summaryrefslogtreecommitdiffstats
path: root/mm
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'slub/urgent' of ↵Linus Torvalds2010-05-301-22/+11
|\ | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6 * 'slub/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6: SLUB: Allow full duplication of kmalloc array for 390 slub: move kmem_cache_node into it's own cacheline
| * slub: move kmem_cache_node into it's own cachelineAlexander Duyck2010-05-241-22/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch is meant to improve the performance of SLUB by moving the local kmem_cache_node lock into it's own cacheline separate from kmem_cache. This is accomplished by simply removing the local_node when NUMA is enabled. On my system with 2 nodes I saw around a 5% performance increase w/ hackbench times dropping from 6.2 seconds to 5.9 seconds on average. I suspect the performance gain would increase as the number of nodes increases, but I do not have the data to currently back that up. Bugzilla-Reference: http://bugzilla.kernel.org/show_bug.cgi?id=15713 Cc: <stable@kernel.org> Reported-by: Alex Shi <alex.shi@intel.com> Tested-by: Alex Shi <alex.shi@intel.com> Acked-by: Yanmin Zhang <yanmin_zhang@linux.intel.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
* | Merge branch 'for-linus' of ↵Linus Torvalds2010-05-302-0/+2
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse: mm: export generic_pipe_buf_*() to modules fuse: support splice() reading from fuse device fuse: allow splice to move pages mm: export remove_from_page_cache() to modules mm: export lru_cache_add_*() to modules fuse: support splice() writing to fuse device fuse: get page reference for readpages fuse: use get_user_pages_fast() fuse: remove unneeded variable
| * | mm: export remove_from_page_cache() to modulesMiklos Szeredi2010-05-251-0/+1
| | | | | | | | | | | | | | | | | | | | | This is needed to enable moving pages into the page cache in fuse with splice(..., SPLICE_F_MOVE). Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
| * | mm: export lru_cache_add_*() to modulesMiklos Szeredi2010-05-251-0/+1
| |/ | | | | | | | | | | | | This is needed to enable moving pages into the page cache in fuse with splice(..., SPLICE_F_MOVE). Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
* | tmpfs: convert to use the new truncate conventionnpiggin@suse.de2010-05-271-21/+22
| | | | | | | | | | | | | | Cc: Christoph Hellwig <hch@lst.de> Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | fs: introduce new truncate sequencenpiggin@suse.de2010-05-271-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce a new truncate calling sequence into fs/mm subsystems. Rather than setattr > vmtruncate > truncate, have filesystems call their truncate sequence from ->setattr if filesystem specific operations are required. vmtruncate is deprecated, and truncate_pagecache and inode_newsize_ok helpers introduced previously should be used. simple_setattr is introduced for simple in-ram filesystems to implement the new truncate sequence. Eventually all filesystems should be converted to implement a setattr, and the default code in notify_change should go away. simple_setsize is also introduced to perform just the ATTR_SIZE portion of simple_setattr (ie. changing i_size and trimming pagecache). To implement the new truncate sequence: - filesystem specific manipulations (eg freeing blocks) must be done in the setattr method rather than ->truncate. - vmtruncate can not be used by core code to trim blocks past i_size in the event of write failure after allocation, so this must be performed in the fs code. - convert usage of helpers block_write_begin, nobh_write_begin, cont_write_begin, and *blockdev_direct_IO* to use _newtrunc postfixed variants. These avoid calling vmtruncate to trim blocks (see previous). - inode_setattr should not be used. generic_setattr is a new function to be used to copy simple attributes into the generic inode. - make use of the better opportunity to handle errors with the new sequence. Big problem with the previous calling sequence: the filesystem is not called until i_size has already changed. This means it is not allowed to fail the call, and also it does not know what the previous i_size was. Also, generic code calling vmtruncate to truncate allocated blocks in case of error had no good way to return a meaningful error (or, for example, atomically handle block deallocation). Cc: Christoph Hellwig <hch@lst.de> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | rename the generic fsync implementationsChristoph Hellwig2010-05-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We don't name our generic fsync implementations very well currently. The no-op implementation for in-memory filesystems currently is called simple_sync_file which doesn't make too much sense to start with, the the generic one for simple filesystems is called simple_fsync which can lead to some confusion. This patch renames the generic file fsync method to generic_file_fsync to match the other generic_file_* routines it is supposed to be used with, and the no-op implementation to noop_fsync to make it obvious what to expect. In addition add some documentation for both methods. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstableLinus Torvalds2010-05-271-5/+31
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (27 commits) Btrfs: add more error checking to btrfs_dirty_inode Btrfs: allow unaligned DIO Btrfs: drop verbose enospc printk Btrfs: Fix block generation verification race Btrfs: fix preallocation and nodatacow checks in O_DIRECT Btrfs: avoid ENOSPC errors in btrfs_dirty_inode Btrfs: move O_DIRECT space reservation to btrfs_direct_IO Btrfs: rework O_DIRECT enospc handling Btrfs: use async helpers for DIO write checksumming Btrfs: don't walk around with task->state != TASK_RUNNING Btrfs: do aio_write instead of write Btrfs: add basic DIO read/write support direct-io: do not merge logically non-contiguous requests direct-io: add a hook for the fs to provide its own submit_bio function fs: allow short direct-io reads to be completed via buffered IO Btrfs: Metadata ENOSPC handling for balance Btrfs: Pre-allocate space for data relocation Btrfs: Metadata ENOSPC handling for tree log Btrfs: Metadata reservation for orphan inodes Btrfs: Introduce global metadata reservation ...
| * | fs: allow short direct-io reads to be completed via buffered IOJosef Bacik2010-05-251-5/+31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is similar to what already happens in the write case. If we have a short read while doing O_DIRECT, instead of just returning, fallthrough and try to read the rest via buffered IO. BTRFS needs this because if we encounter a compressed or inline extent during DIO, we need to fallback on buffered. If the extent is compressed we need to read the entire thing into memory and de-compress it into the users pages. I have tested this with fsx and everything works great. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
* | | numa: slab: use numa_mem_id() for slab local memory nodeLee Schermerhorn2010-05-271-21/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Example usage of generic "numa_mem_id()": The mainline slab code, since ~ 2.6.19, does not handle memoryless nodes well. Specifically, the "fast path"--____cache_alloc()--will never succeed as slab doesn't cache offnode object on the per cpu queues, and for memoryless nodes, all memory will be "off node" relative to numa_node_id(). This adds significant overhead to all kmem cache allocations, incurring a significant regression relative to earlier kernels [from before slab.c was reorganized]. This patch uses the generic topology function "numa_mem_id()" to return the "effective local memory node" for the calling context. This is the first node in the local node's generic fallback zonelist-- the same node that "local" mempolicy-based allocations would use. This lets slab cache these "local" allocations and avoid fallback/refill on every allocation. N.B.: Slab will need to handle node and memory hotplug events that could change the value returned by numa_mem_id() for any given node if recent changes to address memory hotplug don't already address this. E.g., flush all per cpu slab queues before rebuilding the zonelists while the "machine" is held in the stopped state. Performance impact on "hackbench 400 process 200" 2.6.34-rc3-mmotm-100405-1609 no-patch this-patch ia64 no memoryless nodes [avg of 10]: 11.713 11.637 ~0.65 diff ia64 cpus all on memless nodes [10]: 228.259 26.484 ~8.6x speedup The slowdown of the patched kernel from ~12 sec to ~28 seconds when configured with memoryless nodes is the result of all cpus allocating from a single node's mm pagepool. The cache lines of the single node are distributed/interleaved over the memory of the real physical nodes, but the zone lock, list heads, ... of the single node with memory still each live in a single cache line that is accessed from all processors. x86_64 [8x6 AMD] [avg of 40]: 2.883 2.845 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | numa: introduce numa_mem_id()- effective local memory node idLee Schermerhorn2010-05-271-1/+44
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce numa_mem_id(), based on generic percpu variable infrastructure to track "nearest node with memory" for archs that support memoryless nodes. Define API in <linux/topology.h> when CONFIG_HAVE_MEMORYLESS_NODES defined, else stubs. Architectures will define HAVE_MEMORYLESS_NODES if/when they support them. Archs can override definitions of: numa_mem_id() - returns node number of "local memory" node set_numa_mem() - initialize [this cpus'] per cpu variable 'numa_mem' cpu_to_mem() - return numa_mem for specified cpu; may be used as lvalue Generic initialization of 'numa_mem' occurs in __build_all_zonelists(). This will initialize the boot cpu at boot time, and all cpus on change of numa_zonelist_order, or when node or memory hot-plug requires zonelist rebuild. Archs that support memoryless nodes will need to initialize 'numa_mem' for secondary cpus as they're brought on-line. [akpm@linux-foundation.org: fix build] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | numa: add generic percpu var numa_node_id() implementationLee Schermerhorn2010-05-271-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rework the generic version of the numa_node_id() function to use the new generic percpu variable infrastructure. Guard the new implementation with a new config option: CONFIG_USE_PERCPU_NUMA_NODE_ID. Archs which support this new implemention will default this option to 'y' when NUMA is configured. This config option could be removed if/when all archs switch over to the generic percpu implementation of numa_node_id(). Arch support involves: 1) converting any existing per cpu variable implementations to use this implementation. x86_64 is an instance of such an arch. 2) archs that don't use a per cpu variable for numa_node_id() will need to initialize the new per cpu variable "numa_node" as cpus are brought on-line. ia64 is an example. 3) Defining USE_PERCPU_NUMA_NODE_ID in arch dependent Kconfig--e.g., when NUMA is configured. This is required because I have retained the old implementation by default to allow archs to be modified incrementally, as desired. Subsequent patches will convert x86_64 and ia64 to use this implemenation. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | slab: convert cpu notifier to return encapsulate errno valueAkinobu Mita2010-05-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | By the previous modification, the cpu notifier can return encapsulate errno value. This converts the cpu notifiers for slab. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | cpusets: new round-robin rotor for SLAB allocationsJack Steiner2010-05-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We have observed several workloads running on multi-node systems where memory is assigned unevenly across the nodes in the system. There are numerous reasons for this but one is the round-robin rotor in cpuset_mem_spread_node(). For example, a simple test that writes a multi-page file will allocate pages on nodes 0 2 4 6 ... Odd nodes are skipped. (Sometimes it allocates on odd nodes & skips even nodes). An example is shown below. The program "lfile" writes a file consisting of 10 pages. The program then mmaps the file & uses get_mempolicy(..., MPOL_F_NODE) to determine the nodes where the file pages were allocated. The output is shown below: # ./lfile allocated on nodes: 2 4 6 0 1 2 6 0 2 There is a single rotor that is used for allocating both file pages & slab pages. Writing the file allocates both a data page & a slab page (buffer_head). This advances the RR rotor 2 nodes for each page allocated. A quick confirmation seems to confirm this is the cause of the uneven allocation: # echo 0 >/dev/cpuset/memory_spread_slab # ./lfile allocated on nodes: 6 7 8 9 0 1 2 3 4 5 This patch introduces a second rotor that is used for slab allocations. Signed-off-by: Jack Steiner <steiner@sgi.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Paul Menage <menage@google.com> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | memcg: clean up memory thresholdsKirill A. Shutemov2010-05-271-85/+66
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce struct mem_cgroup_thresholds. It helps to reduce number of checks of thresholds type (memory or mem+swap). [akpm@linux-foundation.org: repair comment] Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Paul Menage <menage@google.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | cgroups: make cftype.unregister_event() void-returningKirill A. Shutemov2010-05-271-24/+41
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since we are unable to handle an error returned by cftype.unregister_event() properly, let's make the callback void-returning. mem_cgroup_unregister_event() has been rewritten to be a "never fail" function. On mem_cgroup_usage_register_event() we save old buffer for thresholds array and reuse it in mem_cgroup_usage_unregister_event() to avoid allocation. Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Phil Carmody <ext-phil.2.carmody@nokia.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Paul Menage <menage@google.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | memcg: fix mis-accounting of file mapped racy with migrationakpm@linux-foundation.org2010-05-272-39/+98
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FILE_MAPPED per memcg of migrated file cache is not properly updated, because our hook in page_add_file_rmap() can't know to which memcg FILE_MAPPED should be counted. Basically, this patch is for fixing the bug but includes some big changes to fix up other messes. Now, at migrating mapped file, events happen in following sequence. 1. allocate a new page. 2. get memcg of an old page. 3. charge ageinst a new page before migration. But at this point, no changes to new page's page_cgroup, no commit for the charge. (IOW, PCG_USED bit is not set.) 4. page migration replaces radix-tree, old-page and new-page. 5. page migration remaps the new page if the old page was mapped. 6. Here, the new page is unlocked. 7. memcg commits the charge for newpage, Mark the new page's page_cgroup as PCG_USED. Because "commit" happens after page-remap, we can count FILE_MAPPED at "5", because we should avoid to trust page_cgroup->mem_cgroup. if PCG_USED bit is unset. (Note: memcg's LRU removal code does that but LRU-isolation logic is used for helping it. When we overwrite page_cgroup->mem_cgroup, page_cgroup is not on LRU or page_cgroup->mem_cgroup is NULL.) We can lose file_mapped accounting information at 5 because FILE_MAPPED is updated only when mapcount changes 0->1. So we should catch it. BTW, historically, above implemntation comes from migration-failure of anonymous page. Because we charge both of old page and new page with mapcount=0, we can't catch - the page is really freed before remap. - migration fails but it's freed before remap or .....corner cases. New migration sequence with memcg is: 1. allocate a new page. 2. mark PageCgroupMigration to the old page. 3. charge against a new page onto the old page's memcg. (here, new page's pc is marked as PageCgroupUsed.) 4. page migration replaces radix-tree, page table, etc... 5. At remapping, new page's page_cgroup is now makrked as "USED" We can catch 0->1 event and FILE_MAPPED will be properly updated. And we can catch SWAPOUT event after unlock this and freeing this page by unmap() can be caught. 7. Clear PageCgroupMigration of the old page. So, FILE_MAPPED will be correctly updated. Then, for what MIGRATION flag is ? Without it, at migration failure, we may have to charge old page again because it may be fully unmapped. "charge" means that we have to dive into memory reclaim or something complated. So, it's better to avoid charge it again. Before this patch, __commit_charge() was working for both of the old/new page and fixed up all. But this technique has some racy condtion around FILE_MAPPED and SWAPOUT etc... Now, the kernel use MIGRATION flag and don't uncharge old page until the end of migration. I hope this change will make memcg's page migration much simpler. This page migration has caused several troubles. Worth to add a flag for simplification. Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: memcontrol - uninitialised return valuePhil Carmody2010-05-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Only an out of memory error will cause ret to be set. Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: remove unnecessary use of atomicPhil Carmody2010-05-271-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The bottom 4 hunks are atomically changing memory to which there are no aliases as it's freshly allocated, so there's no need to use atomic operations. The other hunks are just atomic_read and atomic_set, and do not involve any read-modify-write. The use of atomic_{read,set} doesn't prevent a read/write or write/write race, so if a race were possible (I'm not saying one is), then it would still be there even with atomic_set. See: http://digitalvampire.org/blog/index.php/2007/05/13/atomic-cargo-cults/ Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | memcg: make oom killer a no-op when no killable task can be foundDavid Rientjes2010-05-271-4/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It's pointless to try to kill current if select_bad_process() did not find an eligible task to kill in mem_cgroup_out_of_memory() since it's guaranteed that current is a member of the memcg that is oom and it is, by definition, unkillable. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | memcg: move charge of file pagesDaisuke Nishimura2010-05-272-12/+108
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds support for moving charge of file pages, which include normal file, tmpfs file and swaps of tmpfs file. It's enabled by setting bit 1 of <target cgroup>/memory.move_charge_at_immigrate. Unlike the case of anonymous pages, file pages(and swaps) in the range mmapped by the task will be moved even if the task hasn't done page fault, i.e. they might not be the task's "RSS", but other task's "RSS" that maps the same file. And mapcount of the page is ignored(the page can be moved even if page_mapcount(page) > 1). So, conditions that the page/swap should be met to be moved is that it must be in the range mmapped by the target task and it must be charged to the old cgroup. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix warning] Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | memcg: clean up move chargeDaisuke Nishimura2010-05-271-37/+59
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch cleans up move charge code by: - define functions to handle pte for each types, and make is_target_pte_for_mc() cleaner. - instead of checking the MOVE_CHARGE_TYPE_ANON bit, define a function that checks the bit. Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | memcg: oom kill disable and oom statusKAMEZAWA Hiroyuki2010-05-271-19/+94
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds a feature to disable oom-killer for memcg, if disabled, of course, tasks under memcg will stop. But now, we have oom-notifier for memcg. And the world around memcg is not under out-of-memory. memcg's out-of-memory just shows memcg hits limit. Then, administrator or management daemon can recover the situation by - kill some process - enlarge limit, add more swap. - migrate some tasks - remove file cache on tmps (difficult ?) Unlike oom-killer, you can take enough information before killing tasks. (by gcore, or, ps etc.) [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | memcg: oom notifierKAMEZAWA Hiroyuki2010-05-271-8/+92
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Considering containers or other resource management softwares in userland, event notification of OOM in memcg should be implemented. Now, memcg has "threshold" notifier which uses eventfd, we can make use of it for oom notification. This patch adds oom notification eventfd callback for memcg. The usage is very similar to threshold notifier, but control file is memory.oom_control and no arguments other than eventfd is required. % cgroup_event_notifier /cgroup/A/memory.oom_control dummy (About cgroup_event_notifier, see Documentation/cgroup/) Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: David Rientjes <rientjes@google.com> Cc: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | memcg: oom wakeup filterKAMEZAWA Hiroyuki2010-05-271-17/+46
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | memcg's oom waitqueue is a system-wide wait_queue (for handling hierarchy.) So, it's better to add custom wake function and do filtering in wake up path. This patch adds a filtering feature for waking up oom-waiters. Hierarchy is properly handled. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | do_generic_file_read: clear page errors when issuing a fresh read of the pageJeff Moyer2010-05-261-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I/O errors can happen due to temporary failures, like multipath errors or losing network contact with the iSCSI server. Because of that, the VM will retry readpage on the page. However, do_generic_file_read does not clear PG_error. This causes the system to be unable to actually use the data in the page cache page, even if the subsequent readpage completes successfully! The function filemap_fault has had a ClearPageError before readpage forever. This patch simply adds the same to do_generic_file_read. Signed-off-by: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | nommu: allow private mappings of read-only devicesBernd Schmidt2010-05-261-14/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Slightly rearrange the logic that determines capabilities and vm_flags. Disable BDI_CAP_MAP_DIRECT in all cases if the device can't support the protections. Allow private readonly mappings of readonly backing devices. Signed-off-by: Bernd Schmidt <bernds_cb1@t-online.de> Signed-off-by: Mike Frysinger <vapier@gentoo.org> Acked-by: David McCullough <davidm@snapgear.com> Acked-by: Greg Ungerer <gerg@uclinux.org> Acked-by: Paul Mundt <lethal@linux-sh.org> Acked-by: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mempolicy: ERR_PTR dereference in mpol_shared_policy_init()Dan Carpenter2010-05-261-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The original code called mpol_put(new) while "new" was an ERR_PTR. Signed-off-by: Dan Carpenter <error27@gmail.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mem-hotplug: fix potential race while building zonelist for new populated zoneHaicheng Li2010-05-252-9/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add global mutex zonelists_mutex to fix the possible race: CPU0 CPU1 CPU2 (1) zone->present_pages += online_pages; (2) build_all_zonelists(); (3) alloc_page(); (4) free_page(); (5) build_all_zonelists(); (6) __build_all_zonelists(); (7) zone->pageset = alloc_percpu(); In step (3,4), zone->pageset still points to boot_pageset, so bad things may happen if 2+ nodes are in this state. Even if only 1 node is accessing the boot_pageset, (3) may still consume too much memory to fail the memory allocations in step (7). Besides, atomic operation ensures alloc_percpu() in step (7) will never fail since there is a new fresh memory block added in step(6). [haicheng.li@linux.intel.com: hold zonelists_mutex when build_all_zonelists] Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: Andi Kleen <andi.kleen@intel.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mem-hotplug: avoid multiple zones sharing same boot strapping boot_pagesetHaicheng Li2010-05-252-9/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For each new populated zone of hotadded node, need to update its pagesets with dynamically allocated per_cpu_pageset struct for all possible CPUs: 1) Detach zone->pageset from the shared boot_pageset at end of __build_all_zonelists(). 2) Use mutex to protect zone->pageset when it's still shared in onlined_pages() Otherwises, multiple zones of different nodes would share same boot strapping boot_pageset for same CPU, which will finally cause below kernel panic: ------------[ cut here ]------------ kernel BUG at mm/page_alloc.c:1239! invalid opcode: 0000 [#1] SMP ... Call Trace: [<ffffffff811300c1>] __alloc_pages_nodemask+0x131/0x7b0 [<ffffffff81162e67>] alloc_pages_current+0x87/0xd0 [<ffffffff81128407>] __page_cache_alloc+0x67/0x70 [<ffffffff811325f0>] __do_page_cache_readahead+0x120/0x260 [<ffffffff81132751>] ra_submit+0x21/0x30 [<ffffffff811329c6>] ondemand_readahead+0x166/0x2c0 [<ffffffff81132ba0>] page_cache_async_readahead+0x80/0xa0 [<ffffffff8112a0e4>] generic_file_aio_read+0x364/0x670 [<ffffffff81266cfa>] nfs_file_read+0xca/0x130 [<ffffffff8117b20a>] do_sync_read+0xfa/0x140 [<ffffffff8117bf75>] vfs_read+0xb5/0x1a0 [<ffffffff8117c151>] sys_read+0x51/0x80 [<ffffffff8103c032>] system_call_fastpath+0x16/0x1b RIP [<ffffffff8112ff13>] get_page_from_freelist+0x883/0x900 RSP <ffff88000d1e78a8> ---[ end trace 4bda28328b9990db ] [akpm@linux-foundation.org: merge fix] Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: Andi Kleen <andi.kleen@intel.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mem-hotplug: separate setup_per_cpu_pageset() into separate functionsWu Fengguang2010-05-251-17/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | No behavior change here. Move some of setup_per_cpu_pageset() code into a new function setup_zone_pageset() that will be useful for memory hotplug. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com> Reviewed-by: Andi Kleen <andi.kleen@intel.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | highmem: remove unneeded #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT for ↵Akinobu Mita2010-05-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | debug_kmap_atomic() In f4112de6b679d84bd9b9681c7504be7bdfb7c7d5 ("mm: introduce debug_kmap_atomic") I said that debug_kmap_atomic() needs CONFIG_TRACE_IRQFLAGS_SUPPORT. It was wrong. (I thought irqs_disabled() is only available when the architecture has CONFIG_TRACE_IRQFLAGS_SUPPORT) Remove the #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT check to enable kmap_atomic() debugging for the architectures which do not have CONFIG_TRACE_IRQFLAGS_SUPPORT. Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | cpu/mem hotplug: enable CPUs online before local memory onlineminskey guo2010-05-251-0/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Enable users to online CPUs even if the CPUs belongs to a numa node which doesn't have onlined local memory. The zonlists(pg_data_t.node_zonelists[]) of a numa node are created either in system boot/init period, or at the time of local memory online. For a numa node without onlined local memory, its zonelists are not initialized at present. As a result, any memory allocation operations executed by CPUs within this node will fail. In fact, an out-of-memory error is triggered when attempt to online CPUs before memory comes to online. This patch tries to create zonelists for such numa nodes, so that the memory allocation for this node can be fallback'ed to other nodes. [akpm@linux-foundation.org: remove unneeded export] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: minskey guo<chaohong.guo@intel.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | vmscan: remove isolate_pages callback scan controlJohannes Weiner2010-05-251-24/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For now, we have global isolation vs. memory control group isolation, do not allow the reclaim entry function to set an arbitrary page isolation callback, we do not need that flexibility. And since we already pass around the group descriptor for the memory control group isolation case, just use it to decide which one of the two isolator functions to use. The decisions can be merged into nearby branches, so no extra cost there. In fact, we save the indirect calls. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | vmscan: remove all_unreclaimable scan controlJohannes Weiner2010-05-251-8/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This scan control is abused to communicate a return value from shrink_zones(). Write this idiomatically and remove the knob. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: document follow_page()Johannes Weiner2010-05-251-2/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Dan Carpenter <error27@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: introduce free_pages_prepare()KOSAKI Motohiro2010-05-251-19/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | free_hot_cold_page() and __free_pages_ok() have very similar freeing preparation. Consolidate them. [akpm@linux-foundation.org: fix busted coding style] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | vmscan: page_check_references(): check low order lumpy reclaim properlyKOSAKI Motohiro2010-05-251-15/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If vmscan is under lumpy reclaim mode, it have to ignore referenced bit for making contenious free pages. but current page_check_references() doesn't. Fix it. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | readahead.c: fix commentHuang Shijie2010-05-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | Fix a wrong comment over page_cache_async_readahead(). Signed-off-by: Huang Shijie <shijie8@gmail.com> Acked-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | vmscan: prevent get_scan_ratio() rounding errorsShaohua Li2010-05-251-52/+55
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | get_scan_ratio() calculates percentage and if the percentage is < 1%, it will round percentage down to 0% and cause we completely ignore scanning anon/file pages to reclaim memory even the total anon/file pages are very big. To avoid underflow, we don't use percentage, instead we directly calculate how many pages should be scaned. In this way, we should get several scanned pages for < 1% percent. This has some benefits: 1. increase our calculation precision 2. making our scan more smoothly. Without this, if percent[x] is underflow, shrink_zone() doesn't scan any pages and suddenly it scans all pages when priority is zero. With this, even priority isn't zero, shrink_zone() gets chance to scan some pages. Note, this patch doesn't really change logics, but just increase precision. For system with a lot of memory, this might slightly changes behavior. For example, in a sequential file read workload, without the patch, we don't swap any anon pages. With it, if anon memory size is bigger than 16G, we will see one anon page swapped. The 16G is calculated as PAGE_SIZE * priority(4096) * (fp/ap). fp/ap is assumed to be 1024 which is common in this workload. So the impact sounds not a big deal. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: consider the entire user address space during node migrationGreg Thelen2010-05-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use mm->task_size instead of TASK_SIZE to ensure that the entire user address space is migrated. mm->task_size is independent of the calling task context. TASK SIZE may be dependant on the address space size of the calling process. Usage of TASK_SIZE can lead to partial address space migration if the calling process was 32 bit and the migrating process was 64 bit. Here is the test script used on 64 system with a 32 bit echo process: mount -t cgroup none /cgroup -o cpuset cd /cgroup mkdir 0 echo 1 > 0/cpuset.cpus echo 0 > 0/cpuset.mems echo 1 > 0/cpuset.memory_migrate mkdir 1 echo 1 > 1/cpuset.cpus echo 1 > 1/cpuset.mems echo 1 > 1/cpuset.memory_migrate echo $$ > 0/tasks 64_bit_process & pid=$! echo $pid > 1/tasks # This does not migrate all process pages without # this patch. If 64 bit echo is used or this patch is # applied, then the full address space of $pid is # migrated. To check memory migration, I watched: grep MemUsed /sys/devices/system/node/node*/meminfo Signed-off-by: Greg Thelen <gthelen@google.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: compaction: defer compaction using an exponential backoff when ↵Mel Gorman2010-05-251-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | compaction fails The fragmentation index may indicate that a failure is due to external fragmentation but after a compaction run completes, it is still possible for an allocation to fail. There are two obvious reasons as to why o Page migration cannot move all pages so fragmentation remains o A suitable page may exist but watermarks are not met In the event of compaction followed by an allocation failure, this patch defers further compaction in the zone (1 << compact_defer_shift) times. If the next compaction attempt also fails, compact_defer_shift is increased up to a maximum of 6. If compaction succeeds, the defer counters are reset again. The zone that is deferred is the first zone in the zonelist - i.e. the preferred zone. To defer compaction in the other zones, the information would need to be stored in the zonelist or implemented similar to the zonelist_cache. This would impact the fast-paths and is not justified at this time. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: compaction: add a tunable that decides when memory should be compacted ↵Mel Gorman2010-05-251-1/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | and when it should be reclaimed The kernel applies some heuristics when deciding if memory should be compacted or reclaimed to satisfy a high-order allocation. One of these is based on the fragmentation. If the index is below 500, memory will not be compacted. This choice is arbitrary and not based on data. To help optimise the system and set a sensible default for this value, this patch adds a sysctl extfrag_threshold. The kernel will only compact memory if the fragmentation index is above the extfrag_threshold. [randy.dunlap@oracle.com: Fix build errors when proc fs is not configured] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: compaction: direct compact when a high-order allocation failsMel Gorman2010-05-253-2/+194
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ordinarily when a high-order allocation fails, direct reclaim is entered to free pages to satisfy the allocation. With this patch, it is determined if an allocation failed due to external fragmentation instead of low memory and if so, the calling process will compact until a suitable page is freed. Compaction by moving pages in memory is considerably cheaper than paging out to disk and works where there are locked pages or no swap. If compaction fails to free a page of a suitable size, then reclaim will still occur. Direct compaction returns as soon as possible. As each block is compacted, it is checked if a suitable page has been freed and if so, it returns. [akpm@linux-foundation.org: Fix build errors] [aarcange@redhat.com: fix count_vm_event preempt in memory compaction direct reclaim] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: compaction: add /sys trigger for per-node memory compactionMel Gorman2010-05-251-0/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a per-node sysfs file called compact. When the file is written to, each zone in that node is compacted. The intention that this would be used by something like a job scheduler in a batch system before a job starts so that the job can allocate the maximum number of hugepages without significant start-up cost. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: compaction: add /proc trigger for memory compactionMel Gorman2010-05-251-0/+62
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a proc file /proc/sys/vm/compact_memory. When an arbitrary value is written to the file, all zones are compacted. The expected user of such a trigger is a job scheduler that prepares the system before the target application runs. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: compaction: memory compaction coreMel Gorman2010-05-255-1/+456
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch is the core of a mechanism which compacts memory in a zone by relocating movable pages towards the end of the zone. A single compaction run involves a migration scanner and a free scanner. Both scanners operate on pageblock-sized areas in the zone. The migration scanner starts at the bottom of the zone and searches for all movable pages within each area, isolating them onto a private list called migratelist. The free scanner starts at the top of the zone and searches for suitable areas and consumes the free pages within making them available for the migration scanner. The pages isolated for migration are then migrated to the newly isolated free pages. [aarcange@redhat.com: Fix unsafe optimisation] [mel@csn.ul.ie: do not schedule work on other CPUs for compaction] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: move definition for LRU isolation modes to a headerMel Gorman2010-05-251-5/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, vmscan.c defines the isolation modes for __isolate_lru_page(). Memory compaction needs access to these modes for isolating pages for migration. This patch exports them. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <cl@linux-foundation.org> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | mm: export fragmentation index via debugfsMel Gorman2010-05-251-0/+84
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The fragmentation fragmentation index, is only meaningful if an allocation would fail and indicates what the failure is due to. A value of -1 such as in many of the examples above states that the allocation would succeed. If it would fail, the value is between 0 and 1. A value tending towards 0 implies the allocation failed due to a lack of memory. A value tending towards 1 implies it failed due to external fragmentation. For the most part, the huge page size will be the size of interest but not necessarily so it is exported on a per-order and per-zo basis via /sys/kernel/debug/extfrag/extfrag_index > cat /sys/kernel/debug/extfrag/extfrag_index Node 0, zone DMA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.00 Node 0, zone Normal -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 0.954 Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>