/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. * * Support the cycle counter clocksource and tile timer clock event device. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Define the cycle counter clock source. */ /* How many cycles per second we are running at. */ static cycles_t cycles_per_sec __write_once; cycles_t get_clock_rate(void) { return cycles_per_sec; } #if CHIP_HAS_SPLIT_CYCLE() cycles_t get_cycles(void) { unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH); unsigned int low = __insn_mfspr(SPR_CYCLE_LOW); unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH); while (unlikely(high != high2)) { low = __insn_mfspr(SPR_CYCLE_LOW); high = high2; high2 = __insn_mfspr(SPR_CYCLE_HIGH); } return (((cycles_t)high) << 32) | low; } EXPORT_SYMBOL(get_cycles); #endif /* * We use a relatively small shift value so that sched_clock() * won't wrap around very often. */ #define SCHED_CLOCK_SHIFT 10 static unsigned long sched_clock_mult __write_once; static cycles_t clocksource_get_cycles(struct clocksource *cs) { return get_cycles(); } static struct clocksource cycle_counter_cs = { .name = "cycle counter", .rating = 300, .read = clocksource_get_cycles, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; /* * Called very early from setup_arch() to set cycles_per_sec. * We initialize it early so we can use it to set up loops_per_jiffy. */ void __init setup_clock(void) { cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED); sched_clock_mult = clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT); } void __init calibrate_delay(void) { loops_per_jiffy = get_clock_rate() / HZ; pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n", loops_per_jiffy/(500000/HZ), (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy); } /* Called fairly late in init/main.c, but before we go smp. */ void __init time_init(void) { /* Initialize and register the clock source. */ clocksource_register_hz(&cycle_counter_cs, cycles_per_sec); /* Start up the tile-timer interrupt source on the boot cpu. */ setup_tile_timer(); } /* * Define the tile timer clock event device. The timer is driven by * the TILE_TIMER_CONTROL register, which consists of a 31-bit down * counter, plus bit 31, which signifies that the counter has wrapped * from zero to (2**31) - 1. The INT_TILE_TIMER interrupt will be * raised as long as bit 31 is set. * * The TILE_MINSEC value represents the largest range of real-time * we can possibly cover with the timer, based on MAX_TICK combined * with the slowest reasonable clock rate we might run at. */ #define MAX_TICK 0x7fffffff /* we have 31 bits of countdown timer */ #define TILE_MINSEC 5 /* timer covers no more than 5 seconds */ static int tile_timer_set_next_event(unsigned long ticks, struct clock_event_device *evt) { BUG_ON(ticks > MAX_TICK); __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks); arch_local_irq_unmask_now(INT_TILE_TIMER); return 0; } /* * Whenever anyone tries to change modes, we just mask interrupts * and wait for the next event to get set. */ static void tile_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { arch_local_irq_mask_now(INT_TILE_TIMER); } /* * Set min_delta_ns to 1 microsecond, since it takes about * that long to fire the interrupt. */ static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = { .name = "tile timer", .features = CLOCK_EVT_FEAT_ONESHOT, .min_delta_ns = 1000, .rating = 100, .irq = -1, .set_next_event = tile_timer_set_next_event, .set_mode = tile_timer_set_mode, }; void setup_tile_timer(void) { struct clock_event_device *evt = &__get_cpu_var(tile_timer); /* Fill in fields that are speed-specific. */ clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC); evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt); /* Mark as being for this cpu only. */ evt->cpumask = cpumask_of(smp_processor_id()); /* Start out with timer not firing. */ arch_local_irq_mask_now(INT_TILE_TIMER); /* Register tile timer. */ clockevents_register_device(evt); } /* Called from the interrupt vector. */ void do_timer_interrupt(struct pt_regs *regs, int fault_num) { struct pt_regs *old_regs = set_irq_regs(regs); struct clock_event_device *evt = &__get_cpu_var(tile_timer); /* * Mask the timer interrupt here, since we are a oneshot timer * and there are now by definition no events pending. */ arch_local_irq_mask(INT_TILE_TIMER); /* Track time spent here in an interrupt context */ irq_enter(); /* Track interrupt count. */ __get_cpu_var(irq_stat).irq_timer_count++; /* Call the generic timer handler */ evt->event_handler(evt); /* * Track time spent against the current process again and * process any softirqs if they are waiting. */ irq_exit(); set_irq_regs(old_regs); } /* * Scheduler clock - returns current time in nanosec units. * Note that with LOCKDEP, this is called during lockdep_init(), and * we will claim that sched_clock() is zero for a little while, until * we run setup_clock(), above. */ unsigned long long sched_clock(void) { return clocksource_cyc2ns(get_cycles(), sched_clock_mult, SCHED_CLOCK_SHIFT); } int setup_profiling_timer(unsigned int multiplier) { return -EINVAL; } /* * Use the tile timer to convert nsecs to core clock cycles, relying * on it having the same frequency as SPR_CYCLE. */ cycles_t ns2cycles(unsigned long nsecs) { /* * We do not have to disable preemption here as each core has the same * clock frequency. */ struct clock_event_device *dev = &__raw_get_cpu_var(tile_timer); /* * as in clocksource.h and x86's timer.h, we split the calculation * into 2 parts to avoid unecessary overflow of the intermediate * value. This will not lead to any loss of precision. */ u64 quot = (u64)nsecs >> dev->shift; u64 rem = (u64)nsecs & ((1ULL << dev->shift) - 1); return quot * dev->mult + ((rem * dev->mult) >> dev->shift); } void update_vsyscall_tz(void) { write_seqcount_begin(&vdso_data->tz_seq); vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; vdso_data->tz_dsttime = sys_tz.tz_dsttime; write_seqcount_end(&vdso_data->tz_seq); } void update_vsyscall(struct timekeeper *tk) { if (tk->tkr.clock != &cycle_counter_cs) return; write_seqcount_begin(&vdso_data->tb_seq); vdso_data->cycle_last = tk->tkr.cycle_last; vdso_data->mask = tk->tkr.mask; vdso_data->mult = tk->tkr.mult; vdso_data->shift = tk->tkr.shift; vdso_data->wall_time_sec = tk->xtime_sec; vdso_data->wall_time_snsec = tk->tkr.xtime_nsec; vdso_data->monotonic_time_sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; vdso_data->monotonic_time_snsec = tk->tkr.xtime_nsec + ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr.shift); while (vdso_data->monotonic_time_snsec >= (((u64)NSEC_PER_SEC) << tk->tkr.shift)) { vdso_data->monotonic_time_snsec -= ((u64)NSEC_PER_SEC) << tk->tkr.shift; vdso_data->monotonic_time_sec++; } vdso_data->wall_time_coarse_sec = tk->xtime_sec; vdso_data->wall_time_coarse_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift); vdso_data->monotonic_time_coarse_sec = vdso_data->wall_time_coarse_sec + tk->wall_to_monotonic.tv_sec; vdso_data->monotonic_time_coarse_nsec = vdso_data->wall_time_coarse_nsec + tk->wall_to_monotonic.tv_nsec; while (vdso_data->monotonic_time_coarse_nsec >= NSEC_PER_SEC) { vdso_data->monotonic_time_coarse_nsec -= NSEC_PER_SEC; vdso_data->monotonic_time_coarse_sec++; } write_seqcount_end(&vdso_data->tb_seq); }