/****************************************************************************** * * Module Name: evgpeblk - GPE block creation and initialization. * *****************************************************************************/ /* * Copyright (C) 2000 - 2006, R. Byron Moore * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #define _COMPONENT ACPI_EVENTS ACPI_MODULE_NAME("evgpeblk") /* Local prototypes */ static acpi_status acpi_ev_save_method_info(acpi_handle obj_handle, u32 level, void *obj_desc, void **return_value); static acpi_status acpi_ev_match_prw_and_gpe(acpi_handle obj_handle, u32 level, void *info, void **return_value); static struct acpi_gpe_xrupt_info *acpi_ev_get_gpe_xrupt_block(u32 interrupt_number); static acpi_status acpi_ev_delete_gpe_xrupt(struct acpi_gpe_xrupt_info *gpe_xrupt); static acpi_status acpi_ev_install_gpe_block(struct acpi_gpe_block_info *gpe_block, u32 interrupt_number); static acpi_status acpi_ev_create_gpe_info_blocks(struct acpi_gpe_block_info *gpe_block); /******************************************************************************* * * FUNCTION: acpi_ev_valid_gpe_event * * PARAMETERS: gpe_event_info - Info for this GPE * * RETURN: TRUE if the gpe_event is valid * * DESCRIPTION: Validate a GPE event. DO NOT CALL FROM INTERRUPT LEVEL. * Should be called only when the GPE lists are semaphore locked * and not subject to change. * ******************************************************************************/ u8 acpi_ev_valid_gpe_event(struct acpi_gpe_event_info *gpe_event_info) { struct acpi_gpe_xrupt_info *gpe_xrupt_block; struct acpi_gpe_block_info *gpe_block; ACPI_FUNCTION_ENTRY(); /* No need for spin lock since we are not changing any list elements */ /* Walk the GPE interrupt levels */ gpe_xrupt_block = acpi_gbl_gpe_xrupt_list_head; while (gpe_xrupt_block) { gpe_block = gpe_xrupt_block->gpe_block_list_head; /* Walk the GPE blocks on this interrupt level */ while (gpe_block) { if ((&gpe_block->event_info[0] <= gpe_event_info) && (&gpe_block-> event_info[((acpi_size) gpe_block-> register_count) * 8] > gpe_event_info)) { return (TRUE); } gpe_block = gpe_block->next; } gpe_xrupt_block = gpe_xrupt_block->next; } return (FALSE); } /******************************************************************************* * * FUNCTION: acpi_ev_walk_gpe_list * * PARAMETERS: gpe_walk_callback - Routine called for each GPE block * * RETURN: Status * * DESCRIPTION: Walk the GPE lists. * ******************************************************************************/ acpi_status acpi_ev_walk_gpe_list(ACPI_GPE_CALLBACK gpe_walk_callback) { struct acpi_gpe_block_info *gpe_block; struct acpi_gpe_xrupt_info *gpe_xrupt_info; acpi_status status = AE_OK; acpi_cpu_flags flags; ACPI_FUNCTION_TRACE("ev_walk_gpe_list"); flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock); /* Walk the interrupt level descriptor list */ gpe_xrupt_info = acpi_gbl_gpe_xrupt_list_head; while (gpe_xrupt_info) { /* Walk all Gpe Blocks attached to this interrupt level */ gpe_block = gpe_xrupt_info->gpe_block_list_head; while (gpe_block) { /* One callback per GPE block */ status = gpe_walk_callback(gpe_xrupt_info, gpe_block); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } gpe_block = gpe_block->next; } gpe_xrupt_info = gpe_xrupt_info->next; } unlock_and_exit: acpi_os_release_lock(acpi_gbl_gpe_lock, flags); return_ACPI_STATUS(status); } /******************************************************************************* * * FUNCTION: acpi_ev_delete_gpe_handlers * * PARAMETERS: gpe_xrupt_info - GPE Interrupt info * gpe_block - Gpe Block info * * RETURN: Status * * DESCRIPTION: Delete all Handler objects found in the GPE data structs. * Used only prior to termination. * ******************************************************************************/ acpi_status acpi_ev_delete_gpe_handlers(struct acpi_gpe_xrupt_info *gpe_xrupt_info, struct acpi_gpe_block_info *gpe_block) { struct acpi_gpe_event_info *gpe_event_info; acpi_native_uint i; acpi_native_uint j; ACPI_FUNCTION_TRACE("ev_delete_gpe_handlers"); /* Examine each GPE Register within the block */ for (i = 0; i < gpe_block->register_count; i++) { /* Now look at the individual GPEs in this byte register */ for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++) { gpe_event_info = &gpe_block-> event_info[(i * ACPI_GPE_REGISTER_WIDTH) + j]; if ((gpe_event_info->flags & ACPI_GPE_DISPATCH_MASK) == ACPI_GPE_DISPATCH_HANDLER) { ACPI_FREE(gpe_event_info->dispatch.handler); gpe_event_info->dispatch.handler = NULL; gpe_event_info->flags &= ~ACPI_GPE_DISPATCH_MASK; } } } return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_ev_save_method_info * * PARAMETERS: Callback from walk_namespace * * RETURN: Status * * DESCRIPTION: Called from acpi_walk_namespace. Expects each object to be a * control method under the _GPE portion of the namespace. * Extract the name and GPE type from the object, saving this * information for quick lookup during GPE dispatch * * The name of each GPE control method is of the form: * "_Lxx" or "_Exx" * Where: * L - means that the GPE is level triggered * E - means that the GPE is edge triggered * xx - is the GPE number [in HEX] * ******************************************************************************/ static acpi_status acpi_ev_save_method_info(acpi_handle obj_handle, u32 level, void *obj_desc, void **return_value) { struct acpi_gpe_block_info *gpe_block = (void *)obj_desc; struct acpi_gpe_event_info *gpe_event_info; u32 gpe_number; char name[ACPI_NAME_SIZE + 1]; u8 type; acpi_status status; ACPI_FUNCTION_TRACE("ev_save_method_info"); /* * _Lxx and _Exx GPE method support * * 1) Extract the name from the object and convert to a string */ ACPI_MOVE_32_TO_32(name, &((struct acpi_namespace_node *)obj_handle)->name. integer); name[ACPI_NAME_SIZE] = 0; /* * 2) Edge/Level determination is based on the 2nd character * of the method name * * NOTE: Default GPE type is RUNTIME. May be changed later to WAKE * if a _PRW object is found that points to this GPE. */ switch (name[1]) { case 'L': type = ACPI_GPE_LEVEL_TRIGGERED; break; case 'E': type = ACPI_GPE_EDGE_TRIGGERED; break; default: /* Unknown method type, just ignore it! */ ACPI_ERROR((AE_INFO, "Unknown GPE method type: %s (name not of form _Lxx or _Exx)", name)); return_ACPI_STATUS(AE_OK); } /* Convert the last two characters of the name to the GPE Number */ gpe_number = ACPI_STRTOUL(&name[2], NULL, 16); if (gpe_number == ACPI_UINT32_MAX) { /* Conversion failed; invalid method, just ignore it */ ACPI_ERROR((AE_INFO, "Could not extract GPE number from name: %s (name is not of form _Lxx or _Exx)", name)); return_ACPI_STATUS(AE_OK); } /* Ensure that we have a valid GPE number for this GPE block */ if ((gpe_number < gpe_block->block_base_number) || (gpe_number >= (gpe_block->block_base_number + (gpe_block->register_count * 8)))) { /* * Not valid for this GPE block, just ignore it * However, it may be valid for a different GPE block, since GPE0 and GPE1 * methods both appear under \_GPE. */ return_ACPI_STATUS(AE_OK); } /* * Now we can add this information to the gpe_event_info block * for use during dispatch of this GPE. Default type is RUNTIME, although * this may change when the _PRW methods are executed later. */ gpe_event_info = &gpe_block->event_info[gpe_number - gpe_block->block_base_number]; gpe_event_info->flags = (u8) (type | ACPI_GPE_DISPATCH_METHOD | ACPI_GPE_TYPE_RUNTIME); gpe_event_info->dispatch.method_node = (struct acpi_namespace_node *)obj_handle; /* Update enable mask, but don't enable the HW GPE as of yet */ status = acpi_ev_enable_gpe(gpe_event_info, FALSE); ACPI_DEBUG_PRINT((ACPI_DB_LOAD, "Registered GPE method %s as GPE number 0x%.2X\n", name, gpe_number)); return_ACPI_STATUS(status); } /******************************************************************************* * * FUNCTION: acpi_ev_match_prw_and_gpe * * PARAMETERS: Callback from walk_namespace * * RETURN: Status. NOTE: We ignore errors so that the _PRW walk is * not aborted on a single _PRW failure. * * DESCRIPTION: Called from acpi_walk_namespace. Expects each object to be a * Device. Run the _PRW method. If present, extract the GPE * number and mark the GPE as a WAKE GPE. * ******************************************************************************/ static acpi_status acpi_ev_match_prw_and_gpe(acpi_handle obj_handle, u32 level, void *info, void **return_value) { struct acpi_gpe_walk_info *gpe_info = (void *)info; struct acpi_namespace_node *gpe_device; struct acpi_gpe_block_info *gpe_block; struct acpi_namespace_node *target_gpe_device; struct acpi_gpe_event_info *gpe_event_info; union acpi_operand_object *pkg_desc; union acpi_operand_object *obj_desc; u32 gpe_number; acpi_status status; ACPI_FUNCTION_TRACE("ev_match_prw_and_gpe"); /* Check for a _PRW method under this device */ status = acpi_ut_evaluate_object(obj_handle, METHOD_NAME__PRW, ACPI_BTYPE_PACKAGE, &pkg_desc); if (ACPI_FAILURE(status)) { /* Ignore all errors from _PRW, we don't want to abort the subsystem */ return_ACPI_STATUS(AE_OK); } /* The returned _PRW package must have at least two elements */ if (pkg_desc->package.count < 2) { goto cleanup; } /* Extract pointers from the input context */ gpe_device = gpe_info->gpe_device; gpe_block = gpe_info->gpe_block; /* * The _PRW object must return a package, we are only interested * in the first element */ obj_desc = pkg_desc->package.elements[0]; if (ACPI_GET_OBJECT_TYPE(obj_desc) == ACPI_TYPE_INTEGER) { /* Use FADT-defined GPE device (from definition of _PRW) */ target_gpe_device = acpi_gbl_fadt_gpe_device; /* Integer is the GPE number in the FADT described GPE blocks */ gpe_number = (u32) obj_desc->integer.value; } else if (ACPI_GET_OBJECT_TYPE(obj_desc) == ACPI_TYPE_PACKAGE) { /* Package contains a GPE reference and GPE number within a GPE block */ if ((obj_desc->package.count < 2) || (ACPI_GET_OBJECT_TYPE(obj_desc->package.elements[0]) != ACPI_TYPE_LOCAL_REFERENCE) || (ACPI_GET_OBJECT_TYPE(obj_desc->package.elements[1]) != ACPI_TYPE_INTEGER)) { goto cleanup; } /* Get GPE block reference and decode */ target_gpe_device = obj_desc->package.elements[0]->reference.node; gpe_number = (u32) obj_desc->package.elements[1]->integer.value; } else { /* Unknown type, just ignore it */ goto cleanup; } /* * Is this GPE within this block? * * TRUE iff these conditions are true: * 1) The GPE devices match. * 2) The GPE index(number) is within the range of the Gpe Block * associated with the GPE device. */ if ((gpe_device == target_gpe_device) && (gpe_number >= gpe_block->block_base_number) && (gpe_number < gpe_block->block_base_number + (gpe_block->register_count * 8))) { gpe_event_info = &gpe_block->event_info[gpe_number - gpe_block->block_base_number]; /* Mark GPE for WAKE-ONLY but WAKE_DISABLED */ gpe_event_info->flags &= ~(ACPI_GPE_WAKE_ENABLED | ACPI_GPE_RUN_ENABLED); status = acpi_ev_set_gpe_type(gpe_event_info, ACPI_GPE_TYPE_WAKE); if (ACPI_FAILURE(status)) { goto cleanup; } status = acpi_ev_update_gpe_enable_masks(gpe_event_info, ACPI_GPE_DISABLE); } cleanup: acpi_ut_remove_reference(pkg_desc); return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_ev_get_gpe_xrupt_block * * PARAMETERS: interrupt_number - Interrupt for a GPE block * * RETURN: A GPE interrupt block * * DESCRIPTION: Get or Create a GPE interrupt block. There is one interrupt * block per unique interrupt level used for GPEs. * Should be called only when the GPE lists are semaphore locked * and not subject to change. * ******************************************************************************/ static struct acpi_gpe_xrupt_info *acpi_ev_get_gpe_xrupt_block(u32 interrupt_number) { struct acpi_gpe_xrupt_info *next_gpe_xrupt; struct acpi_gpe_xrupt_info *gpe_xrupt; acpi_status status; acpi_cpu_flags flags; ACPI_FUNCTION_TRACE("ev_get_gpe_xrupt_block"); /* No need for lock since we are not changing any list elements here */ next_gpe_xrupt = acpi_gbl_gpe_xrupt_list_head; while (next_gpe_xrupt) { if (next_gpe_xrupt->interrupt_number == interrupt_number) { return_PTR(next_gpe_xrupt); } next_gpe_xrupt = next_gpe_xrupt->next; } /* Not found, must allocate a new xrupt descriptor */ gpe_xrupt = ACPI_ALLOCATE_ZEROED(sizeof(struct acpi_gpe_xrupt_info)); if (!gpe_xrupt) { return_PTR(NULL); } gpe_xrupt->interrupt_number = interrupt_number; /* Install new interrupt descriptor with spin lock */ flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock); if (acpi_gbl_gpe_xrupt_list_head) { next_gpe_xrupt = acpi_gbl_gpe_xrupt_list_head; while (next_gpe_xrupt->next) { next_gpe_xrupt = next_gpe_xrupt->next; } next_gpe_xrupt->next = gpe_xrupt; gpe_xrupt->previous = next_gpe_xrupt; } else { acpi_gbl_gpe_xrupt_list_head = gpe_xrupt; } acpi_os_release_lock(acpi_gbl_gpe_lock, flags); /* Install new interrupt handler if not SCI_INT */ if (interrupt_number != acpi_gbl_FADT->sci_int) { status = acpi_os_install_interrupt_handler(interrupt_number, acpi_ev_gpe_xrupt_handler, gpe_xrupt); if (ACPI_FAILURE(status)) { ACPI_ERROR((AE_INFO, "Could not install GPE interrupt handler at level 0x%X", interrupt_number)); return_PTR(NULL); } } return_PTR(gpe_xrupt); } /******************************************************************************* * * FUNCTION: acpi_ev_delete_gpe_xrupt * * PARAMETERS: gpe_xrupt - A GPE interrupt info block * * RETURN: Status * * DESCRIPTION: Remove and free a gpe_xrupt block. Remove an associated * interrupt handler if not the SCI interrupt. * ******************************************************************************/ static acpi_status acpi_ev_delete_gpe_xrupt(struct acpi_gpe_xrupt_info *gpe_xrupt) { acpi_status status; acpi_cpu_flags flags; ACPI_FUNCTION_TRACE("ev_delete_gpe_xrupt"); /* We never want to remove the SCI interrupt handler */ if (gpe_xrupt->interrupt_number == acpi_gbl_FADT->sci_int) { gpe_xrupt->gpe_block_list_head = NULL; return_ACPI_STATUS(AE_OK); } /* Disable this interrupt */ status = acpi_os_remove_interrupt_handler(gpe_xrupt->interrupt_number, acpi_ev_gpe_xrupt_handler); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } /* Unlink the interrupt block with lock */ flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock); if (gpe_xrupt->previous) { gpe_xrupt->previous->next = gpe_xrupt->next; } if (gpe_xrupt->next) { gpe_xrupt->next->previous = gpe_xrupt->previous; } acpi_os_release_lock(acpi_gbl_gpe_lock, flags); /* Free the block */ ACPI_FREE(gpe_xrupt); return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_ev_install_gpe_block * * PARAMETERS: gpe_block - New GPE block * interrupt_number - Xrupt to be associated with this GPE block * * RETURN: Status * * DESCRIPTION: Install new GPE block with mutex support * ******************************************************************************/ static acpi_status acpi_ev_install_gpe_block(struct acpi_gpe_block_info *gpe_block, u32 interrupt_number) { struct acpi_gpe_block_info *next_gpe_block; struct acpi_gpe_xrupt_info *gpe_xrupt_block; acpi_status status; acpi_cpu_flags flags; ACPI_FUNCTION_TRACE("ev_install_gpe_block"); status = acpi_ut_acquire_mutex(ACPI_MTX_EVENTS); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } gpe_xrupt_block = acpi_ev_get_gpe_xrupt_block(interrupt_number); if (!gpe_xrupt_block) { status = AE_NO_MEMORY; goto unlock_and_exit; } /* Install the new block at the end of the list with lock */ flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock); if (gpe_xrupt_block->gpe_block_list_head) { next_gpe_block = gpe_xrupt_block->gpe_block_list_head; while (next_gpe_block->next) { next_gpe_block = next_gpe_block->next; } next_gpe_block->next = gpe_block; gpe_block->previous = next_gpe_block; } else { gpe_xrupt_block->gpe_block_list_head = gpe_block; } gpe_block->xrupt_block = gpe_xrupt_block; acpi_os_release_lock(acpi_gbl_gpe_lock, flags); unlock_and_exit: status = acpi_ut_release_mutex(ACPI_MTX_EVENTS); return_ACPI_STATUS(status); } /******************************************************************************* * * FUNCTION: acpi_ev_delete_gpe_block * * PARAMETERS: gpe_block - Existing GPE block * * RETURN: Status * * DESCRIPTION: Remove a GPE block * ******************************************************************************/ acpi_status acpi_ev_delete_gpe_block(struct acpi_gpe_block_info *gpe_block) { acpi_status status; acpi_cpu_flags flags; ACPI_FUNCTION_TRACE("ev_install_gpe_block"); status = acpi_ut_acquire_mutex(ACPI_MTX_EVENTS); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } /* Disable all GPEs in this block */ status = acpi_hw_disable_gpe_block(gpe_block->xrupt_block, gpe_block); if (!gpe_block->previous && !gpe_block->next) { /* This is the last gpe_block on this interrupt */ status = acpi_ev_delete_gpe_xrupt(gpe_block->xrupt_block); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } } else { /* Remove the block on this interrupt with lock */ flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock); if (gpe_block->previous) { gpe_block->previous->next = gpe_block->next; } else { gpe_block->xrupt_block->gpe_block_list_head = gpe_block->next; } if (gpe_block->next) { gpe_block->next->previous = gpe_block->previous; } acpi_os_release_lock(acpi_gbl_gpe_lock, flags); } /* Free the gpe_block */ ACPI_FREE(gpe_block->register_info); ACPI_FREE(gpe_block->event_info); ACPI_FREE(gpe_block); unlock_and_exit: status = acpi_ut_release_mutex(ACPI_MTX_EVENTS); return_ACPI_STATUS(status); } /******************************************************************************* * * FUNCTION: acpi_ev_create_gpe_info_blocks * * PARAMETERS: gpe_block - New GPE block * * RETURN: Status * * DESCRIPTION: Create the register_info and event_info blocks for this GPE block * ******************************************************************************/ static acpi_status acpi_ev_create_gpe_info_blocks(struct acpi_gpe_block_info *gpe_block) { struct acpi_gpe_register_info *gpe_register_info = NULL; struct acpi_gpe_event_info *gpe_event_info = NULL; struct acpi_gpe_event_info *this_event; struct acpi_gpe_register_info *this_register; acpi_native_uint i; acpi_native_uint j; acpi_status status; ACPI_FUNCTION_TRACE("ev_create_gpe_info_blocks"); /* Allocate the GPE register information block */ gpe_register_info = ACPI_ALLOCATE_ZEROED((acpi_size) gpe_block-> register_count * sizeof(struct acpi_gpe_register_info)); if (!gpe_register_info) { ACPI_ERROR((AE_INFO, "Could not allocate the gpe_register_info table")); return_ACPI_STATUS(AE_NO_MEMORY); } /* * Allocate the GPE event_info block. There are eight distinct GPEs * per register. Initialization to zeros is sufficient. */ gpe_event_info = ACPI_ALLOCATE_ZEROED(((acpi_size) gpe_block-> register_count * ACPI_GPE_REGISTER_WIDTH) * sizeof(struct acpi_gpe_event_info)); if (!gpe_event_info) { ACPI_ERROR((AE_INFO, "Could not allocate the gpe_event_info table")); status = AE_NO_MEMORY; goto error_exit; } /* Save the new Info arrays in the GPE block */ gpe_block->register_info = gpe_register_info; gpe_block->event_info = gpe_event_info; /* * Initialize the GPE Register and Event structures. A goal of these * tables is to hide the fact that there are two separate GPE register sets * in a given GPE hardware block, the status registers occupy the first half, * and the enable registers occupy the second half. */ this_register = gpe_register_info; this_event = gpe_event_info; for (i = 0; i < gpe_block->register_count; i++) { /* Init the register_info for this GPE register (8 GPEs) */ this_register->base_gpe_number = (u8) (gpe_block->block_base_number + (i * ACPI_GPE_REGISTER_WIDTH)); ACPI_STORE_ADDRESS(this_register->status_address.address, (gpe_block->block_address.address + i)); ACPI_STORE_ADDRESS(this_register->enable_address.address, (gpe_block->block_address.address + i + gpe_block->register_count)); this_register->status_address.address_space_id = gpe_block->block_address.address_space_id; this_register->enable_address.address_space_id = gpe_block->block_address.address_space_id; this_register->status_address.register_bit_width = ACPI_GPE_REGISTER_WIDTH; this_register->enable_address.register_bit_width = ACPI_GPE_REGISTER_WIDTH; this_register->status_address.register_bit_offset = ACPI_GPE_REGISTER_WIDTH; this_register->enable_address.register_bit_offset = ACPI_GPE_REGISTER_WIDTH; /* Init the event_info for each GPE within this register */ for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++) { this_event->register_bit = acpi_gbl_decode_to8bit[j]; this_event->register_info = this_register; this_event++; } /* Disable all GPEs within this register */ status = acpi_hw_low_level_write(ACPI_GPE_REGISTER_WIDTH, 0x00, &this_register-> enable_address); if (ACPI_FAILURE(status)) { goto error_exit; } /* Clear any pending GPE events within this register */ status = acpi_hw_low_level_write(ACPI_GPE_REGISTER_WIDTH, 0xFF, &this_register-> status_address); if (ACPI_FAILURE(status)) { goto error_exit; } this_register++; } return_ACPI_STATUS(AE_OK); error_exit: if (gpe_register_info) { ACPI_FREE(gpe_register_info); } if (gpe_event_info) { ACPI_FREE(gpe_event_info); } return_ACPI_STATUS(status); } /******************************************************************************* * * FUNCTION: acpi_ev_create_gpe_block * * PARAMETERS: gpe_device - Handle to the parent GPE block * gpe_block_address - Address and space_iD * register_count - Number of GPE register pairs in the block * gpe_block_base_number - Starting GPE number for the block * interrupt_number - H/W interrupt for the block * return_gpe_block - Where the new block descriptor is returned * * RETURN: Status * * DESCRIPTION: Create and Install a block of GPE registers. All GPEs within * the block are disabled at exit. * Note: Assumes namespace is locked. * ******************************************************************************/ acpi_status acpi_ev_create_gpe_block(struct acpi_namespace_node *gpe_device, struct acpi_generic_address *gpe_block_address, u32 register_count, u8 gpe_block_base_number, u32 interrupt_number, struct acpi_gpe_block_info **return_gpe_block) { acpi_status status; struct acpi_gpe_block_info *gpe_block; ACPI_FUNCTION_TRACE("ev_create_gpe_block"); if (!register_count) { return_ACPI_STATUS(AE_OK); } /* Allocate a new GPE block */ gpe_block = ACPI_ALLOCATE_ZEROED(sizeof(struct acpi_gpe_block_info)); if (!gpe_block) { return_ACPI_STATUS(AE_NO_MEMORY); } /* Initialize the new GPE block */ gpe_block->node = gpe_device; gpe_block->register_count = register_count; gpe_block->block_base_number = gpe_block_base_number; ACPI_MEMCPY(&gpe_block->block_address, gpe_block_address, sizeof(struct acpi_generic_address)); /* * Create the register_info and event_info sub-structures * Note: disables and clears all GPEs in the block */ status = acpi_ev_create_gpe_info_blocks(gpe_block); if (ACPI_FAILURE(status)) { ACPI_FREE(gpe_block); return_ACPI_STATUS(status); } /* Install the new block in the global lists */ status = acpi_ev_install_gpe_block(gpe_block, interrupt_number); if (ACPI_FAILURE(status)) { ACPI_FREE(gpe_block); return_ACPI_STATUS(status); } /* Find all GPE methods (_Lxx, _Exx) for this block */ status = acpi_ns_walk_namespace(ACPI_TYPE_METHOD, gpe_device, ACPI_UINT32_MAX, ACPI_NS_WALK_NO_UNLOCK, acpi_ev_save_method_info, gpe_block, NULL); /* Return the new block */ if (return_gpe_block) { (*return_gpe_block) = gpe_block; } ACPI_DEBUG_PRINT((ACPI_DB_INIT, "GPE %02X to %02X [%4.4s] %u regs on int 0x%X\n", (u32) gpe_block->block_base_number, (u32) (gpe_block->block_base_number + ((gpe_block->register_count * ACPI_GPE_REGISTER_WIDTH) - 1)), gpe_device->name.ascii, gpe_block->register_count, interrupt_number)); return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_ev_initialize_gpe_block * * PARAMETERS: gpe_device - Handle to the parent GPE block * gpe_block - Gpe Block info * * RETURN: Status * * DESCRIPTION: Initialize and enable a GPE block. First find and run any * _PRT methods associated with the block, then enable the * appropriate GPEs. * Note: Assumes namespace is locked. * ******************************************************************************/ acpi_status acpi_ev_initialize_gpe_block(struct acpi_namespace_node *gpe_device, struct acpi_gpe_block_info *gpe_block) { acpi_status status; struct acpi_gpe_event_info *gpe_event_info; struct acpi_gpe_walk_info gpe_info; u32 wake_gpe_count; u32 gpe_enabled_count; acpi_native_uint i; acpi_native_uint j; ACPI_FUNCTION_TRACE("ev_initialize_gpe_block"); /* Ignore a null GPE block (e.g., if no GPE block 1 exists) */ if (!gpe_block) { return_ACPI_STATUS(AE_OK); } /* * Runtime option: Should wake GPEs be enabled at runtime? The default * is no, they should only be enabled just as the machine goes to sleep. */ if (acpi_gbl_leave_wake_gpes_disabled) { /* * Differentiate runtime vs wake GPEs, via the _PRW control methods. * Each GPE that has one or more _PRWs that reference it is by * definition a wake GPE and will not be enabled while the machine * is running. */ gpe_info.gpe_block = gpe_block; gpe_info.gpe_device = gpe_device; status = acpi_ns_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, ACPI_UINT32_MAX, ACPI_NS_WALK_UNLOCK, acpi_ev_match_prw_and_gpe, &gpe_info, NULL); } /* * Enable all GPEs in this block that have these attributes: * 1) are "runtime" or "run/wake" GPEs, and * 2) have a corresponding _Lxx or _Exx method * * Any other GPEs within this block must be enabled via the acpi_enable_gpe() * external interface. */ wake_gpe_count = 0; gpe_enabled_count = 0; for (i = 0; i < gpe_block->register_count; i++) { for (j = 0; j < 8; j++) { /* Get the info block for this particular GPE */ gpe_event_info = &gpe_block-> event_info[(i * ACPI_GPE_REGISTER_WIDTH) + j]; if (((gpe_event_info->flags & ACPI_GPE_DISPATCH_MASK) == ACPI_GPE_DISPATCH_METHOD) && (gpe_event_info-> flags & ACPI_GPE_TYPE_RUNTIME)) { gpe_enabled_count++; } if (gpe_event_info->flags & ACPI_GPE_TYPE_WAKE) { wake_gpe_count++; } } } ACPI_DEBUG_PRINT((ACPI_DB_INIT, "Found %u Wake, Enabled %u Runtime GPEs in this block\n", wake_gpe_count, gpe_enabled_count)); /* Enable all valid runtime GPEs found above */ status = acpi_hw_enable_runtime_gpe_block(NULL, gpe_block); if (ACPI_FAILURE(status)) { ACPI_ERROR((AE_INFO, "Could not enable GPEs in gpe_block %p", gpe_block)); } return_ACPI_STATUS(status); } /******************************************************************************* * * FUNCTION: acpi_ev_gpe_initialize * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Initialize the GPE data structures * ******************************************************************************/ acpi_status acpi_ev_gpe_initialize(void) { u32 register_count0 = 0; u32 register_count1 = 0; u32 gpe_number_max = 0; acpi_status status; ACPI_FUNCTION_TRACE("ev_gpe_initialize"); status = acpi_ut_acquire_mutex(ACPI_MTX_NAMESPACE); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } /* * Initialize the GPE Block(s) defined in the FADT * * Why the GPE register block lengths are divided by 2: From the ACPI Spec, * section "General-Purpose Event Registers", we have: * * "Each register block contains two registers of equal length * GPEx_STS and GPEx_EN (where x is 0 or 1). The length of the * GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN * The length of the GPE1_STS and GPE1_EN registers is equal to * half the GPE1_LEN. If a generic register block is not supported * then its respective block pointer and block length values in the * FADT table contain zeros. The GPE0_LEN and GPE1_LEN do not need * to be the same size." */ /* * Determine the maximum GPE number for this machine. * * Note: both GPE0 and GPE1 are optional, and either can exist without * the other. * * If EITHER the register length OR the block address are zero, then that * particular block is not supported. */ if (acpi_gbl_FADT->gpe0_blk_len && acpi_gbl_FADT->xgpe0_blk.address) { /* GPE block 0 exists (has both length and address > 0) */ register_count0 = (u16) (acpi_gbl_FADT->gpe0_blk_len / 2); gpe_number_max = (register_count0 * ACPI_GPE_REGISTER_WIDTH) - 1; /* Install GPE Block 0 */ status = acpi_ev_create_gpe_block(acpi_gbl_fadt_gpe_device, &acpi_gbl_FADT->xgpe0_blk, register_count0, 0, acpi_gbl_FADT->sci_int, &acpi_gbl_gpe_fadt_blocks[0]); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Could not create GPE Block 0")); } } if (acpi_gbl_FADT->gpe1_blk_len && acpi_gbl_FADT->xgpe1_blk.address) { /* GPE block 1 exists (has both length and address > 0) */ register_count1 = (u16) (acpi_gbl_FADT->gpe1_blk_len / 2); /* Check for GPE0/GPE1 overlap (if both banks exist) */ if ((register_count0) && (gpe_number_max >= acpi_gbl_FADT->gpe1_base)) { ACPI_ERROR((AE_INFO, "GPE0 block (GPE 0 to %d) overlaps the GPE1 block (GPE %d to %d) - Ignoring GPE1", gpe_number_max, acpi_gbl_FADT->gpe1_base, acpi_gbl_FADT->gpe1_base + ((register_count1 * ACPI_GPE_REGISTER_WIDTH) - 1))); /* Ignore GPE1 block by setting the register count to zero */ register_count1 = 0; } else { /* Install GPE Block 1 */ status = acpi_ev_create_gpe_block(acpi_gbl_fadt_gpe_device, &acpi_gbl_FADT->xgpe1_blk, register_count1, acpi_gbl_FADT->gpe1_base, acpi_gbl_FADT->sci_int, &acpi_gbl_gpe_fadt_blocks [1]); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Could not create GPE Block 1")); } /* * GPE0 and GPE1 do not have to be contiguous in the GPE number * space. However, GPE0 always starts at GPE number zero. */ gpe_number_max = acpi_gbl_FADT->gpe1_base + ((register_count1 * ACPI_GPE_REGISTER_WIDTH) - 1); } } /* Exit if there are no GPE registers */ if ((register_count0 + register_count1) == 0) { /* GPEs are not required by ACPI, this is OK */ ACPI_DEBUG_PRINT((ACPI_DB_INIT, "There are no GPE blocks defined in the FADT\n")); status = AE_OK; goto cleanup; } /* Check for Max GPE number out-of-range */ if (gpe_number_max > ACPI_GPE_MAX) { ACPI_ERROR((AE_INFO, "Maximum GPE number from FADT is too large: 0x%X", gpe_number_max)); status = AE_BAD_VALUE; goto cleanup; } cleanup: (void)acpi_ut_release_mutex(ACPI_MTX_NAMESPACE); return_ACPI_STATUS(AE_OK); }