/* MN10300 Arch-specific interrupt handling * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #include #include #include #include #include #include #include unsigned long __mn10300_irq_enabled_epsw[NR_CPUS] __cacheline_aligned_in_smp = { [0 ... NR_CPUS - 1] = EPSW_IE | EPSW_IM_7 }; EXPORT_SYMBOL(__mn10300_irq_enabled_epsw); #ifdef CONFIG_SMP static char irq_affinity_online[NR_IRQS] = { [0 ... NR_IRQS - 1] = 0 }; #define NR_IRQ_WORDS ((NR_IRQS + 31) / 32) static unsigned long irq_affinity_request[NR_IRQ_WORDS] = { [0 ... NR_IRQ_WORDS - 1] = 0 }; #endif /* CONFIG_SMP */ atomic_t irq_err_count; /* * MN10300 interrupt controller operations */ static void mn10300_cpupic_ack(struct irq_data *d) { unsigned int irq = d->irq; unsigned long flags; u16 tmp; flags = arch_local_cli_save(); GxICR_u8(irq) = GxICR_DETECT; tmp = GxICR(irq); arch_local_irq_restore(flags); } static void __mask_and_set_icr(unsigned int irq, unsigned int mask, unsigned int set) { unsigned long flags; u16 tmp; flags = arch_local_cli_save(); tmp = GxICR(irq); GxICR(irq) = (tmp & mask) | set; tmp = GxICR(irq); arch_local_irq_restore(flags); } static void mn10300_cpupic_mask(struct irq_data *d) { __mask_and_set_icr(d->irq, GxICR_LEVEL, 0); } static void mn10300_cpupic_mask_ack(struct irq_data *d) { unsigned int irq = d->irq; #ifdef CONFIG_SMP unsigned long flags; u16 tmp; flags = arch_local_cli_save(); if (!test_and_clear_bit(irq, irq_affinity_request)) { tmp = GxICR(irq); GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_DETECT; tmp = GxICR(irq); } else { u16 tmp2; tmp = GxICR(irq); GxICR(irq) = (tmp & GxICR_LEVEL); tmp2 = GxICR(irq); irq_affinity_online[irq] = any_online_cpu(*d->affinity); CROSS_GxICR(irq, irq_affinity_online[irq]) = (tmp & (GxICR_LEVEL | GxICR_ENABLE)) | GxICR_DETECT; tmp = CROSS_GxICR(irq, irq_affinity_online[irq]); } arch_local_irq_restore(flags); #else /* CONFIG_SMP */ __mask_and_set_icr(irq, GxICR_LEVEL, GxICR_DETECT); #endif /* CONFIG_SMP */ } static void mn10300_cpupic_unmask(struct irq_data *d) { __mask_and_set_icr(d->irq, GxICR_LEVEL, GxICR_ENABLE); } static void mn10300_cpupic_unmask_clear(struct irq_data *d) { unsigned int irq = d->irq; /* the MN10300 PIC latches its interrupt request bit, even after the * device has ceased to assert its interrupt line and the interrupt * channel has been disabled in the PIC, so for level-triggered * interrupts we need to clear the request bit when we re-enable */ #ifdef CONFIG_SMP unsigned long flags; u16 tmp; flags = arch_local_cli_save(); if (!test_and_clear_bit(irq, irq_affinity_request)) { tmp = GxICR(irq); GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_ENABLE | GxICR_DETECT; tmp = GxICR(irq); } else { tmp = GxICR(irq); irq_affinity_online[irq] = any_online_cpu(*d->affinity); CROSS_GxICR(irq, irq_affinity_online[irq]) = (tmp & GxICR_LEVEL) | GxICR_ENABLE | GxICR_DETECT; tmp = CROSS_GxICR(irq, irq_affinity_online[irq]); } arch_local_irq_restore(flags); #else /* CONFIG_SMP */ __mask_and_set_icr(irq, GxICR_LEVEL, GxICR_ENABLE | GxICR_DETECT); #endif /* CONFIG_SMP */ } #ifdef CONFIG_SMP static int mn10300_cpupic_setaffinity(struct irq_data *d, const struct cpumask *mask, bool force) { unsigned long flags; int err; flags = arch_local_cli_save(); /* check irq no */ switch (d->irq) { case TMJCIRQ: case RESCHEDULE_IPI: case CALL_FUNC_SINGLE_IPI: case LOCAL_TIMER_IPI: case FLUSH_CACHE_IPI: case CALL_FUNCTION_NMI_IPI: case DEBUGGER_NMI_IPI: #ifdef CONFIG_MN10300_TTYSM0 case SC0RXIRQ: case SC0TXIRQ: #ifdef CONFIG_MN10300_TTYSM0_TIMER8 case TM8IRQ: #elif CONFIG_MN10300_TTYSM0_TIMER2 case TM2IRQ: #endif /* CONFIG_MN10300_TTYSM0_TIMER8 */ #endif /* CONFIG_MN10300_TTYSM0 */ #ifdef CONFIG_MN10300_TTYSM1 case SC1RXIRQ: case SC1TXIRQ: #ifdef CONFIG_MN10300_TTYSM1_TIMER12 case TM12IRQ: #elif CONFIG_MN10300_TTYSM1_TIMER9 case TM9IRQ: #elif CONFIG_MN10300_TTYSM1_TIMER3 case TM3IRQ: #endif /* CONFIG_MN10300_TTYSM1_TIMER12 */ #endif /* CONFIG_MN10300_TTYSM1 */ #ifdef CONFIG_MN10300_TTYSM2 case SC2RXIRQ: case SC2TXIRQ: case TM10IRQ: #endif /* CONFIG_MN10300_TTYSM2 */ err = -1; break; default: set_bit(d->irq, irq_affinity_request); err = 0; break; } arch_local_irq_restore(flags); return err; } #endif /* CONFIG_SMP */ /* * MN10300 PIC level-triggered IRQ handling. * * The PIC has no 'ACK' function per se. It is possible to clear individual * channel latches, but each latch relatches whether or not the channel is * masked, so we need to clear the latch when we unmask the channel. * * Also for this reason, we don't supply an ack() op (it's unused anyway if * mask_ack() is provided), and mask_ack() just masks. */ static struct irq_chip mn10300_cpu_pic_level = { .name = "cpu_l", .irq_disable = mn10300_cpupic_mask, .irq_enable = mn10300_cpupic_unmask_clear, .irq_ack = NULL, .irq_mask = mn10300_cpupic_mask, .irq_mask_ack = mn10300_cpupic_mask, .irq_unmask = mn10300_cpupic_unmask_clear, #ifdef CONFIG_SMP .irq_set_affinity = mn10300_cpupic_setaffinity, #endif }; /* * MN10300 PIC edge-triggered IRQ handling. * * We use the latch clearing function of the PIC as the 'ACK' function. */ static struct irq_chip mn10300_cpu_pic_edge = { .name = "cpu_e", .irq_disable = mn10300_cpupic_mask, .irq_enable = mn10300_cpupic_unmask, .irq_ack = mn10300_cpupic_ack, .irq_mask = mn10300_cpupic_mask, .irq_mask_ack = mn10300_cpupic_mask_ack, .irq_unmask = mn10300_cpupic_unmask, #ifdef CONFIG_SMP .irq_set_affinity = mn10300_cpupic_setaffinity, #endif }; /* * 'what should we do if we get a hw irq event on an illegal vector'. * each architecture has to answer this themselves. */ void ack_bad_irq(int irq) { printk(KERN_WARNING "unexpected IRQ trap at vector %02x\n", irq); } /* * change the level at which an IRQ executes * - must not be called whilst interrupts are being processed! */ void set_intr_level(int irq, u16 level) { BUG_ON(in_interrupt()); __mask_and_set_icr(irq, GxICR_ENABLE, level); } /* * mark an interrupt to be ACK'd after interrupt handlers have been run rather * than before * - see Documentation/mn10300/features.txt */ void mn10300_set_lateack_irq_type(int irq) { irq_set_chip_and_handler(irq, &mn10300_cpu_pic_level, handle_level_irq); } /* * initialise the interrupt system */ void __init init_IRQ(void) { int irq; for (irq = 0; irq < NR_IRQS; irq++) if (irq_get_chip(irq) == &no_irq_chip) /* due to the PIC latching interrupt requests, even * when the IRQ is disabled, IRQ_PENDING is superfluous * and we can use handle_level_irq() for edge-triggered * interrupts */ irq_set_chip_and_handler(irq, &mn10300_cpu_pic_edge, handle_level_irq); unit_init_IRQ(); } /* * handle normal device IRQs */ asmlinkage void do_IRQ(void) { unsigned long sp, epsw, irq_disabled_epsw, old_irq_enabled_epsw; unsigned int cpu_id = smp_processor_id(); int irq; sp = current_stack_pointer(); BUG_ON(sp - (sp & ~(THREAD_SIZE - 1)) < STACK_WARN); /* make sure local_irq_enable() doesn't muck up the interrupt priority * setting in EPSW */ old_irq_enabled_epsw = __mn10300_irq_enabled_epsw[cpu_id]; local_save_flags(epsw); __mn10300_irq_enabled_epsw[cpu_id] = EPSW_IE | (EPSW_IM & epsw); irq_disabled_epsw = EPSW_IE | MN10300_CLI_LEVEL; #ifdef CONFIG_MN10300_WD_TIMER __IRQ_STAT(cpu_id, __irq_count)++; #endif irq_enter(); for (;;) { /* ask the interrupt controller for the next IRQ to process * - the result we get depends on EPSW.IM */ irq = IAGR & IAGR_GN; if (!irq) break; local_irq_restore(irq_disabled_epsw); generic_handle_irq(irq >> 2); /* restore IRQ controls for IAGR access */ local_irq_restore(epsw); } __mn10300_irq_enabled_epsw[cpu_id] = old_irq_enabled_epsw; irq_exit(); } /* * Display interrupt management information through /proc/interrupts */ int show_interrupts(struct seq_file *p, void *v) { int i = *(loff_t *) v, j, cpu; struct irqaction *action; unsigned long flags; switch (i) { /* display column title bar naming CPUs */ case 0: seq_printf(p, " "); for (j = 0; j < NR_CPUS; j++) if (cpu_online(j)) seq_printf(p, "CPU%d ", j); seq_putc(p, '\n'); break; /* display information rows, one per active CPU */ case 1 ... NR_IRQS - 1: raw_spin_lock_irqsave(&irq_desc[i].lock, flags); action = irq_desc[i].action; if (action) { seq_printf(p, "%3d: ", i); for_each_present_cpu(cpu) seq_printf(p, "%10u ", kstat_irqs_cpu(i, cpu)); if (i < NR_CPU_IRQS) seq_printf(p, " %14s.%u", irq_desc[i].irq_data.chip->name, (GxICR(i) & GxICR_LEVEL) >> GxICR_LEVEL_SHIFT); else seq_printf(p, " %14s", irq_desc[i].irq_data.chip->name); seq_printf(p, " %s", action->name); for (action = action->next; action; action = action->next) seq_printf(p, ", %s", action->name); seq_putc(p, '\n'); } raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags); break; /* polish off with NMI and error counters */ case NR_IRQS: #ifdef CONFIG_MN10300_WD_TIMER seq_printf(p, "NMI: "); for (j = 0; j < NR_CPUS; j++) if (cpu_online(j)) seq_printf(p, "%10u ", nmi_count(j)); seq_putc(p, '\n'); #endif seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count)); break; } return 0; } #ifdef CONFIG_HOTPLUG_CPU void migrate_irqs(void) { int irq; unsigned int self, new; unsigned long flags; self = smp_processor_id(); for (irq = 0; irq < NR_IRQS; irq++) { struct irq_data *data = irq_get_irq_data(irq); if (irqd_is_per_cpu(data)) continue; if (cpu_isset(self, data->affinity) && !cpus_intersects(irq_affinity[irq], cpu_online_map)) { int cpu_id; cpu_id = first_cpu(cpu_online_map); cpu_set(cpu_id, data->affinity); } /* We need to operate irq_affinity_online atomically. */ arch_local_cli_save(flags); if (irq_affinity_online[irq] == self) { u16 x, tmp; x = GxICR(irq); GxICR(irq) = x & GxICR_LEVEL; tmp = GxICR(irq); new = any_online_cpu(data->affinity); irq_affinity_online[irq] = new; CROSS_GxICR(irq, new) = (x & GxICR_LEVEL) | GxICR_DETECT; tmp = CROSS_GxICR(irq, new); x &= GxICR_LEVEL | GxICR_ENABLE; if (GxICR(irq) & GxICR_REQUEST) x |= GxICR_REQUEST | GxICR_DETECT; CROSS_GxICR(irq, new) = x; tmp = CROSS_GxICR(irq, new); } arch_local_irq_restore(flags); } } #endif /* CONFIG_HOTPLUG_CPU */