/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include /* Bit-flag stored in irq_desc->chip_data to indicate HW-cleared irqs. */ #define IS_HW_CLEARED 1 /* * The set of interrupts we enable for arch_local_irq_enable(). * This is initialized to have just a single interrupt that the kernel * doesn't actually use as a sentinel. During kernel init, * interrupts are added as the kernel gets prepared to support them. * NOTE: we could probably initialize them all statically up front. */ DEFINE_PER_CPU(unsigned long long, interrupts_enabled_mask) = INITIAL_INTERRUPTS_ENABLED; EXPORT_PER_CPU_SYMBOL(interrupts_enabled_mask); /* Define per-tile device interrupt statistics state. */ DEFINE_PER_CPU(irq_cpustat_t, irq_stat) ____cacheline_internodealigned_in_smp; EXPORT_PER_CPU_SYMBOL(irq_stat); /* * Define per-tile irq disable mask; the hardware/HV only has a single * mask that we use to implement both masking and disabling. */ static DEFINE_PER_CPU(unsigned long, irq_disable_mask) ____cacheline_internodealigned_in_smp; /* * Per-tile IRQ nesting depth. Used to make sure we enable newly * enabled IRQs before exiting the outermost interrupt. */ static DEFINE_PER_CPU(int, irq_depth); /* State for allocating IRQs on Gx. */ #if CHIP_HAS_IPI() static unsigned long available_irqs = ~(1UL << IRQ_RESCHEDULE); static DEFINE_SPINLOCK(available_irqs_lock); #endif #if CHIP_HAS_IPI() /* Use SPRs to manipulate device interrupts. */ #define mask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_SET_K, irq_mask) #define unmask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_RESET_K, irq_mask) #define clear_irqs(irq_mask) __insn_mtspr(SPR_IPI_EVENT_RESET_K, irq_mask) #else /* Use HV to manipulate device interrupts. */ #define mask_irqs(irq_mask) hv_disable_intr(irq_mask) #define unmask_irqs(irq_mask) hv_enable_intr(irq_mask) #define clear_irqs(irq_mask) hv_clear_intr(irq_mask) #endif /* * The interrupt handling path, implemented in terms of HV interrupt * emulation on TILE64 and TILEPro, and IPI hardware on TILE-Gx. * Entered with interrupts disabled. */ void tile_dev_intr(struct pt_regs *regs, int intnum) { int depth = __get_cpu_var(irq_depth)++; unsigned long original_irqs; unsigned long remaining_irqs; struct pt_regs *old_regs; #if CHIP_HAS_IPI() /* * Pending interrupts are listed in an SPR. We might be * nested, so be sure to only handle irqs that weren't already * masked by a previous interrupt. Then, mask out the ones * we're going to handle. */ unsigned long masked = __insn_mfspr(SPR_IPI_MASK_K); original_irqs = __insn_mfspr(SPR_IPI_EVENT_K) & ~masked; __insn_mtspr(SPR_IPI_MASK_SET_K, original_irqs); #else /* * Hypervisor performs the equivalent of the Gx code above and * then puts the pending interrupt mask into a system save reg * for us to find. */ original_irqs = __insn_mfspr(SPR_SYSTEM_SAVE_K_3); #endif remaining_irqs = original_irqs; /* Track time spent here in an interrupt context. */ old_regs = set_irq_regs(regs); irq_enter(); #ifdef CONFIG_DEBUG_STACKOVERFLOW /* Debugging check for stack overflow: less than 1/8th stack free? */ { long sp = stack_pointer - (long) current_thread_info(); if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) { pr_emerg("tile_dev_intr: " "stack overflow: %ld\n", sp - sizeof(struct thread_info)); dump_stack(); } } #endif while (remaining_irqs) { unsigned long irq = __ffs(remaining_irqs); remaining_irqs &= ~(1UL << irq); /* Count device irqs; Linux IPIs are counted elsewhere. */ if (irq != IRQ_RESCHEDULE) __get_cpu_var(irq_stat).irq_dev_intr_count++; generic_handle_irq(irq); } /* * If we weren't nested, turn on all enabled interrupts, * including any that were reenabled during interrupt * handling. */ if (depth == 0) unmask_irqs(~__get_cpu_var(irq_disable_mask)); __get_cpu_var(irq_depth)--; /* * Track time spent against the current process again and * process any softirqs if they are waiting. */ irq_exit(); set_irq_regs(old_regs); } /* * Remove an irq from the disabled mask. If we're in an interrupt * context, defer enabling the HW interrupt until we leave. */ static void tile_irq_chip_enable(struct irq_data *d) { get_cpu_var(irq_disable_mask) &= ~(1UL << d->irq); if (__get_cpu_var(irq_depth) == 0) unmask_irqs(1UL << d->irq); put_cpu_var(irq_disable_mask); } /* * Add an irq to the disabled mask. We disable the HW interrupt * immediately so that there's no possibility of it firing. If we're * in an interrupt context, the return path is careful to avoid * unmasking a newly disabled interrupt. */ static void tile_irq_chip_disable(struct irq_data *d) { get_cpu_var(irq_disable_mask) |= (1UL << d->irq); mask_irqs(1UL << d->irq); put_cpu_var(irq_disable_mask); } /* Mask an interrupt. */ static void tile_irq_chip_mask(struct irq_data *d) { mask_irqs(1UL << d->irq); } /* Unmask an interrupt. */ static void tile_irq_chip_unmask(struct irq_data *d) { unmask_irqs(1UL << d->irq); } /* * Clear an interrupt before processing it so that any new assertions * will trigger another irq. */ static void tile_irq_chip_ack(struct irq_data *d) { if ((unsigned long)irq_data_get_irq_chip_data(d) != IS_HW_CLEARED) clear_irqs(1UL << d->irq); } /* * For per-cpu interrupts, we need to avoid unmasking any interrupts * that we disabled via disable_percpu_irq(). */ static void tile_irq_chip_eoi(struct irq_data *d) { if (!(__get_cpu_var(irq_disable_mask) & (1UL << d->irq))) unmask_irqs(1UL << d->irq); } static struct irq_chip tile_irq_chip = { .name = "tile_irq_chip", .irq_enable = tile_irq_chip_enable, .irq_disable = tile_irq_chip_disable, .irq_ack = tile_irq_chip_ack, .irq_eoi = tile_irq_chip_eoi, .irq_mask = tile_irq_chip_mask, .irq_unmask = tile_irq_chip_unmask, }; void __init init_IRQ(void) { ipi_init(); } void __cpuinit setup_irq_regs(void) { /* Enable interrupt delivery. */ unmask_irqs(~0UL); #if CHIP_HAS_IPI() arch_local_irq_unmask(INT_IPI_K); #endif } void tile_irq_activate(unsigned int irq, int tile_irq_type) { /* * We use handle_level_irq() by default because the pending * interrupt vector (whether modeled by the HV on TILE64 and * TILEPro or implemented in hardware on TILE-Gx) has * level-style semantics for each bit. An interrupt fires * whenever a bit is high, not just at edges. */ irq_flow_handler_t handle = handle_level_irq; if (tile_irq_type == TILE_IRQ_PERCPU) handle = handle_percpu_irq; irq_set_chip_and_handler(irq, &tile_irq_chip, handle); /* * Flag interrupts that are hardware-cleared so that ack() * won't clear them. */ if (tile_irq_type == TILE_IRQ_HW_CLEAR) irq_set_chip_data(irq, (void *)IS_HW_CLEARED); } EXPORT_SYMBOL(tile_irq_activate); void ack_bad_irq(unsigned int irq) { pr_err("unexpected IRQ trap at vector %02x\n", irq); } /* * Generic, controller-independent functions: */ #if CHIP_HAS_IPI() int create_irq(void) { unsigned long flags; int result; spin_lock_irqsave(&available_irqs_lock, flags); if (available_irqs == 0) result = -ENOMEM; else { result = __ffs(available_irqs); available_irqs &= ~(1UL << result); dynamic_irq_init(result); } spin_unlock_irqrestore(&available_irqs_lock, flags); return result; } EXPORT_SYMBOL(create_irq); void destroy_irq(unsigned int irq) { unsigned long flags; spin_lock_irqsave(&available_irqs_lock, flags); available_irqs |= (1UL << irq); dynamic_irq_cleanup(irq); spin_unlock_irqrestore(&available_irqs_lock, flags); } EXPORT_SYMBOL(destroy_irq); #endif