| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms and conditions of the gnu general public license
version 2 as published by the free software foundation this program
is distributed in the hope it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 263 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.208660670@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
| |
Section 4.8.2 (SEL_RES Response) of NFC Forum's NFC Digital Protocol
Technical Specification dated 2010-11-17 clearly states that the size
of a SEL_RES Response is one byte. Enforce this restriction in the
code.
Signed-off-by: Mark Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Joe and Bjørn suggested that it'd be nicer to not have the
cast in the fairly common case of doing
*(u8 *)skb_put(skb, 1) = c;
Add skb_put_u8() for this case, and use it across the code,
using the following spatch:
@@
expression SKB, C, S;
typedef u8;
identifier fn = {skb_put};
fresh identifier fn2 = fn ## "_u8";
@@
- *(u8 *)fn(SKB, S) = C;
+ fn2(SKB, C);
Note that due to the "S", the spatch isn't perfect, it should
have checked that S is 1, but there's also places that use a
sizeof expression like sizeof(var) or sizeof(u8) etc. Turns
out that nobody ever did something like
*(u8 *)skb_put(skb, 2) = c;
which would be wrong anyway since the second byte wouldn't be
initialized.
Suggested-by: Joe Perches <joe@perches.com>
Suggested-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It seems like a historic accident that these return unsigned char *,
and in many places that means casts are required, more often than not.
Make these functions return void * and remove all the casts across
the tree, adding a (u8 *) cast only where the unsigned char pointer
was used directly, all done with the following spatch:
@@
expression SKB, LEN;
typedef u8;
identifier fn = { skb_push, __skb_push, skb_push_rcsum };
@@
- *(fn(SKB, LEN))
+ *(u8 *)fn(SKB, LEN)
@@
expression E, SKB, LEN;
identifier fn = { skb_push, __skb_push, skb_push_rcsum };
type T;
@@
- E = ((T *)(fn(SKB, LEN)))
+ E = fn(SKB, LEN)
@@
expression SKB, LEN;
identifier fn = { skb_push, __skb_push, skb_push_rcsum };
@@
- fn(SKB, LEN)[0]
+ *(u8 *)fn(SKB, LEN)
Note that the last part there converts from push(...)[0] to the
more idiomatic *(u8 *)push(...).
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It seems like a historic accident that these return unsigned char *,
and in many places that means casts are required, more often than not.
Make these functions (skb_put, __skb_put and pskb_put) return void *
and remove all the casts across the tree, adding a (u8 *) cast only
where the unsigned char pointer was used directly, all done with the
following spatch:
@@
expression SKB, LEN;
typedef u8;
identifier fn = { skb_put, __skb_put };
@@
- *(fn(SKB, LEN))
+ *(u8 *)fn(SKB, LEN)
@@
expression E, SKB, LEN;
identifier fn = { skb_put, __skb_put };
type T;
@@
- E = ((T *)(fn(SKB, LEN)))
+ E = fn(SKB, LEN)
which actually doesn't cover pskb_put since there are only three
users overall.
A handful of stragglers were converted manually, notably a macro in
drivers/isdn/i4l/isdn_bsdcomp.c and, oddly enough, one of the many
instances in net/bluetooth/hci_sock.c. In the former file, I also
had to fix one whitespace problem spatch introduced.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
| |
When configured as a target listening for a SENSF_REQ poll command, a
nfcid2 array was allocated for no reason leading to a memory leak. The
nfcid2 is sent by the target in the SENSF_RES reply.
Signed-off-by: Thierry Escande <thierry.escande@collabora.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The digital layer of the NFC subsystem currently
supports a 'tg_listen_mdaa' driver hook that supports
devices that can do mode detection and automatic
anticollision. However, there are some devices that
can do mode detection but not automatic anitcollision
so add the 'tg_listen_md' hook to support those devices.
In order for the digital layer to get the RF technology
detected by the device from the driver, add the
'tg_get_rf_tech' hook. It is only valid to call this
hook immediately after a successful call to 'tg_listen_md'.
CC: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add new "NFC_DIGITAL_FRAMING_*" calls to the digital
layer so the driver can make the necessary adjustments
when performing anticollision while in target mode.
The driver must ensure that the effect of these calls
happens after the following response has been sent but
before reception of the next request begins.
Acked-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In digital_in_recv_sel_res(), the code that determines
the tag type will interpret bits 7:6 (lsb being b1 as
per the Digital Specification) of a SEL RES set to 11b
as a Type 4 tag. This is okay except that the neard
will interpret the same value as an NFC-DEP device
(in src/tag.c:set_tag_type() in the neard source).
Make the digital layer's interpretation match neard's
interpretation by changing the order of the checks in
digital_in_recv_sel_res() so that a value of 11b in
bits 7:6 is interpreted as an NFC-DEP device instead
of a Type 4 tag.
Acked-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
| |
CC: "Mark A. Greer" <mgreer@animalcreek.com>
CC: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
According to section 5.15.1.3 of the NFC Activity
Specification, multiple SENSF_REQ commands can be
received by a target before it receives an ATR_REQ
command. To handle this, add a routine that checks
whether a SENSF_REQ or ATR_REQ has been recieved.
If its a SENSF_REQ, respond appropriately and
continue waiting for a ATR_REQ. If its an ATR_REQ,
handle it as before.
CC: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The check in digital_tg_send_sensf_res() that excludes
the 'RD' field from the SENSF_RES is inverted. The 'RD'
field should be excluded when the SENSF_REQ 'RC' field
is equal to DIGITAL_SENSF_REQ_RC_NONE instead of when
its not equal. This is described in section 6.6.2.11
of the NFC Digital Specification.
CC: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for the ISO/IEC 14443-B protocol and Type 4B tags.
It is expected that there will be only one tag within range so the full
anticollision scheme is not implemented. Only the SENSB_REQ/SENSB_RES
and ATTRIB_REQ/ATTRIB_RES are implemented.
CC: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
| |
When a type 4A target is activated, this change adds the ISO-DEP SoD
when sending frames and removes it when receiving responses. Chaining
is not supported so sent frames are rejected if they exceed remote FSC
bytes.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
| |
This adds support for ATS request and response handling for type 4A tag
activation.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for ISO/IEC 15693 to the digital layer. The code
currently uses single-slot anticollision only since the digital
layer infrastructure only supports one tag per adapter (making
it pointless to do 16-slot anticollision).
The code uses two new framing types:
'NFC_DIGITAL_FRAMING_ISO15693_INVENTORY' and
'NFC_DIGITAL_FRAMING_ISO15693_TVT'. The former is used to
tell the driver to prepare for an Inventory command and the
ensuing anticollision sequence. The latter is used to tell
the driver that the anticollision sequence is over and to
prepare for non-inventory commands.
Signed-off-by: Mark A. Greer <mgreer@animalcreek.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was triggered by the following sparse warning:
net/nfc/digital_technology.c:272:20: sparse: cast to restricted __be16
The SENS_RES response must be treated as __le16 with the first byte
received as LSB and the second one as MSB. This is the way neard
handles it in the sens_res field of the nfc_target structure which is
treated as u16 in cpu endianness. So le16_to_cpu() is used on the
received SENS_RES instead of memcpy'ing it.
SENS_RES test macros have also been fixed accordingly.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes sparse hint:
net/nfc/digital_technology.c:640:5: sparse: symbol 'digital_tg_send_sensf_res'
was not declared. Should it be static?
Cc: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
| |
We do not add the newline to the pr_fmt macro, in order to give more
flexibility to the caller and to keep the logging style consistent with
the rest of the NFC and kernel code.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
| |
They can be replaced by the standard pr_err and pr_debug one after
defining the right pr_fmt macro.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for NFC-DEP target mode for NFC-A and NFC-F
technologies.
If the driver provides it, the stack uses an automatic mode for
technology detection and automatic anti-collision. Otherwise the stack
tries to use non-automatic synchronization and listens for SENS_REQ and
SENSF_REQ commands.
The detection, activation, and data exchange procedures work exactly
the same way as in initiator mode, as described in the previous
commits, except that the digital stack waits for commands and sends
responses back to the peer device.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for NFC-DEP protocol in initiator mode for NFC-A and
NFC-F technologies.
When a target is detected, the process flow is as follow:
For NFC-A technology:
1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ
command.
2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP
protocol. NFC core is notified through nfc_targets_found().
Execution continues at step 4.
3 - Otherwise, it's a tag and the NFC core is notified. Detection
ends.
4 - The digital stacks sends an ATR_REQ command containing a randomly
generated NFCID3 and the general bytes obtained from the LLCP layer
of NFC core.
For NFC-F technology:
1 - The digital stack receives a SENSF_RES as the reply of the
SENSF_REQ command.
2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer
device is configured for NFC-DEP protocol. NFC core is notified
through nfc_targets_found(). Execution continues at step 4.
3 - Otherwise it's a type 3 tag. NFC core is notified. Detection
ends.
4 - The digital stacks sends an ATR_REQ command containing the NFC-F
NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer
of NFC core.
For both technologies:
5 - The digital stacks receives the ATR_RES response containing the
NFCID3 and the general bytes of the peer device.
6 - The digital stack notifies NFC core that the DEP link is up through
nfc_dep_link_up().
7 - The NFC core performs data exchange through tm_transceive().
8 - The digital stack sends a DEP_REQ command containing an I PDU with
the data from NFC core.
9 - The digital stack receives a DEP_RES command
10 - If the DEP_RES response contains a supervisor PDU with timeout
extension request (RTOX) the digital stack sends a DEP_REQ
command containing a supervisor PDU acknowledging the RTOX
request. The execution continues at step 9.
11 - If the DEP_RES response contains an I PDU, the response data is
passed back to NFC core through the response callback. The
execution continues at step 8.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds polling support for NFC-F technology at 212 kbits/s and 424
kbits/s. A user space application like neard can send type 3 tag
commands through the NFC core.
Process flow for NFC-F detection is as follow:
1 - The digital stack sends the SENSF_REQ command to the NFC device.
2 - A peer device replies with a SENSF_RES response.
3 - The digital stack notifies the NFC core of the presence of a
target in the operation field and passes the target NFCID2.
This also adds support for CRC calculation of type CRC-F. The CRC
calculation is handled by the digital stack if the NFC device doesn't
support it.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for NFC-A technology at 106 kbits/s. The stack can
detect tags of type 1 and 2. There is no support for collision
detection. Tags can be read and written by using a user space
application or a daemon like neard.
The flow of polling operations for NFC-A detection is as follow:
1 - The digital stack sends the SENS_REQ command to the NFC device.
2 - The NFC device receives a SENS_RES response from a peer device and
passes it to the digital stack.
3 - If the SENS_RES response identifies a type 1 tag, detection ends.
NFC core is notified through nfc_targets_found().
4 - Otherwise, the digital stack sets the cascade level of NFCID1 to
CL1 and sends the SDD_REQ command.
5 - The digital stack selects SEL_CMD and SEL_PAR according to the
cascade level and sends the SDD_REQ command.
4 - The digital stack receives a SDD_RES response for the cascade level
passed in the SDD_REQ command.
5 - The digital stack analyses (part of) NFCID1 and verify BCC.
6 - The digital stack sends the SEL_REQ command with the NFCID1
received in the SDD_RES.
6 - The peer device replies with a SEL_RES response
7 - Detection ends if NFCID1 is complete. NFC core notified of new
target by nfc_targets_found().
8 - If NFCID1 is not complete, the cascade level is incremented (up
to and including CL3) and the execution continues at step 5 to
get the remaining bytes of NFCID1.
Once target detection is done, type 1 and 2 tag commands must be
handled by a user space application (i.e neard) through the NFC core.
Responses for type 1 tag are returned directly to user space via NFC
core.
Responses of type 2 commands are handled differently. The digital stack
doesn't analyse the type of commands sent through im_transceive() and
must differentiate valid responses from error ones.
The response process flow is as follow:
1 - If the response length is 16 bytes, it is a valid response of a
READ command. the packet is returned to the NFC core through the
callback passed to im_transceive(). Processing stops.
2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a
valid response of a WRITE command for example. First packet byte
is set to 0 for no-error and passed back to the NFC core.
Processing stops.
3 - Any other response is treated as an error and -EIO error code is
returned to the NFC core through the response callback.
Moreover, since the driver can't differentiate success response from a
NACK response, the digital stack has to handle CRC calculation.
Thus, this patch also adds support for CRC calculation. If the driver
doesn't handle it, the digital stack will calculate CRC and will add it
to sent frames. CRC will also be checked and removed from received
frames. Pointers to the correct CRC calculation functions are stored in
the digital stack device structure when a target is detected. This
avoids the need to check the current target type for every call to
im_transceive() and for every response received from a peer device.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
This implements the mechanism used to send commands to the driver in
initiator mode through in_send_cmd().
Commands are serialized and sent to the driver by using a work item
on the system workqueue. Responses are handled asynchronously by
another work item. Once the digital stack receives the response through
the command_complete callback, the next command is sent to the driver.
This also implements the polling mechanism. It's handled by a work item
cycling on all supported protocols. The start poll command for a given
protocol is sent to the driver using the mechanism described above.
The process continues until a peer is discovered or stop_poll is
called. This patch implements the poll function for NFC-A that sends a
SENS_REQ command and waits for the SENS_RES response.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|