>] put_cred_rcu+0x61/0x72
[<81067fac>] rcu_do_batch+0x70/0x121
debugobjects warns about an enqueued timer being initialized. If
CONFIG_USER_SCHED=y the user management code uses delayed work to
remove the user from the hash table and tear down the sysfs objects.
free_uid is called from RCU and initializes/schedules delayed work if
the usage count of the user_struct is 0. The init/schedule happens
outside of the uidhash_lock protected region which allows a concurrent
caller of find_user() to reference the about to be destroyed
user_struct w/o preventing the work from being scheduled. If the next
free_uid call happens before the work timer expired then the active
timer is initialized and the work scheduled again.
The race was introduced in commit 5cb350ba (sched: group scheduling,
sysfs tunables) and made more prominent by commit 3959214f (sched:
delayed cleanup of user_struct)
Move the init/schedule_delayed_work inside of the uidhash_lock
protected region to prevent the race.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@us.ibm.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: stable@kernel.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During bootup performance tracing we see repeated occurrences of
/sys/kernel/uid/* events for the same uid, leading to a,
in this case, rather pointless userspace processing for the
same uid over and over.
This is usually caused by tools which change their uid to "nobody",
to run without privileges to read data supplied by untrusted users.
This change delays the execution of the (already existing) scheduled
work, to cleanup the uid after one second, so the allocated and announced
uid can possibly be re-used by another process.
This is the current behavior, where almost every invocation of a
binary, which changes the uid, creates two events:
$ read START < /sys/kernel/uevent_seqnum; \
for i in `seq 100`; do su --shell=/bin/true bin; done; \
read END < /sys/kernel/uevent_seqnum; \
echo $(($END - $START))
178
With the delayed cleanup, we get only two events, and userspace finishes
a bit faster too:
$ read START < /sys/kernel/uevent_seqnum; \
for i in `seq 100`; do su --shell=/bin/true bin; done; \
read END < /sys/kernel/uevent_seqnum; \
echo $(($END - $START))
1
Acked-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|