summaryrefslogtreecommitdiffstats
path: root/lib/crypto
Commit message (Collapse)AuthorAgeFilesLines
...
* crypto: blake2s - generic C library implementation and selftestJason A. Donenfeld2019-11-175-0/+894
| | | | | | | | | | | | | | | | | | | | The C implementation was originally based on Samuel Neves' public domain reference implementation but has since been heavily modified for the kernel. We're able to do compile-time optimizations by moving some scaffolding around the final function into the header file. Information: https://blake2.net/ Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Samuel Neves <sneves@dei.uc.pt> Co-developed-by: Samuel Neves <sneves@dei.uc.pt> [ardb: - move from lib/zinc to lib/crypto - remove simd handling - rewrote selftest for better coverage - use fixed digest length for blake2s_hmac() and rename to blake2s256_hmac() ] Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: mips/poly1305 - incorporate OpenSSL/CRYPTOGAMS optimized implementationArd Biesheuvel2019-11-171-0/+1
| | | | | | | | | | | | | | | | | | This is a straight import of the OpenSSL/CRYPTOGAMS Poly1305 implementation for MIPS authored by Andy Polyakov, a prior 64-bit only version of which has been contributed by him to the OpenSSL project. The file 'poly1305-mips.pl' is taken straight from this upstream GitHub repository [0] at commit d22ade312a7af958ec955620b0d241cf42c37feb, and already contains all the changes required to build it as part of a Linux kernel module. [0] https://github.com/dot-asm/cryptogams Co-developed-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Andy Polyakov <appro@cryptogams.org> Co-developed-by: René van Dorst <opensource@vdorst.com> Signed-off-by: René van Dorst <opensource@vdorst.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementationArd Biesheuvel2019-11-171-1/+1
| | | | | | | | | | | | | | | | This is a straight import of the OpenSSL/CRYPTOGAMS Poly1305 implementation for NEON authored by Andy Polyakov, and contributed by him to the OpenSSL project. The file 'poly1305-armv4.pl' is taken straight from this upstream GitHub repository [0] at commit ec55a08dc0244ce570c4fc7cade330c60798952f, and already contains all the changes required to build it as part of a Linux kernel module. [0] https://github.com/dot-asm/cryptogams Co-developed-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementationArd Biesheuvel2019-11-171-0/+1
| | | | | | | | | | | | | | | | This is a straight import of the OpenSSL/CRYPTOGAMS Poly1305 implementation for NEON authored by Andy Polyakov, and contributed by him to the OpenSSL project. The file 'poly1305-armv8.pl' is taken straight from this upstream GitHub repository [0] at commit ec55a08dc0244ce570c4fc7cade330c60798952f, and already contains all the changes required to build it as part of a Linux kernel module. [0] https://github.com/dot-asm/cryptogams Co-developed-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: x86/poly1305 - expose existing driver as poly1305 libraryArd Biesheuvel2019-11-171-0/+1
| | | | | | | | | Implement the arch init/update/final Poly1305 library routines in the accelerated SIMD driver for x86 so they are accessible to users of the Poly1305 library interface as well. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: poly1305 - expose init/update/final library interfaceArd Biesheuvel2019-11-172-0/+100
| | | | | | | | | | | Expose the existing generic Poly1305 code via a init/update/final library interface so that callers are not required to go through the crypto API's shash abstraction to access it. At the same time, make some preparations so that the library implementation can be superseded by an accelerated arch-specific version in the future. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: poly1305 - move core routines into a separate libraryArd Biesheuvel2019-11-173-0/+164
| | | | | | | | | | | | | | Move the core Poly1305 routines shared between the generic Poly1305 shash driver and the Adiantum and NHPoly1305 drivers into a separate library so that using just this pieces does not pull in the crypto API pieces of the generic Poly1305 routine. In a subsequent patch, we will augment this generic library with init/update/final routines so that Poyl1305 algorithm can be used directly without the need for using the crypto API's shash abstraction. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: chacha - move existing library code into lib/cryptoArd Biesheuvel2019-11-174-0/+180
| | | | | | | | | | | | | | | | | | | | Currently, our generic ChaCha implementation consists of a permute function in lib/chacha.c that operates on the 64-byte ChaCha state directly [and which is always included into the core kernel since it is used by the /dev/random driver], and the crypto API plumbing to expose it as a skcipher. In order to support in-kernel users that need the ChaCha streamcipher but have no need [or tolerance] for going through the abstractions of the crypto API, let's expose the streamcipher bits via a library API as well, in a way that permits the implementation to be superseded by an architecture specific one if provided. So move the streamcipher code into a separate module in lib/crypto, and expose the init() and crypt() routines to users of the library. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: lib - tidy up lib/crypto Kconfig and MakefileArd Biesheuvel2019-11-172-8/+23
| | | | | | | | In preparation of introducing a set of crypto library interfaces, tidy up the Makefile and split off the Kconfig symbols into a separate file. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: sha256 - Remove sha256/224_init code duplicationHans de Goede2019-09-051-32/+0
| | | | | | | | | | | | | | | lib/crypto/sha256.c and include/crypto/sha256_base.h define 99% identical functions to init a sha256_state struct for sha224 or sha256 use. This commit moves the functions from lib/crypto/sha256.c to include/crypto/sha.h (making them static inline) and makes the sha224/256_base_init static inline functions from include/crypto/sha256_base.h wrappers around the now also static inline include/crypto/sha.h functions. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: sha256 - Merge crypto/sha256.h into crypto/sha.hHans de Goede2019-09-051-1/+1
| | | | | | | | | The generic sha256 implementation from lib/crypto/sha256.c uses data structs defined in crypto/sha.h, so lets move the function prototypes there too. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: sha256 - Add missing MODULE_LICENSE() to lib/crypto/sha256.cHans de Goede2019-08-301-0/+3
| | | | | | | | lib/crypto/sha256.c / lib/crypto/libsha256.o may end up being a module, so it needs a MODULE_LICENSE() line, add this. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: sha256 - Add sha224 support to sha256 library codeHans de Goede2019-08-221-2/+35
| | | | | | | | | | Add sha224 support to the lib/crypto/sha256 library code. This will allow us to replace both the sha256 and sha224 parts of crypto/sha256_generic.c when we remove the code duplication in further patches in this series. Suggested-by: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: sha256 - Make lib/crypto/sha256.c suitable for generic useHans de Goede2019-08-222-0/+7
| | | | | | | | | | | | | Before this commit lib/crypto/sha256.c has only been used in the s390 and x86 purgatory code, make it suitable for generic use: * Export interesting symbols * Add -D__DISABLE_EXPORTS to CFLAGS_sha256.o for purgatory builds to avoid the exports for the purgatory builds * Add to lib/crypto/Makefile and crypto/Kconfig Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: sha256 - Use get/put_unaligned_be32 to get input, memzero_explicitHans de Goede2019-08-221-4/+4
| | | | | | | | | | | | | | | | | Use get/put_unaligned_be32 in lib/crypto/sha256.c to load / store data so that it can be used with unaligned buffers too, making it more generic. And use memzero_explicit for better clearing of sensitive data. Note unlike other patches in this series this commit actually makes functional changes to the sha256 code as used by the purgatory code. This fully aligns the lib/crypto/sha256.c sha256 implementation with the one from crypto/sha256_generic.c allowing us to remove the latter in further patches in this series. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: sha256 - Move lib/sha256.c to lib/cryptoHans de Goede2019-08-221-0/+279
| | | | | | | | | | | | | Generic crypto implementations belong under lib/crypto not directly in lib, likewise the header should be in include/crypto, not include/linux. Note that the code in lib/crypto/sha256.c is not yet available for generic use after this commit, it is still only used by the s390 and x86 purgatory code. Making it suitable for generic use is done in further patches in this series. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: des - split off DES library from generic DES cipher driverArd Biesheuvel2019-08-222-0/+905
| | | | | | | | | | | | Another one for the cipher museum: split off DES core processing into a separate module so other drivers (mostly for crypto accelerators) can reuse the code without pulling in the generic DES cipher itself. This will also permit the cipher interface to be made private to the crypto API itself once we move the only user in the kernel (CIFS) to this library interface. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: aes - helper function to validate key length for AES algorithmsIuliana Prodan2019-08-091-4/+4
| | | | | | | | | Add inline helper function to check key length for AES algorithms. The key can be 128, 192 or 256 bits size. This function is used in the generic aes implementation. Signed-off-by: Iuliana Prodan <iuliana.prodan@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: lib/aes - export sbox and inverse sboxArd Biesheuvel2019-07-261-0/+6
| | | | | | | | | There are a few copies of the AES S-boxes floating around, so export the ones from the AES library so that we can reuse them in other modules. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: aes - create AES library based on the fixed time AES codeArd Biesheuvel2019-07-262-0/+353
| | | | | | | | | | | | Take the existing small footprint and mostly time invariant C code and turn it into a AES library that can be used for non-performance critical, casual use of AES, and as a fallback for, e.g., SIMD code that needs a secondary path that can be taken in contexts where the SIMD unit is off limits (e.g., in hard interrupts taken from kernel context) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arc4 - refactor arc4 core code into separate libraryArd Biesheuvel2019-06-202-0/+78
Refactor the core rc4 handling so we can move most users to a library interface, permitting us to drop the cipher interface entirely in a future patch. This is part of an effort to simplify the crypto API and improve its robustness against incorrect use. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>