summaryrefslogtreecommitdiffstats
path: root/virt/kvm/arm/vgic-v3-emul.c
Commit message (Collapse)AuthorAgeFilesLines
* KVM: arm: vgic: Drop useless Group0 warningMarc Zyngier2015-06-171-2/+0
| | | | | | | | | | | If a GICv3-enabled guest tries to configure Group0, we print a warning on the console (because we don't support Group0 interrupts). This is fairly pointless, and would allow a guest to spam the console. Let's just drop the warning. Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: add active register handling to GICv3 emulation as wellAndre Przywara2015-06-091-4/+50
| | | | | | | | | | | | | Commit 47a98b15ba7c ("arm/arm64: KVM: support for un-queuing active IRQs") introduced handling of the GICD_I[SC]ACTIVER registers, but only for the GICv2 emulation. For the sake of completeness and as this is a pre-requisite for save/restore of the GICv3 distributor state, we should also emulate their handling in the distributor and redistributor frames of an emulated GICv3. Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: rework MMIO abort handling to use KVM MMIO busAndre Przywara2015-03-301-35/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | Currently we have struct kvm_exit_mmio for encapsulating MMIO abort data to be passed on from syndrome decoding all the way down to the VGIC register handlers. Now as we switch the MMIO handling to be routed through the KVM MMIO bus, it does not make sense anymore to use that structure already from the beginning. So we keep the data in local variables until we put them into the kvm_io_bus framework. Then we fill kvm_exit_mmio in the VGIC only, making it a VGIC private structure. On that way we replace the data buffer in that structure with a pointer pointing to a single location in a local variable, so we get rid of some copying on the way. With all of the virtual GIC emulation code now being registered with the kvm_io_bus, we can remove all of the old MMIO handling code and its dispatching functionality. I didn't bother to rename kvm_exit_mmio (to vgic_mmio or something), because that touches a lot of code lines without any good reason. This is based on an original patch by Nikolay. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Cc: Nikolay Nikolaev <n.nikolaev@virtualopensystems.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: prepare GICv3 emulation to use kvm_io_bus MMIO handlingAndre Przywara2015-03-301-1/+38
| | | | | | | | | | | | | Using the framework provided by the recent vgic.c changes, we register a kvm_io_bus device on mapping the virtual GICv3 resources. The distributor mapping is pretty straight forward, but the redistributors need some more love, since they need to be tagged with the respective redistributor (read: VCPU) they are connected with. We use the kvm_io_bus framework to register one devices per VCPU. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: merge GICv3 RD_base and SGI_base register framesAndre Przywara2015-03-301-91/+83
| | | | | | | | | | | | | Currently we handle the redistributor registers in two separate MMIO regions, one for the overall behaviour and SPIs and one for the SGIs/PPIs. That latter forces the creation of _two_ KVM I/O bus devices for each redistributor. Since the spec mandates those two pages to be contigious, we could as well merge them and save the churn with the second KVM I/O bus device. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: rename struct kvm_mmio_range to vgic_io_rangeAndre Przywara2015-03-261-4/+4
| | | | | | | | | | | The name "kvm_mmio_range" is a bit bold, given that it only covers the VGIC's MMIO ranges. To avoid confusion with kvm_io_range, rename it to vgic_io_range. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm/arm64: KVM: allow userland to request a virtual GICv3Andre Przywara2015-01-201-0/+3
| | | | | | | | | | | | | | With all of the GICv3 code in place now we allow userland to ask the kernel for using a virtual GICv3 in the guest. Also we provide the necessary support for guests setting the memory addresses for the virtual distributor and redistributors. This requires some userland code to make use of that feature and explicitly ask for a virtual GICv3. Document that KVM_CREATE_IRQCHIP only works for GICv2, but is considered legacy and using KVM_CREATE_DEVICE is preferred. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
* arm64: KVM: add SGI generation register emulationAndre Przywara2015-01-201-0/+111
| | | | | | | | | | | | | | While the generation of a (virtual) inter-processor interrupt (SGI) on a GICv2 works by writing to a MMIO register, GICv3 uses the system register ICC_SGI1R_EL1 to trigger them. Add a trap handler function that calls the new SGI register handler in the GICv3 code. As ICC_SRE_EL1.SRE at this point is still always 0, this will not trap yet, but will only be used later when all the data structures have been initialized properly. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
* arm/arm64: KVM: add virtual GICv3 distributor emulationAndre Przywara2015-01-201-0/+922
With everything separated and prepared, we implement a model of a GICv3 distributor and redistributors by using the existing framework to provide handler functions for each register group. Currently we limit the emulation to a model enforcing a single security state, with SRE==1 (forcing system register access) and ARE==1 (allowing more than 8 VCPUs). We share some of the functions provided for GICv2 emulation, but take the different ways of addressing (v)CPUs into account. Save and restore is currently not implemented. Similar to the split-off of the GICv2 specific code, the new emulation code goes into a new file (vgic-v3-emul.c). Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>