/* * Support for Intel AES-NI instructions. This file contains glue * code, the real AES implementation is in intel-aes_asm.S. * * Copyright (C) 2008, Intel Corp. * Author: Huang Ying * * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD * interface for 64-bit kernels. * Authors: Adrian Hoban * Gabriele Paoloni * Tadeusz Struk (tadeusz.struk@intel.com) * Aidan O'Mahony (aidan.o.mahony@intel.com) * Copyright (c) 2010, Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86_64 #include #endif /* This data is stored at the end of the crypto_tfm struct. * It's a type of per "session" data storage location. * This needs to be 16 byte aligned. */ struct aesni_rfc4106_gcm_ctx { u8 hash_subkey[16]; struct crypto_aes_ctx aes_key_expanded; u8 nonce[4]; struct cryptd_aead *cryptd_tfm; }; struct aesni_gcm_set_hash_subkey_result { int err; struct completion completion; }; struct aesni_hash_subkey_req_data { u8 iv[16]; struct aesni_gcm_set_hash_subkey_result result; struct scatterlist sg; }; #define AESNI_ALIGN (16) #define AES_BLOCK_MASK (~(AES_BLOCK_SIZE-1)) #define RFC4106_HASH_SUBKEY_SIZE 16 struct aesni_lrw_ctx { struct lrw_table_ctx lrw_table; u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1]; }; struct aesni_xts_ctx { u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1]; u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1]; }; asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key, unsigned int key_len); asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in); asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in); asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len); asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len); asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv); asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv); int crypto_fpu_init(void); void crypto_fpu_exit(void); #define AVX_GEN2_OPTSIZE 640 #define AVX_GEN4_OPTSIZE 4096 #ifdef CONFIG_X86_64 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv); asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv); asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, bool enc, u8 *iv); /* asmlinkage void aesni_gcm_enc() * void *ctx, AES Key schedule. Starts on a 16 byte boundary. * u8 *out, Ciphertext output. Encrypt in-place is allowed. * const u8 *in, Plaintext input * unsigned long plaintext_len, Length of data in bytes for encryption. * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association) * concatenated with 8 byte Initialisation Vector (from IPSec ESP * Payload) concatenated with 0x00000001. 16-byte aligned pointer. * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. * const u8 *aad, Additional Authentication Data (AAD) * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this * is going to be 8 or 12 bytes * u8 *auth_tag, Authenticated Tag output. * unsigned long auth_tag_len), Authenticated Tag Length in bytes. * Valid values are 16 (most likely), 12 or 8. */ asmlinkage void aesni_gcm_enc(void *ctx, u8 *out, const u8 *in, unsigned long plaintext_len, u8 *iv, u8 *hash_subkey, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); /* asmlinkage void aesni_gcm_dec() * void *ctx, AES Key schedule. Starts on a 16 byte boundary. * u8 *out, Plaintext output. Decrypt in-place is allowed. * const u8 *in, Ciphertext input * unsigned long ciphertext_len, Length of data in bytes for decryption. * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association) * concatenated with 8 byte Initialisation Vector (from IPSec ESP * Payload) concatenated with 0x00000001. 16-byte aligned pointer. * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. * const u8 *aad, Additional Authentication Data (AAD) * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going * to be 8 or 12 bytes * u8 *auth_tag, Authenticated Tag output. * unsigned long auth_tag_len) Authenticated Tag Length in bytes. * Valid values are 16 (most likely), 12 or 8. */ asmlinkage void aesni_gcm_dec(void *ctx, u8 *out, const u8 *in, unsigned long ciphertext_len, u8 *iv, u8 *hash_subkey, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); #ifdef CONFIG_AS_AVX asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv, void *keys, u8 *out, unsigned int num_bytes); asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv, void *keys, u8 *out, unsigned int num_bytes); asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv, void *keys, u8 *out, unsigned int num_bytes); /* * asmlinkage void aesni_gcm_precomp_avx_gen2() * gcm_data *my_ctx_data, context data * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. */ asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey); asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out, const u8 *in, unsigned long plaintext_len, u8 *iv, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out, const u8 *in, unsigned long ciphertext_len, u8 *iv, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); static void aesni_gcm_enc_avx(void *ctx, u8 *out, const u8 *in, unsigned long plaintext_len, u8 *iv, u8 *hash_subkey, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len) { if (plaintext_len < AVX_GEN2_OPTSIZE) { aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad, aad_len, auth_tag, auth_tag_len); } else { aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad, aad_len, auth_tag, auth_tag_len); } } static void aesni_gcm_dec_avx(void *ctx, u8 *out, const u8 *in, unsigned long ciphertext_len, u8 *iv, u8 *hash_subkey, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len) { if (ciphertext_len < AVX_GEN2_OPTSIZE) { aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad, aad_len, auth_tag, auth_tag_len); } else { aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad, aad_len, auth_tag, auth_tag_len); } } #endif #ifdef CONFIG_AS_AVX2 /* * asmlinkage void aesni_gcm_precomp_avx_gen4() * gcm_data *my_ctx_data, context data * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. */ asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey); asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out, const u8 *in, unsigned long plaintext_len, u8 *iv, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out, const u8 *in, unsigned long ciphertext_len, u8 *iv, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); static void aesni_gcm_enc_avx2(void *ctx, u8 *out, const u8 *in, unsigned long plaintext_len, u8 *iv, u8 *hash_subkey, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len) { if (plaintext_len < AVX_GEN2_OPTSIZE) { aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad, aad_len, auth_tag, auth_tag_len); } else if (plaintext_len < AVX_GEN4_OPTSIZE) { aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad, aad_len, auth_tag, auth_tag_len); } else { aesni_gcm_precomp_avx_gen4(ctx, hash_subkey); aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad, aad_len, auth_tag, auth_tag_len); } } static void aesni_gcm_dec_avx2(void *ctx, u8 *out, const u8 *in, unsigned long ciphertext_len, u8 *iv, u8 *hash_subkey, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len) { if (ciphertext_len < AVX_GEN2_OPTSIZE) { aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad, aad_len, auth_tag, auth_tag_len); } else if (ciphertext_len < AVX_GEN4_OPTSIZE) { aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad, aad_len, auth_tag, auth_tag_len); } else { aesni_gcm_precomp_avx_gen4(ctx, hash_subkey); aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad, aad_len, auth_tag, auth_tag_len); } } #endif static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out, const u8 *in, unsigned long plaintext_len, u8 *iv, u8 *hash_subkey, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out, const u8 *in, unsigned long ciphertext_len, u8 *iv, u8 *hash_subkey, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); static inline struct aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm) { return (struct aesni_rfc4106_gcm_ctx *) PTR_ALIGN((u8 *) crypto_tfm_ctx(crypto_aead_tfm(tfm)), AESNI_ALIGN); } #endif static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx) { unsigned long addr = (unsigned long)raw_ctx; unsigned long align = AESNI_ALIGN; if (align <= crypto_tfm_ctx_alignment()) align = 1; return (struct crypto_aes_ctx *)ALIGN(addr, align); } static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx, const u8 *in_key, unsigned int key_len) { struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx); u32 *flags = &tfm->crt_flags; int err; if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 && key_len != AES_KEYSIZE_256) { *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } if (!irq_fpu_usable()) err = crypto_aes_expand_key(ctx, in_key, key_len); else { kernel_fpu_begin(); err = aesni_set_key(ctx, in_key, key_len); kernel_fpu_end(); } return err; } static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len); } static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); if (!irq_fpu_usable()) crypto_aes_encrypt_x86(ctx, dst, src); else { kernel_fpu_begin(); aesni_enc(ctx, dst, src); kernel_fpu_end(); } } static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); if (!irq_fpu_usable()) crypto_aes_decrypt_x86(ctx, dst, src); else { kernel_fpu_begin(); aesni_dec(ctx, dst, src); kernel_fpu_end(); } } static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); aesni_enc(ctx, dst, src); } static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); aesni_dec(ctx, dst, src); } static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm)); struct blkcipher_walk walk; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; kernel_fpu_begin(); while ((nbytes = walk.nbytes)) { aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK); nbytes &= AES_BLOCK_SIZE - 1; err = blkcipher_walk_done(desc, &walk, nbytes); } kernel_fpu_end(); return err; } static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm)); struct blkcipher_walk walk; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; kernel_fpu_begin(); while ((nbytes = walk.nbytes)) { aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK); nbytes &= AES_BLOCK_SIZE - 1; err = blkcipher_walk_done(desc, &walk, nbytes); } kernel_fpu_end(); return err; } static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm)); struct blkcipher_walk walk; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; kernel_fpu_begin(); while ((nbytes = walk.nbytes)) { aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK, walk.iv); nbytes &= AES_BLOCK_SIZE - 1; err = blkcipher_walk_done(desc, &walk, nbytes); } kernel_fpu_end(); return err; } static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm)); struct blkcipher_walk walk; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; kernel_fpu_begin(); while ((nbytes = walk.nbytes)) { aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK, walk.iv); nbytes &= AES_BLOCK_SIZE - 1; err = blkcipher_walk_done(desc, &walk, nbytes); } kernel_fpu_end(); return err; } #ifdef CONFIG_X86_64 static void ctr_crypt_final(struct crypto_aes_ctx *ctx, struct blkcipher_walk *walk) { u8 *ctrblk = walk->iv; u8 keystream[AES_BLOCK_SIZE]; u8 *src = walk->src.virt.addr; u8 *dst = walk->dst.virt.addr; unsigned int nbytes = walk->nbytes; aesni_enc(ctx, keystream, ctrblk); crypto_xor(keystream, src, nbytes); memcpy(dst, keystream, nbytes); crypto_inc(ctrblk, AES_BLOCK_SIZE); } #ifdef CONFIG_AS_AVX static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv) { /* * based on key length, override with the by8 version * of ctr mode encryption/decryption for improved performance * aes_set_key_common() ensures that key length is one of * {128,192,256} */ if (ctx->key_length == AES_KEYSIZE_128) aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len); else if (ctx->key_length == AES_KEYSIZE_192) aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len); else aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len); } #endif static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm)); struct blkcipher_walk walk; int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE); desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; kernel_fpu_begin(); while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK, walk.iv); nbytes &= AES_BLOCK_SIZE - 1; err = blkcipher_walk_done(desc, &walk, nbytes); } if (walk.nbytes) { ctr_crypt_final(ctx, &walk); err = blkcipher_walk_done(desc, &walk, 0); } kernel_fpu_end(); return err; } #endif static int ablk_ecb_init(struct crypto_tfm *tfm) { return ablk_init_common(tfm, "__driver-ecb-aes-aesni"); } static int ablk_cbc_init(struct crypto_tfm *tfm) { return ablk_init_common(tfm, "__driver-cbc-aes-aesni"); } #ifdef CONFIG_X86_64 static int ablk_ctr_init(struct crypto_tfm *tfm) { return ablk_init_common(tfm, "__driver-ctr-aes-aesni"); } #endif #if IS_ENABLED(CONFIG_CRYPTO_PCBC) static int ablk_pcbc_init(struct crypto_tfm *tfm) { return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))"); } #endif static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes) { aesni_ecb_enc(ctx, blks, blks, nbytes); } static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes) { aesni_ecb_dec(ctx, blks, blks, nbytes); } static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm); int err; err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key, keylen - AES_BLOCK_SIZE); if (err) return err; return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE); } static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm) { struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm); lrw_free_table(&ctx->lrw_table); } static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[8]; struct lrw_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .table_ctx = &ctx->lrw_table, .crypt_ctx = aes_ctx(ctx->raw_aes_ctx), .crypt_fn = lrw_xts_encrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; kernel_fpu_begin(); ret = lrw_crypt(desc, dst, src, nbytes, &req); kernel_fpu_end(); return ret; } static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[8]; struct lrw_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .table_ctx = &ctx->lrw_table, .crypt_ctx = aes_ctx(ctx->raw_aes_ctx), .crypt_fn = lrw_xts_decrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; kernel_fpu_begin(); ret = lrw_crypt(desc, dst, src, nbytes, &req); kernel_fpu_end(); return ret; } static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm); u32 *flags = &tfm->crt_flags; int err; /* key consists of keys of equal size concatenated, therefore * the length must be even */ if (keylen % 2) { *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } /* first half of xts-key is for crypt */ err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2); if (err) return err; /* second half of xts-key is for tweak */ return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2, keylen / 2); } static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in) { aesni_enc(ctx, out, in); } #ifdef CONFIG_X86_64 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv) { glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc)); } static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv) { glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec)); } static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv) { aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv); } static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv) { aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv); } static const struct common_glue_ctx aesni_enc_xts = { .num_funcs = 2, .fpu_blocks_limit = 1, .funcs = { { .num_blocks = 8, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) } }, { .num_blocks = 1, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) } } } }; static const struct common_glue_ctx aesni_dec_xts = { .num_funcs = 2, .fpu_blocks_limit = 1, .funcs = { { .num_blocks = 8, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) } }, { .num_blocks = 1, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) } } } }; static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); return glue_xts_crypt_128bit(&aesni_enc_xts, desc, dst, src, nbytes, XTS_TWEAK_CAST(aesni_xts_tweak), aes_ctx(ctx->raw_tweak_ctx), aes_ctx(ctx->raw_crypt_ctx)); } static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); return glue_xts_crypt_128bit(&aesni_dec_xts, desc, dst, src, nbytes, XTS_TWEAK_CAST(aesni_xts_tweak), aes_ctx(ctx->raw_tweak_ctx), aes_ctx(ctx->raw_crypt_ctx)); } #else static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[8]; struct xts_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .tweak_ctx = aes_ctx(ctx->raw_tweak_ctx), .tweak_fn = aesni_xts_tweak, .crypt_ctx = aes_ctx(ctx->raw_crypt_ctx), .crypt_fn = lrw_xts_encrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; kernel_fpu_begin(); ret = xts_crypt(desc, dst, src, nbytes, &req); kernel_fpu_end(); return ret; } static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[8]; struct xts_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .tweak_ctx = aes_ctx(ctx->raw_tweak_ctx), .tweak_fn = aesni_xts_tweak, .crypt_ctx = aes_ctx(ctx->raw_crypt_ctx), .crypt_fn = lrw_xts_decrypt_callback, }; int ret; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; kernel_fpu_begin(); ret = xts_crypt(desc, dst, src, nbytes, &req); kernel_fpu_end(); return ret; } #endif #ifdef CONFIG_X86_64 static int rfc4106_init(struct crypto_tfm *tfm) { struct cryptd_aead *cryptd_tfm; struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *) PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN); struct crypto_aead *cryptd_child; struct aesni_rfc4106_gcm_ctx *child_ctx; cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); cryptd_child = cryptd_aead_child(cryptd_tfm); child_ctx = aesni_rfc4106_gcm_ctx_get(cryptd_child); memcpy(child_ctx, ctx, sizeof(*ctx)); ctx->cryptd_tfm = cryptd_tfm; tfm->crt_aead.reqsize = sizeof(struct aead_request) + crypto_aead_reqsize(&cryptd_tfm->base); return 0; } static void rfc4106_exit(struct crypto_tfm *tfm) { struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *) PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN); if (!IS_ERR(ctx->cryptd_tfm)) cryptd_free_aead(ctx->cryptd_tfm); return; } static void rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err) { struct aesni_gcm_set_hash_subkey_result *result = req->data; if (err == -EINPROGRESS) return; result->err = err; complete(&result->completion); } static int rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len) { struct crypto_ablkcipher *ctr_tfm; struct ablkcipher_request *req; int ret = -EINVAL; struct aesni_hash_subkey_req_data *req_data; ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0); if (IS_ERR(ctr_tfm)) return PTR_ERR(ctr_tfm); crypto_ablkcipher_clear_flags(ctr_tfm, ~0); ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len); if (ret) goto out_free_ablkcipher; ret = -ENOMEM; req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL); if (!req) goto out_free_ablkcipher; req_data = kmalloc(sizeof(*req_data), GFP_KERNEL); if (!req_data) goto out_free_request; memset(req_data->iv, 0, sizeof(req_data->iv)); /* Clear the data in the hash sub key container to zero.*/ /* We want to cipher all zeros to create the hash sub key. */ memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE); init_completion(&req_data->result.completion); sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE); ablkcipher_request_set_tfm(req, ctr_tfm); ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG, rfc4106_set_hash_subkey_done, &req_data->result); ablkcipher_request_set_crypt(req, &req_data->sg, &req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv); ret = crypto_ablkcipher_encrypt(req); if (ret == -EINPROGRESS || ret == -EBUSY) { ret = wait_for_completion_interruptible (&req_data->result.completion); if (!ret) ret = req_data->result.err; } kfree(req_data); out_free_request: ablkcipher_request_free(req); out_free_ablkcipher: crypto_free_ablkcipher(ctr_tfm); return ret; } static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key, unsigned int key_len) { int ret = 0; struct crypto_tfm *tfm = crypto_aead_tfm(parent); struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent); struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm); struct aesni_rfc4106_gcm_ctx *child_ctx = aesni_rfc4106_gcm_ctx_get(cryptd_child); u8 *new_key_align, *new_key_mem = NULL; if (key_len < 4) { crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } /*Account for 4 byte nonce at the end.*/ key_len -= 4; if (key_len != AES_KEYSIZE_128) { crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce)); /*This must be on a 16 byte boundary!*/ if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN) return -EINVAL; if ((unsigned long)key % AESNI_ALIGN) { /*key is not aligned: use an auxuliar aligned pointer*/ new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL); if (!new_key_mem) return -ENOMEM; new_key_align = PTR_ALIGN(new_key_mem, AESNI_ALIGN); memcpy(new_key_align, key, key_len); key = new_key_align; } if (!irq_fpu_usable()) ret = crypto_aes_expand_key(&(ctx->aes_key_expanded), key, key_len); else { kernel_fpu_begin(); ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len); kernel_fpu_end(); } /*This must be on a 16 byte boundary!*/ if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) { ret = -EINVAL; goto exit; } ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len); memcpy(child_ctx, ctx, sizeof(*ctx)); exit: kfree(new_key_mem); return ret; } /* This is the Integrity Check Value (aka the authentication tag length and can * be 8, 12 or 16 bytes long. */ static int rfc4106_set_authsize(struct crypto_aead *parent, unsigned int authsize) { struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent); struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm); switch (authsize) { case 8: case 12: case 16: break; default: return -EINVAL; } crypto_aead_crt(parent)->authsize = authsize; crypto_aead_crt(cryptd_child)->authsize = authsize; return 0; } static int rfc4106_encrypt(struct aead_request *req) { int ret; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm); if (!irq_fpu_usable()) { struct aead_request *cryptd_req = (struct aead_request *) aead_request_ctx(req); memcpy(cryptd_req, req, sizeof(*req)); aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base); return crypto_aead_encrypt(cryptd_req); } else { struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm); kernel_fpu_begin(); ret = cryptd_child->base.crt_aead.encrypt(req); kernel_fpu_end(); return ret; } } static int rfc4106_decrypt(struct aead_request *req) { int ret; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm); if (!irq_fpu_usable()) { struct aead_request *cryptd_req = (struct aead_request *) aead_request_ctx(req); memcpy(cryptd_req, req, sizeof(*req)); aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base); return crypto_aead_decrypt(cryptd_req); } else { struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm); kernel_fpu_begin(); ret = cryptd_child->base.crt_aead.decrypt(req); kernel_fpu_end(); return ret; } } static int __driver_rfc4106_encrypt(struct aead_request *req) { u8 one_entry_in_sg = 0; u8 *src, *dst, *assoc; __be32 counter = cpu_to_be32(1); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm); void *aes_ctx = &(ctx->aes_key_expanded); unsigned long auth_tag_len = crypto_aead_authsize(tfm); u8 iv_tab[16+AESNI_ALIGN]; u8* iv = (u8 *) PTR_ALIGN((u8 *)iv_tab, AESNI_ALIGN); struct scatter_walk src_sg_walk; struct scatter_walk assoc_sg_walk; struct scatter_walk dst_sg_walk; unsigned int i; /* Assuming we are supporting rfc4106 64-bit extended */ /* sequence numbers We need to have the AAD length equal */ /* to 8 or 12 bytes */ if (unlikely(req->assoclen != 8 && req->assoclen != 12)) return -EINVAL; /* IV below built */ for (i = 0; i < 4; i++) *(iv+i) = ctx->nonce[i]; for (i = 0; i < 8; i++) *(iv+4+i) = req->iv[i]; *((__be32 *)(iv+12)) = counter; if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) { one_entry_in_sg = 1; scatterwalk_start(&src_sg_walk, req->src); scatterwalk_start(&assoc_sg_walk, req->assoc); src = scatterwalk_map(&src_sg_walk); assoc = scatterwalk_map(&assoc_sg_walk); dst = src; if (unlikely(req->src != req->dst)) { scatterwalk_start(&dst_sg_walk, req->dst); dst = scatterwalk_map(&dst_sg_walk); } } else { /* Allocate memory for src, dst, assoc */ src = kmalloc(req->cryptlen + auth_tag_len + req->assoclen, GFP_ATOMIC); if (unlikely(!src)) return -ENOMEM; assoc = (src + req->cryptlen + auth_tag_len); scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0); scatterwalk_map_and_copy(assoc, req->assoc, 0, req->assoclen, 0); dst = src; } aesni_gcm_enc_tfm(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv, ctx->hash_subkey, assoc, (unsigned long)req->assoclen, dst + ((unsigned long)req->cryptlen), auth_tag_len); /* The authTag (aka the Integrity Check Value) needs to be written * back to the packet. */ if (one_entry_in_sg) { if (unlikely(req->src != req->dst)) { scatterwalk_unmap(dst); scatterwalk_done(&dst_sg_walk, 0, 0); } scatterwalk_unmap(src); scatterwalk_unmap(assoc); scatterwalk_done(&src_sg_walk, 0, 0); scatterwalk_done(&assoc_sg_walk, 0, 0); } else { scatterwalk_map_and_copy(dst, req->dst, 0, req->cryptlen + auth_tag_len, 1); kfree(src); } return 0; } static int __driver_rfc4106_decrypt(struct aead_request *req) { u8 one_entry_in_sg = 0; u8 *src, *dst, *assoc; unsigned long tempCipherLen = 0; __be32 counter = cpu_to_be32(1); int retval = 0; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm); void *aes_ctx = &(ctx->aes_key_expanded); unsigned long auth_tag_len = crypto_aead_authsize(tfm); u8 iv_and_authTag[32+AESNI_ALIGN]; u8 *iv = (u8 *) PTR_ALIGN((u8 *)iv_and_authTag, AESNI_ALIGN); u8 *authTag = iv + 16; struct scatter_walk src_sg_walk; struct scatter_walk assoc_sg_walk; struct scatter_walk dst_sg_walk; unsigned int i; if (unlikely((req->cryptlen < auth_tag_len) || (req->assoclen != 8 && req->assoclen != 12))) return -EINVAL; /* Assuming we are supporting rfc4106 64-bit extended */ /* sequence numbers We need to have the AAD length */ /* equal to 8 or 12 bytes */ tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len); /* IV below built */ for (i = 0; i < 4; i++) *(iv+i) = ctx->nonce[i]; for (i = 0; i < 8; i++) *(iv+4+i) = req->iv[i]; *((__be32 *)(iv+12)) = counter; if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) { one_entry_in_sg = 1; scatterwalk_start(&src_sg_walk, req->src); scatterwalk_start(&assoc_sg_walk, req->assoc); src = scatterwalk_map(&src_sg_walk); assoc = scatterwalk_map(&assoc_sg_walk); dst = src; if (unlikely(req->src != req->dst)) { scatterwalk_start(&dst_sg_walk, req->dst); dst = scatterwalk_map(&dst_sg_walk); } } else { /* Allocate memory for src, dst, assoc */ src = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC); if (!src) return -ENOMEM; assoc = (src + req->cryptlen + auth_tag_len); scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0); scatterwalk_map_and_copy(assoc, req->assoc, 0, req->assoclen, 0); dst = src; } aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv, ctx->hash_subkey, assoc, (unsigned long)req->assoclen, authTag, auth_tag_len); /* Compare generated tag with passed in tag. */ retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ? -EBADMSG : 0; if (one_entry_in_sg) { if (unlikely(req->src != req->dst)) { scatterwalk_unmap(dst); scatterwalk_done(&dst_sg_walk, 0, 0); } scatterwalk_unmap(src); scatterwalk_unmap(assoc); scatterwalk_done(&src_sg_walk, 0, 0); scatterwalk_done(&assoc_sg_walk, 0, 0); } else { scatterwalk_map_and_copy(dst, req->dst, 0, req->cryptlen, 1); kfree(src); } return retval; } #endif static struct crypto_alg aesni_algs[] = { { .cra_name = "aes", .cra_driver_name = "aes-aesni", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1, .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = aes_set_key, .cia_encrypt = aes_encrypt, .cia_decrypt = aes_decrypt } } }, { .cra_name = "__aes-aesni", .cra_driver_name = "__driver-aes-aesni", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1, .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = aes_set_key, .cia_encrypt = __aes_encrypt, .cia_decrypt = __aes_decrypt } } }, { .cra_name = "__ecb-aes-aesni", .cra_driver_name = "__driver-ecb-aes-aesni", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1, .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = aes_set_key, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, }, }, { .cra_name = "__cbc-aes-aesni", .cra_driver_name = "__driver-cbc-aes-aesni", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1, .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = aes_set_key, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, }, }, { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_ecb_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, }, { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_cbc_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, #ifdef CONFIG_X86_64 }, { .cra_name = "__ctr-aes-aesni", .cra_driver_name = "__driver-ctr-aes-aesni", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1, .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aes_set_key, .encrypt = ctr_crypt, .decrypt = ctr_crypt, }, }, }, { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_ctr_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_encrypt, .geniv = "chainiv", }, }, }, { .cra_name = "__gcm-aes-aesni", .cra_driver_name = "__driver-gcm-aes-aesni", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_AEAD, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx) + AESNI_ALIGN, .cra_alignmask = 0, .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_u = { .aead = { .encrypt = __driver_rfc4106_encrypt, .decrypt = __driver_rfc4106_decrypt, }, }, }, { .cra_name = "rfc4106(gcm(aes))", .cra_driver_name = "rfc4106-gcm-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx) + AESNI_ALIGN, .cra_alignmask = 0, .cra_type = &crypto_nivaead_type, .cra_module = THIS_MODULE, .cra_init = rfc4106_init, .cra_exit = rfc4106_exit, .cra_u = { .aead = { .setkey = rfc4106_set_key, .setauthsize = rfc4106_set_authsize, .encrypt = rfc4106_encrypt, .decrypt = rfc4106_decrypt, .geniv = "seqiv", .ivsize = 8, .maxauthsize = 16, }, }, #endif #if IS_ENABLED(CONFIG_CRYPTO_PCBC) }, { .cra_name = "pcbc(aes)", .cra_driver_name = "pcbc-aes-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_pcbc_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, #endif }, { .cra_name = "__lrw-aes-aesni", .cra_driver_name = "__driver-lrw-aes-aesni", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aesni_lrw_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_exit = lrw_aesni_exit_tfm, .cra_u = { .blkcipher = { .min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE, .max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = lrw_aesni_setkey, .encrypt = lrw_encrypt, .decrypt = lrw_decrypt, }, }, }, { .cra_name = "__xts-aes-aesni", .cra_driver_name = "__driver-xts-aes-aesni", .cra_priority = 0, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aesni_xts_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = xts_aesni_setkey, .encrypt = xts_encrypt, .decrypt = xts_decrypt, }, }, }, { .cra_name = "lrw(aes)", .cra_driver_name = "lrw-aes-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE, .max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, }, { .cra_name = "xts(aes)", .cra_driver_name = "xts-aes-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct async_helper_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = ablk_init, .cra_exit = ablk_exit, .cra_u = { .ablkcipher = { .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ablk_set_key, .encrypt = ablk_encrypt, .decrypt = ablk_decrypt, }, }, } }; static const struct x86_cpu_id aesni_cpu_id[] = { X86_FEATURE_MATCH(X86_FEATURE_AES), {} }; MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id); static int __init aesni_init(void) { int err; if (!x86_match_cpu(aesni_cpu_id)) return -ENODEV; #ifdef CONFIG_X86_64 #ifdef CONFIG_AS_AVX2 if (boot_cpu_has(X86_FEATURE_AVX2)) { pr_info("AVX2 version of gcm_enc/dec engaged.\n"); aesni_gcm_enc_tfm = aesni_gcm_enc_avx2; aesni_gcm_dec_tfm = aesni_gcm_dec_avx2; } else #endif #ifdef CONFIG_AS_AVX if (boot_cpu_has(X86_FEATURE_AVX)) { pr_info("AVX version of gcm_enc/dec engaged.\n"); aesni_gcm_enc_tfm = aesni_gcm_enc_avx; aesni_gcm_dec_tfm = aesni_gcm_dec_avx; } else #endif { pr_info("SSE version of gcm_enc/dec engaged.\n"); aesni_gcm_enc_tfm = aesni_gcm_enc; aesni_gcm_dec_tfm = aesni_gcm_dec; } aesni_ctr_enc_tfm = aesni_ctr_enc; #ifdef CONFIG_AS_AVX if (cpu_has_avx) { /* optimize performance of ctr mode encryption transform */ aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm; pr_info("AES CTR mode by8 optimization enabled\n"); } #endif #endif err = crypto_fpu_init(); if (err) return err; return crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs)); } static void __exit aesni_exit(void) { crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs)); crypto_fpu_exit(); } module_init(aesni_init); module_exit(aesni_exit); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized"); MODULE_LICENSE("GPL"); MODULE_ALIAS("aes");