// SPDX-License-Identifier: GPL-2.0 /* * linux/arch/alpha/kernel/osf_sys.c * * Copyright (C) 1995 Linus Torvalds */ /* * This file handles some of the stranger OSF/1 system call interfaces. * Some of the system calls expect a non-C calling standard, others have * special parameter blocks.. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Brk needs to return an error. Still support Linux's brk(0) query idiom, * which OSF programs just shouldn't be doing. We're still not quite * identical to OSF as we don't return 0 on success, but doing otherwise * would require changes to libc. Hopefully this is good enough. */ SYSCALL_DEFINE1(osf_brk, unsigned long, brk) { unsigned long retval = sys_brk(brk); if (brk && brk != retval) retval = -ENOMEM; return retval; } /* * This is pure guess-work.. */ SYSCALL_DEFINE4(osf_set_program_attributes, unsigned long, text_start, unsigned long, text_len, unsigned long, bss_start, unsigned long, bss_len) { struct mm_struct *mm; mm = current->mm; mm->end_code = bss_start + bss_len; mm->start_brk = bss_start + bss_len; mm->brk = bss_start + bss_len; #if 0 printk("set_program_attributes(%lx %lx %lx %lx)\n", text_start, text_len, bss_start, bss_len); #endif return 0; } /* * OSF/1 directory handling functions... * * The "getdents()" interface is much more sane: the "basep" stuff is * braindamage (it can't really handle filesystems where the directory * offset differences aren't the same as "d_reclen"). */ #define NAME_OFFSET offsetof (struct osf_dirent, d_name) struct osf_dirent { unsigned int d_ino; unsigned short d_reclen; unsigned short d_namlen; char d_name[1]; }; struct osf_dirent_callback { struct dir_context ctx; struct osf_dirent __user *dirent; long __user *basep; unsigned int count; int error; }; static bool osf_filldir(struct dir_context *ctx, const char *name, int namlen, loff_t offset, u64 ino, unsigned int d_type) { struct osf_dirent __user *dirent; struct osf_dirent_callback *buf = container_of(ctx, struct osf_dirent_callback, ctx); unsigned int reclen = ALIGN(NAME_OFFSET + namlen + 1, sizeof(u32)); unsigned int d_ino; buf->error = -EINVAL; /* only used if we fail */ if (reclen > buf->count) return false; d_ino = ino; if (sizeof(d_ino) < sizeof(ino) && d_ino != ino) { buf->error = -EOVERFLOW; return false; } if (buf->basep) { if (put_user(offset, buf->basep)) goto Efault; buf->basep = NULL; } dirent = buf->dirent; if (put_user(d_ino, &dirent->d_ino) || put_user(namlen, &dirent->d_namlen) || put_user(reclen, &dirent->d_reclen) || copy_to_user(dirent->d_name, name, namlen) || put_user(0, dirent->d_name + namlen)) goto Efault; dirent = (void __user *)dirent + reclen; buf->dirent = dirent; buf->count -= reclen; return true; Efault: buf->error = -EFAULT; return false; } SYSCALL_DEFINE4(osf_getdirentries, unsigned int, fd, struct osf_dirent __user *, dirent, unsigned int, count, long __user *, basep) { int error; struct fd arg = fdget_pos(fd); struct osf_dirent_callback buf = { .ctx.actor = osf_filldir, .dirent = dirent, .basep = basep, .count = count }; if (!arg.file) return -EBADF; error = iterate_dir(arg.file, &buf.ctx); if (error >= 0) error = buf.error; if (count != buf.count) error = count - buf.count; fdput_pos(arg); return error; } #undef NAME_OFFSET SYSCALL_DEFINE6(osf_mmap, unsigned long, addr, unsigned long, len, unsigned long, prot, unsigned long, flags, unsigned long, fd, unsigned long, off) { unsigned long ret = -EINVAL; #if 0 if (flags & (_MAP_HASSEMAPHORE | _MAP_INHERIT | _MAP_UNALIGNED)) printk("%s: unimplemented OSF mmap flags %04lx\n", current->comm, flags); #endif if ((off + PAGE_ALIGN(len)) < off) goto out; if (off & ~PAGE_MASK) goto out; ret = ksys_mmap_pgoff(addr, len, prot, flags, fd, off >> PAGE_SHIFT); out: return ret; } struct osf_stat { int st_dev; int st_pad1; unsigned st_mode; unsigned short st_nlink; short st_nlink_reserved; unsigned st_uid; unsigned st_gid; int st_rdev; int st_ldev; long st_size; int st_pad2; int st_uatime; int st_pad3; int st_umtime; int st_pad4; int st_uctime; int st_pad5; int st_pad6; unsigned st_flags; unsigned st_gen; long st_spare[4]; unsigned st_ino; int st_ino_reserved; int st_atime; int st_atime_reserved; int st_mtime; int st_mtime_reserved; int st_ctime; int st_ctime_reserved; long st_blksize; long st_blocks; }; /* * The OSF/1 statfs structure is much larger, but this should * match the beginning, at least. */ struct osf_statfs { short f_type; short f_flags; int f_fsize; int f_bsize; int f_blocks; int f_bfree; int f_bavail; int f_files; int f_ffree; __kernel_fsid_t f_fsid; }; struct osf_statfs64 { short f_type; short f_flags; int f_pad1; int f_pad2; int f_pad3; int f_pad4; int f_pad5; int f_pad6; int f_pad7; __kernel_fsid_t f_fsid; u_short f_namemax; short f_reserved1; int f_spare[8]; char f_pad8[90]; char f_pad9[90]; long mount_info[10]; u_long f_flags2; long f_spare2[14]; long f_fsize; long f_bsize; long f_blocks; long f_bfree; long f_bavail; long f_files; long f_ffree; }; static int linux_to_osf_stat(struct kstat *lstat, struct osf_stat __user *osf_stat) { struct osf_stat tmp = { 0 }; tmp.st_dev = lstat->dev; tmp.st_mode = lstat->mode; tmp.st_nlink = lstat->nlink; tmp.st_uid = from_kuid_munged(current_user_ns(), lstat->uid); tmp.st_gid = from_kgid_munged(current_user_ns(), lstat->gid); tmp.st_rdev = lstat->rdev; tmp.st_ldev = lstat->rdev; tmp.st_size = lstat->size; tmp.st_uatime = lstat->atime.tv_nsec / 1000; tmp.st_umtime = lstat->mtime.tv_nsec / 1000; tmp.st_uctime = lstat->ctime.tv_nsec / 1000; tmp.st_ino = lstat->ino; tmp.st_atime = lstat->atime.tv_sec; tmp.st_mtime = lstat->mtime.tv_sec; tmp.st_ctime = lstat->ctime.tv_sec; tmp.st_blksize = lstat->blksize; tmp.st_blocks = lstat->blocks; return copy_to_user(osf_stat, &tmp, sizeof(tmp)) ? -EFAULT : 0; } static int linux_to_osf_statfs(struct kstatfs *linux_stat, struct osf_statfs __user *osf_stat, unsigned long bufsiz) { struct osf_statfs tmp_stat; tmp_stat.f_type = linux_stat->f_type; tmp_stat.f_flags = 0; /* mount flags */ tmp_stat.f_fsize = linux_stat->f_frsize; tmp_stat.f_bsize = linux_stat->f_bsize; tmp_stat.f_blocks = linux_stat->f_blocks; tmp_stat.f_bfree = linux_stat->f_bfree; tmp_stat.f_bavail = linux_stat->f_bavail; tmp_stat.f_files = linux_stat->f_files; tmp_stat.f_ffree = linux_stat->f_ffree; tmp_stat.f_fsid = linux_stat->f_fsid; if (bufsiz > sizeof(tmp_stat)) bufsiz = sizeof(tmp_stat); return copy_to_user(osf_stat, &tmp_stat, bufsiz) ? -EFAULT : 0; } static int linux_to_osf_statfs64(struct kstatfs *linux_stat, struct osf_statfs64 __user *osf_stat, unsigned long bufsiz) { struct osf_statfs64 tmp_stat = { 0 }; tmp_stat.f_type = linux_stat->f_type; tmp_stat.f_fsize = linux_stat->f_frsize; tmp_stat.f_bsize = linux_stat->f_bsize; tmp_stat.f_blocks = linux_stat->f_blocks; tmp_stat.f_bfree = linux_stat->f_bfree; tmp_stat.f_bavail = linux_stat->f_bavail; tmp_stat.f_files = linux_stat->f_files; tmp_stat.f_ffree = linux_stat->f_ffree; tmp_stat.f_fsid = linux_stat->f_fsid; if (bufsiz > sizeof(tmp_stat)) bufsiz = sizeof(tmp_stat); return copy_to_user(osf_stat, &tmp_stat, bufsiz) ? -EFAULT : 0; } SYSCALL_DEFINE3(osf_statfs, const char __user *, pathname, struct osf_statfs __user *, buffer, unsigned long, bufsiz) { struct kstatfs linux_stat; int error = user_statfs(pathname, &linux_stat); if (!error) error = linux_to_osf_statfs(&linux_stat, buffer, bufsiz); return error; } SYSCALL_DEFINE2(osf_stat, char __user *, name, struct osf_stat __user *, buf) { struct kstat stat; int error; error = vfs_stat(name, &stat); if (error) return error; return linux_to_osf_stat(&stat, buf); } SYSCALL_DEFINE2(osf_lstat, char __user *, name, struct osf_stat __user *, buf) { struct kstat stat; int error; error = vfs_lstat(name, &stat); if (error) return error; return linux_to_osf_stat(&stat, buf); } SYSCALL_DEFINE2(osf_fstat, int, fd, struct osf_stat __user *, buf) { struct kstat stat; int error; error = vfs_fstat(fd, &stat); if (error) return error; return linux_to_osf_stat(&stat, buf); } SYSCALL_DEFINE3(osf_fstatfs, unsigned long, fd, struct osf_statfs __user *, buffer, unsigned long, bufsiz) { struct kstatfs linux_stat; int error = fd_statfs(fd, &linux_stat); if (!error) error = linux_to_osf_statfs(&linux_stat, buffer, bufsiz); return error; } SYSCALL_DEFINE3(osf_statfs64, char __user *, pathname, struct osf_statfs64 __user *, buffer, unsigned long, bufsiz) { struct kstatfs linux_stat; int error = user_statfs(pathname, &linux_stat); if (!error) error = linux_to_osf_statfs64(&linux_stat, buffer, bufsiz); return error; } SYSCALL_DEFINE3(osf_fstatfs64, unsigned long, fd, struct osf_statfs64 __user *, buffer, unsigned long, bufsiz) { struct kstatfs linux_stat; int error = fd_statfs(fd, &linux_stat); if (!error) error = linux_to_osf_statfs64(&linux_stat, buffer, bufsiz); return error; } /* * Uhh.. OSF/1 mount parameters aren't exactly obvious.. * * Although to be frank, neither are the native Linux/i386 ones.. */ struct ufs_args { char __user *devname; int flags; uid_t exroot; }; struct cdfs_args { char __user *devname; int flags; uid_t exroot; /* This has lots more here, which Linux handles with the option block but I'm too lazy to do the translation into ASCII. */ }; struct procfs_args { char __user *devname; int flags; uid_t exroot; }; /* * We can't actually handle ufs yet, so we translate UFS mounts to * ext2fs mounts. I wouldn't mind a UFS filesystem, but the UFS * layout is so braindead it's a major headache doing it. * * Just how long ago was it written? OTOH our UFS driver may be still * unhappy with OSF UFS. [CHECKME] */ static int osf_ufs_mount(const char __user *dirname, struct ufs_args __user *args, int flags) { int retval; struct cdfs_args tmp; struct filename *devname; retval = -EFAULT; if (copy_from_user(&tmp, args, sizeof(tmp))) goto out; devname = getname(tmp.devname); retval = PTR_ERR(devname); if (IS_ERR(devname)) goto out; retval = do_mount(devname->name, dirname, "ext2", flags, NULL); putname(devname); out: return retval; } static int osf_cdfs_mount(const char __user *dirname, struct cdfs_args __user *args, int flags) { int retval; struct cdfs_args tmp; struct filename *devname; retval = -EFAULT; if (copy_from_user(&tmp, args, sizeof(tmp))) goto out; devname = getname(tmp.devname); retval = PTR_ERR(devname); if (IS_ERR(devname)) goto out; retval = do_mount(devname->name, dirname, "iso9660", flags, NULL); putname(devname); out: return retval; } static int osf_procfs_mount(const char __user *dirname, struct procfs_args __user *args, int flags) { struct procfs_args tmp; if (copy_from_user(&tmp, args, sizeof(tmp))) return -EFAULT; return do_mount("", dirname, "proc", flags, NULL); } SYSCALL_DEFINE4(osf_mount, unsigned long, typenr, const char __user *, path, int, flag, void __user *, data) { int retval; switch (typenr) { case 1: retval = osf_ufs_mount(path, data, flag); break; case 6: retval = osf_cdfs_mount(path, data, flag); break; case 9: retval = osf_procfs_mount(path, data, flag); break; default: retval = -EINVAL; printk_ratelimited("osf_mount(%ld, %x)\n", typenr, flag); } return retval; } SYSCALL_DEFINE1(osf_utsname, char __user *, name) { char tmp[5 * 32]; down_read(&uts_sem); memcpy(tmp + 0 * 32, utsname()->sysname, 32); memcpy(tmp + 1 * 32, utsname()->nodename, 32); memcpy(tmp + 2 * 32, utsname()->release, 32); memcpy(tmp + 3 * 32, utsname()->version, 32); memcpy(tmp + 4 * 32, utsname()->machine, 32); up_read(&uts_sem); if (copy_to_user(name, tmp, sizeof(tmp))) return -EFAULT; return 0; } SYSCALL_DEFINE0(getpagesize) { return PAGE_SIZE; } SYSCALL_DEFINE0(getdtablesize) { return sysctl_nr_open; } /* * For compatibility with OSF/1 only. Use utsname(2) instead. */ SYSCALL_DEFINE2(osf_getdomainname, char __user *, name, int, namelen) { int len; char *kname; char tmp[32]; if (namelen < 0 || namelen > 32) namelen = 32; down_read(&uts_sem); kname = utsname()->domainname; len = strnlen(kname, namelen); len = min(len + 1, namelen); memcpy(tmp, kname, len); up_read(&uts_sem); if (copy_to_user(name, tmp, len)) return -EFAULT; return 0; } /* * The following stuff should move into a header file should it ever * be labeled "officially supported." Right now, there is just enough * support to avoid applications (such as tar) printing error * messages. The attributes are not really implemented. */ /* * Values for Property list entry flag */ #define PLE_PROPAGATE_ON_COPY 0x1 /* cp(1) will copy entry by default */ #define PLE_FLAG_MASK 0x1 /* Valid flag values */ #define PLE_FLAG_ALL -1 /* All flag value */ struct proplistname_args { unsigned int pl_mask; unsigned int pl_numnames; char **pl_names; }; union pl_args { struct setargs { char __user *path; long follow; long nbytes; char __user *buf; } set; struct fsetargs { long fd; long nbytes; char __user *buf; } fset; struct getargs { char __user *path; long follow; struct proplistname_args __user *name_args; long nbytes; char __user *buf; int __user *min_buf_size; } get; struct fgetargs { long fd; struct proplistname_args __user *name_args; long nbytes; char __user *buf; int __user *min_buf_size; } fget; struct delargs { char __user *path; long follow; struct proplistname_args __user *name_args; } del; struct fdelargs { long fd; struct proplistname_args __user *name_args; } fdel; }; enum pl_code { PL_SET = 1, PL_FSET = 2, PL_GET = 3, PL_FGET = 4, PL_DEL = 5, PL_FDEL = 6 }; SYSCALL_DEFINE2(osf_proplist_syscall, enum pl_code, code, union pl_args __user *, args) { long error; int __user *min_buf_size_ptr; switch (code) { case PL_SET: if (get_user(error, &args->set.nbytes)) error = -EFAULT; break; case PL_FSET: if (get_user(error, &args->fset.nbytes)) error = -EFAULT; break; case PL_GET: error = get_user(min_buf_size_ptr, &args->get.min_buf_size); if (error) break; error = put_user(0, min_buf_size_ptr); break; case PL_FGET: error = get_user(min_buf_size_ptr, &args->fget.min_buf_size); if (error) break; error = put_user(0, min_buf_size_ptr); break; case PL_DEL: case PL_FDEL: error = 0; break; default: error = -EOPNOTSUPP; break; } return error; } SYSCALL_DEFINE2(osf_sigstack, struct sigstack __user *, uss, struct sigstack __user *, uoss) { unsigned long usp = rdusp(); unsigned long oss_sp = current->sas_ss_sp + current->sas_ss_size; unsigned long oss_os = on_sig_stack(usp); int error; if (uss) { void __user *ss_sp; error = -EFAULT; if (get_user(ss_sp, &uss->ss_sp)) goto out; /* If the current stack was set with sigaltstack, don't swap stacks while we are on it. */ error = -EPERM; if (current->sas_ss_sp && on_sig_stack(usp)) goto out; /* Since we don't know the extent of the stack, and we don't track onstack-ness, but rather calculate it, we must presume a size. Ho hum this interface is lossy. */ current->sas_ss_sp = (unsigned long)ss_sp - SIGSTKSZ; current->sas_ss_size = SIGSTKSZ; } if (uoss) { error = -EFAULT; if (put_user(oss_sp, &uoss->ss_sp) || put_user(oss_os, &uoss->ss_onstack)) goto out; } error = 0; out: return error; } SYSCALL_DEFINE3(osf_sysinfo, int, command, char __user *, buf, long, count) { const char *sysinfo_table[] = { utsname()->sysname, utsname()->nodename, utsname()->release, utsname()->version, utsname()->machine, "alpha", /* instruction set architecture */ "dummy", /* hardware serial number */ "dummy", /* hardware manufacturer */ "dummy", /* secure RPC domain */ }; unsigned long offset; const char *res; long len; char tmp[__NEW_UTS_LEN + 1]; offset = command-1; if (offset >= ARRAY_SIZE(sysinfo_table)) { /* Digital UNIX has a few unpublished interfaces here */ printk("sysinfo(%d)", command); return -EINVAL; } down_read(&uts_sem); res = sysinfo_table[offset]; len = strlen(res)+1; if ((unsigned long)len > (unsigned long)count) len = count; memcpy(tmp, res, len); up_read(&uts_sem); if (copy_to_user(buf, tmp, len)) return -EFAULT; return 0; } SYSCALL_DEFINE5(osf_getsysinfo, unsigned long, op, void __user *, buffer, unsigned long, nbytes, int __user *, start, void __user *, arg) { unsigned long w; struct percpu_struct *cpu; switch (op) { case GSI_IEEE_FP_CONTROL: /* Return current software fp control & status bits. */ /* Note that DU doesn't verify available space here. */ w = current_thread_info()->ieee_state & IEEE_SW_MASK; w = swcr_update_status(w, rdfpcr()); if (put_user(w, (unsigned long __user *) buffer)) return -EFAULT; return 0; case GSI_IEEE_STATE_AT_SIGNAL: /* * Not sure anybody will ever use this weird stuff. These * ops can be used (under OSF/1) to set the fpcr that should * be used when a signal handler starts executing. */ break; case GSI_UACPROC: if (nbytes < sizeof(unsigned int)) return -EINVAL; w = current_thread_info()->status & UAC_BITMASK; if (put_user(w, (unsigned int __user *)buffer)) return -EFAULT; return 1; case GSI_PROC_TYPE: if (nbytes < sizeof(unsigned long)) return -EINVAL; cpu = (struct percpu_struct*) ((char*)hwrpb + hwrpb->processor_offset); w = cpu->type; if (put_user(w, (unsigned long __user*)buffer)) return -EFAULT; return 1; case GSI_GET_HWRPB: if (nbytes > sizeof(*hwrpb)) return -EINVAL; if (copy_to_user(buffer, hwrpb, nbytes) != 0) return -EFAULT; return 1; default: break; } return -EOPNOTSUPP; } SYSCALL_DEFINE5(osf_setsysinfo, unsigned long, op, void __user *, buffer, unsigned long, nbytes, int __user *, start, void __user *, arg) { switch (op) { case SSI_IEEE_FP_CONTROL: { unsigned long swcr, fpcr; unsigned int *state; /* * Alpha Architecture Handbook 4.7.7.3: * To be fully IEEE compiant, we must track the current IEEE * exception state in software, because spurious bits can be * set in the trap shadow of a software-complete insn. */ if (get_user(swcr, (unsigned long __user *)buffer)) return -EFAULT; state = ¤t_thread_info()->ieee_state; /* Update software trap enable bits. */ *state = (*state & ~IEEE_SW_MASK) | (swcr & IEEE_SW_MASK); /* Update the real fpcr. */ fpcr = rdfpcr() & FPCR_DYN_MASK; fpcr |= ieee_swcr_to_fpcr(swcr); wrfpcr(fpcr); return 0; } case SSI_IEEE_RAISE_EXCEPTION: { unsigned long exc, swcr, fpcr, fex; unsigned int *state; if (get_user(exc, (unsigned long __user *)buffer)) return -EFAULT; state = ¤t_thread_info()->ieee_state; exc &= IEEE_STATUS_MASK; /* Update software trap enable bits. */ swcr = (*state & IEEE_SW_MASK) | exc; *state |= exc; /* Update the real fpcr. */ fpcr = rdfpcr(); fpcr |= ieee_swcr_to_fpcr(swcr); wrfpcr(fpcr); /* If any exceptions set by this call, and are unmasked, send a signal. Old exceptions are not signaled. */ fex = (exc >> IEEE_STATUS_TO_EXCSUM_SHIFT) & swcr; if (fex) { int si_code = FPE_FLTUNK; if (fex & IEEE_TRAP_ENABLE_DNO) si_code = FPE_FLTUND; if (fex & IEEE_TRAP_ENABLE_INE) si_code = FPE_FLTRES; if (fex & IEEE_TRAP_ENABLE_UNF) si_code = FPE_FLTUND; if (fex & IEEE_TRAP_ENABLE_OVF) si_code = FPE_FLTOVF; if (fex & IEEE_TRAP_ENABLE_DZE) si_code = FPE_FLTDIV; if (fex & IEEE_TRAP_ENABLE_INV) si_code = FPE_FLTINV; send_sig_fault_trapno(SIGFPE, si_code, (void __user *)NULL, /* FIXME */ 0, current); } return 0; } case SSI_IEEE_STATE_AT_SIGNAL: case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: /* * Not sure anybody will ever use this weird stuff. These * ops can be used (under OSF/1) to set the fpcr that should * be used when a signal handler starts executing. */ break; case SSI_NVPAIRS: { unsigned __user *p = buffer; unsigned i; for (i = 0, p = buffer; i < nbytes; ++i, p += 2) { unsigned v, w, status; if (get_user(v, p) || get_user(w, p + 1)) return -EFAULT; switch (v) { case SSIN_UACPROC: w &= UAC_BITMASK; status = current_thread_info()->status; status = (status & ~UAC_BITMASK) | w; current_thread_info()->status = status; break; default: return -EOPNOTSUPP; } } return 0; } case SSI_LMF: return 0; default: break; } return -EOPNOTSUPP; } /* Translations due to the fact that OSF's time_t is an int. Which affects all sorts of things, like timeval and itimerval. */ extern struct timezone sys_tz; struct timeval32 { int tv_sec, tv_usec; }; struct itimerval32 { struct timeval32 it_interval; struct timeval32 it_value; }; static inline long get_tv32(struct timespec64 *o, struct timeval32 __user *i) { struct timeval32 tv; if (copy_from_user(&tv, i, sizeof(struct timeval32))) return -EFAULT; o->tv_sec = tv.tv_sec; o->tv_nsec = tv.tv_usec * NSEC_PER_USEC; return 0; } static inline long put_tv32(struct timeval32 __user *o, struct timespec64 *i) { return copy_to_user(o, &(struct timeval32){ .tv_sec = i->tv_sec, .tv_usec = i->tv_nsec / NSEC_PER_USEC}, sizeof(struct timeval32)); } static inline long put_tv_to_tv32(struct timeval32 __user *o, struct __kernel_old_timeval *i) { return copy_to_user(o, &(struct timeval32){ .tv_sec = i->tv_sec, .tv_usec = i->tv_usec}, sizeof(struct timeval32)); } static inline void jiffies_to_timeval32(unsigned long jiffies, struct timeval32 *value) { value->tv_usec = (jiffies % HZ) * (1000000L / HZ); value->tv_sec = jiffies / HZ; } SYSCALL_DEFINE2(osf_gettimeofday, struct timeval32 __user *, tv, struct timezone __user *, tz) { if (tv) { struct timespec64 kts; ktime_get_real_ts64(&kts); if (put_tv32(tv, &kts)) return -EFAULT; } if (tz) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } SYSCALL_DEFINE2(osf_settimeofday, struct timeval32 __user *, tv, struct timezone __user *, tz) { struct timespec64 kts; struct timezone ktz; if (tv) { if (get_tv32(&kts, tv)) return -EFAULT; } if (tz) { if (copy_from_user(&ktz, tz, sizeof(*tz))) return -EFAULT; } return do_sys_settimeofday64(tv ? &kts : NULL, tz ? &ktz : NULL); } asmlinkage long sys_ni_posix_timers(void); SYSCALL_DEFINE2(osf_utimes, const char __user *, filename, struct timeval32 __user *, tvs) { struct timespec64 tv[2]; if (tvs) { if (get_tv32(&tv[0], &tvs[0]) || get_tv32(&tv[1], &tvs[1])) return -EFAULT; if (tv[0].tv_nsec < 0 || tv[0].tv_nsec >= 1000000000 || tv[1].tv_nsec < 0 || tv[1].tv_nsec >= 1000000000) return -EINVAL; } return do_utimes(AT_FDCWD, filename, tvs ? tv : NULL, 0); } SYSCALL_DEFINE5(osf_select, int, n, fd_set __user *, inp, fd_set __user *, outp, fd_set __user *, exp, struct timeval32 __user *, tvp) { struct timespec64 end_time, *to = NULL; if (tvp) { struct timespec64 tv; to = &end_time; if (get_tv32(&tv, tvp)) return -EFAULT; if (tv.tv_sec < 0 || tv.tv_nsec < 0) return -EINVAL; if (poll_select_set_timeout(to, tv.tv_sec, tv.tv_nsec)) return -EINVAL; } /* OSF does not copy back the remaining time. */ return core_sys_select(n, inp, outp, exp, to); } struct rusage32 { struct timeval32 ru_utime; /* user time used */ struct timeval32 ru_stime; /* system time used */ long ru_maxrss; /* maximum resident set size */ long ru_ixrss; /* integral shared memory size */ long ru_idrss; /* integral unshared data size */ long ru_isrss; /* integral unshared stack size */ long ru_minflt; /* page reclaims */ long ru_majflt; /* page faults */ long ru_nswap; /* swaps */ long ru_inblock; /* block input operations */ long ru_oublock; /* block output operations */ long ru_msgsnd; /* messages sent */ long ru_msgrcv; /* messages received */ long ru_nsignals; /* signals received */ long ru_nvcsw; /* voluntary context switches */ long ru_nivcsw; /* involuntary " */ }; SYSCALL_DEFINE2(osf_getrusage, int, who, struct rusage32 __user *, ru) { struct rusage32 r; u64 utime, stime; unsigned long utime_jiffies, stime_jiffies; if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN) return -EINVAL; memset(&r, 0, sizeof(r)); switch (who) { case RUSAGE_SELF: task_cputime(current, &utime, &stime); utime_jiffies = nsecs_to_jiffies(utime); stime_jiffies = nsecs_to_jiffies(stime); jiffies_to_timeval32(utime_jiffies, &r.ru_utime); jiffies_to_timeval32(stime_jiffies, &r.ru_stime); r.ru_minflt = current->min_flt; r.ru_majflt = current->maj_flt; break; case RUSAGE_CHILDREN: utime_jiffies = nsecs_to_jiffies(current->signal->cutime); stime_jiffies = nsecs_to_jiffies(current->signal->cstime); jiffies_to_timeval32(utime_jiffies, &r.ru_utime); jiffies_to_timeval32(stime_jiffies, &r.ru_stime); r.ru_minflt = current->signal->cmin_flt; r.ru_majflt = current->signal->cmaj_flt; break; } return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; } SYSCALL_DEFINE4(osf_wait4, pid_t, pid, int __user *, ustatus, int, options, struct rusage32 __user *, ur) { struct rusage r; long err = kernel_wait4(pid, ustatus, options, &r); if (err <= 0) return err; if (!ur) return err; if (put_tv_to_tv32(&ur->ru_utime, &r.ru_utime)) return -EFAULT; if (put_tv_to_tv32(&ur->ru_stime, &r.ru_stime)) return -EFAULT; if (copy_to_user(&ur->ru_maxrss, &r.ru_maxrss, sizeof(struct rusage32) - offsetof(struct rusage32, ru_maxrss))) return -EFAULT; return err; } /* * I don't know what the parameters are: the first one * seems to be a timeval pointer, and I suspect the second * one is the time remaining.. Ho humm.. No documentation. */ SYSCALL_DEFINE2(osf_usleep_thread, struct timeval32 __user *, sleep, struct timeval32 __user *, remain) { struct timespec64 tmp; unsigned long ticks; if (get_tv32(&tmp, sleep)) goto fault; ticks = timespec64_to_jiffies(&tmp); ticks = schedule_timeout_interruptible(ticks); if (remain) { jiffies_to_timespec64(ticks, &tmp); if (put_tv32(remain, &tmp)) goto fault; } return 0; fault: return -EFAULT; } struct timex32 { unsigned int modes; /* mode selector */ long offset; /* time offset (usec) */ long freq; /* frequency offset (scaled ppm) */ long maxerror; /* maximum error (usec) */ long esterror; /* estimated error (usec) */ int status; /* clock command/status */ long constant; /* pll time constant */ long precision; /* clock precision (usec) (read only) */ long tolerance; /* clock frequency tolerance (ppm) * (read only) */ struct timeval32 time; /* (read only) */ long tick; /* (modified) usecs between clock ticks */ long ppsfreq; /* pps frequency (scaled ppm) (ro) */ long jitter; /* pps jitter (us) (ro) */ int shift; /* interval duration (s) (shift) (ro) */ long stabil; /* pps stability (scaled ppm) (ro) */ long jitcnt; /* jitter limit exceeded (ro) */ long calcnt; /* calibration intervals (ro) */ long errcnt; /* calibration errors (ro) */ long stbcnt; /* stability limit exceeded (ro) */ int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; }; SYSCALL_DEFINE1(old_adjtimex, struct timex32 __user *, txc_p) { struct __kernel_timex txc; int ret; /* copy relevant bits of struct timex. */ if (copy_from_user(&txc, txc_p, offsetof(struct timex32, time)) || copy_from_user(&txc.tick, &txc_p->tick, sizeof(struct timex32) - offsetof(struct timex32, tick))) return -EFAULT; ret = do_adjtimex(&txc); if (ret < 0) return ret; /* copy back to timex32 */ if (copy_to_user(txc_p, &txc, offsetof(struct timex32, time)) || (copy_to_user(&txc_p->tick, &txc.tick, sizeof(struct timex32) - offsetof(struct timex32, tick))) || (put_user(txc.time.tv_sec, &txc_p->time.tv_sec)) || (put_user(txc.time.tv_usec, &txc_p->time.tv_usec))) return -EFAULT; return ret; } /* Get an address range which is currently unmapped. Similar to the generic version except that we know how to honor ADDR_LIMIT_32BIT. */ static unsigned long arch_get_unmapped_area_1(unsigned long addr, unsigned long len, unsigned long limit) { struct vm_unmapped_area_info info; info.flags = 0; info.length = len; info.low_limit = addr; info.high_limit = limit; info.align_mask = 0; info.align_offset = 0; return vm_unmapped_area(&info); } unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { unsigned long limit; /* "32 bit" actually means 31 bit, since pointers sign extend. */ if (current->personality & ADDR_LIMIT_32BIT) limit = 0x80000000; else limit = TASK_SIZE; if (len > limit) return -ENOMEM; if (flags & MAP_FIXED) return addr; /* First, see if the given suggestion fits. The OSF/1 loader (/sbin/loader) relies on us returning an address larger than the requested if one exists, which is a terribly broken way to program. That said, I can see the use in being able to suggest not merely specific addresses, but regions of memory -- perhaps this feature should be incorporated into all ports? */ if (addr) { addr = arch_get_unmapped_area_1 (PAGE_ALIGN(addr), len, limit); if (addr != (unsigned long) -ENOMEM) return addr; } /* Next, try allocating at TASK_UNMAPPED_BASE. */ addr = arch_get_unmapped_area_1 (PAGE_ALIGN(TASK_UNMAPPED_BASE), len, limit); if (addr != (unsigned long) -ENOMEM) return addr; /* Finally, try allocating in low memory. */ addr = arch_get_unmapped_area_1 (PAGE_SIZE, len, limit); return addr; } SYSCALL_DEFINE2(osf_getpriority, int, which, int, who) { int prio = sys_getpriority(which, who); if (prio >= 0) { /* Return value is the unbiased priority, i.e. 20 - prio. This does result in negative return values, so signal no error */ force_successful_syscall_return(); prio = 20 - prio; } return prio; } SYSCALL_DEFINE0(getxuid) { current_pt_regs()->r20 = sys_geteuid(); return sys_getuid(); } SYSCALL_DEFINE0(getxgid) { current_pt_regs()->r20 = sys_getegid(); return sys_getgid(); } SYSCALL_DEFINE0(getxpid) { current_pt_regs()->r20 = sys_getppid(); return sys_getpid(); } SYSCALL_DEFINE0(alpha_pipe) { int fd[2]; int res = do_pipe_flags(fd, 0); if (!res) { /* The return values are in $0 and $20. */ current_pt_regs()->r20 = fd[1]; res = fd[0]; } return res; } SYSCALL_DEFINE1(sethae, unsigned long, val) { current_pt_regs()->hae = val; return 0; }