/* * Address map functions for Marvell EBU SoCs (Kirkwood, Armada * 370/XP, Dove, Orion5x and MV78xx0) * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. * * The Marvell EBU SoCs have a configurable physical address space: * the physical address at which certain devices (PCIe, NOR, NAND, * etc.) sit can be configured. The configuration takes place through * two sets of registers: * * - One to configure the access of the CPU to the devices. Depending * on the families, there are between 8 and 20 configurable windows, * each can be use to create a physical memory window that maps to a * specific device. Devices are identified by a tuple (target, * attribute). * * - One to configure the access to the CPU to the SDRAM. There are * either 2 (for Dove) or 4 (for other families) windows to map the * SDRAM into the physical address space. * * This driver: * * - Reads out the SDRAM address decoding windows at initialization * time, and fills the mvebu_mbus_dram_info structure with these * informations. The exported function mv_mbus_dram_info() allow * device drivers to get those informations related to the SDRAM * address decoding windows. This is because devices also have their * own windows (configured through registers that are part of each * device register space), and therefore the drivers for Marvell * devices have to configure those device -> SDRAM windows to ensure * that DMA works properly. * * - Provides an API for platform code or device drivers to * dynamically add or remove address decoding windows for the CPU -> * device accesses. This API is mvebu_mbus_add_window_by_id(), * mvebu_mbus_add_window_remap_by_id() and * mvebu_mbus_del_window(). * * - Provides a debugfs interface in /sys/kernel/debug/mvebu-mbus/ to * see the list of CPU -> SDRAM windows and their configuration * (file 'sdram') and the list of CPU -> devices windows and their * configuration (file 'devices'). */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/mbus.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/debugfs.h> #include <linux/log2.h> #include <linux/memblock.h> #include <linux/syscore_ops.h> /* * DDR target is the same on all platforms. */ #define TARGET_DDR 0 /* * CPU Address Decode Windows registers */ #define WIN_CTRL_OFF 0x0000 #define WIN_CTRL_ENABLE BIT(0) /* Only on HW I/O coherency capable platforms */ #define WIN_CTRL_SYNCBARRIER BIT(1) #define WIN_CTRL_TGT_MASK 0xf0 #define WIN_CTRL_TGT_SHIFT 4 #define WIN_CTRL_ATTR_MASK 0xff00 #define WIN_CTRL_ATTR_SHIFT 8 #define WIN_CTRL_SIZE_MASK 0xffff0000 #define WIN_CTRL_SIZE_SHIFT 16 #define WIN_BASE_OFF 0x0004 #define WIN_BASE_LOW 0xffff0000 #define WIN_BASE_HIGH 0xf #define WIN_REMAP_LO_OFF 0x0008 #define WIN_REMAP_LOW 0xffff0000 #define WIN_REMAP_HI_OFF 0x000c #define UNIT_SYNC_BARRIER_OFF 0x84 #define UNIT_SYNC_BARRIER_ALL 0xFFFF #define ATTR_HW_COHERENCY (0x1 << 4) #define DDR_BASE_CS_OFF(n) (0x0000 + ((n) << 3)) #define DDR_BASE_CS_HIGH_MASK 0xf #define DDR_BASE_CS_LOW_MASK 0xff000000 #define DDR_SIZE_CS_OFF(n) (0x0004 + ((n) << 3)) #define DDR_SIZE_ENABLED BIT(0) #define DDR_SIZE_CS_MASK 0x1c #define DDR_SIZE_CS_SHIFT 2 #define DDR_SIZE_MASK 0xff000000 #define DOVE_DDR_BASE_CS_OFF(n) ((n) << 4) /* Relative to mbusbridge_base */ #define MBUS_BRIDGE_CTRL_OFF 0x0 #define MBUS_BRIDGE_BASE_OFF 0x4 /* Maximum number of windows, for all known platforms */ #define MBUS_WINS_MAX 20 struct mvebu_mbus_state; struct mvebu_mbus_soc_data { unsigned int num_wins; bool has_mbus_bridge; unsigned int (*win_cfg_offset)(const int win); unsigned int (*win_remap_offset)(const int win); void (*setup_cpu_target)(struct mvebu_mbus_state *s); int (*save_cpu_target)(struct mvebu_mbus_state *s, u32 __iomem *store_addr); int (*show_cpu_target)(struct mvebu_mbus_state *s, struct seq_file *seq, void *v); }; /* * Used to store the state of one MBus window accross suspend/resume. */ struct mvebu_mbus_win_data { u32 ctrl; u32 base; u32 remap_lo; u32 remap_hi; }; struct mvebu_mbus_state { void __iomem *mbuswins_base; void __iomem *sdramwins_base; void __iomem *mbusbridge_base; phys_addr_t sdramwins_phys_base; struct dentry *debugfs_root; struct dentry *debugfs_sdram; struct dentry *debugfs_devs; struct resource pcie_mem_aperture; struct resource pcie_io_aperture; const struct mvebu_mbus_soc_data *soc; int hw_io_coherency; /* Used during suspend/resume */ u32 mbus_bridge_ctrl; u32 mbus_bridge_base; struct mvebu_mbus_win_data wins[MBUS_WINS_MAX]; }; static struct mvebu_mbus_state mbus_state; /* * We provide two variants of the mv_mbus_dram_info() function: * * - The normal one, where the described DRAM ranges may overlap with * the I/O windows, but for which the DRAM ranges are guaranteed to * have a power of two size. Such ranges are suitable for the DMA * masters that only DMA between the RAM and the device, which is * actually all devices except the crypto engines. * * - The 'nooverlap' one, where the described DRAM ranges are * guaranteed to not overlap with the I/O windows, but for which the * DRAM ranges will not have power of two sizes. They will only be * aligned on a 64 KB boundary, and have a size multiple of 64 * KB. Such ranges are suitable for the DMA masters that DMA between * the crypto SRAM (which is mapped through an I/O window) and a * device. This is the case for the crypto engines. */ static struct mbus_dram_target_info mvebu_mbus_dram_info; static struct mbus_dram_target_info mvebu_mbus_dram_info_nooverlap; const struct mbus_dram_target_info *mv_mbus_dram_info(void) { return &mvebu_mbus_dram_info; } EXPORT_SYMBOL_GPL(mv_mbus_dram_info); const struct mbus_dram_target_info *mv_mbus_dram_info_nooverlap(void) { return &mvebu_mbus_dram_info_nooverlap; } EXPORT_SYMBOL_GPL(mv_mbus_dram_info_nooverlap); /* Checks whether the given window has remap capability */ static bool mvebu_mbus_window_is_remappable(struct mvebu_mbus_state *mbus, const int win) { return mbus->soc->win_remap_offset(win) != MVEBU_MBUS_NO_REMAP; } /* * Functions to manipulate the address decoding windows */ static void mvebu_mbus_read_window(struct mvebu_mbus_state *mbus, int win, int *enabled, u64 *base, u32 *size, u8 *target, u8 *attr, u64 *remap) { void __iomem *addr = mbus->mbuswins_base + mbus->soc->win_cfg_offset(win); u32 basereg = readl(addr + WIN_BASE_OFF); u32 ctrlreg = readl(addr + WIN_CTRL_OFF); if (!(ctrlreg & WIN_CTRL_ENABLE)) { *enabled = 0; return; } *enabled = 1; *base = ((u64)basereg & WIN_BASE_HIGH) << 32; *base |= (basereg & WIN_BASE_LOW); *size = (ctrlreg | ~WIN_CTRL_SIZE_MASK) + 1; if (target) *target = (ctrlreg & WIN_CTRL_TGT_MASK) >> WIN_CTRL_TGT_SHIFT; if (attr) *attr = (ctrlreg & WIN_CTRL_ATTR_MASK) >> WIN_CTRL_ATTR_SHIFT; if (remap) { if (mvebu_mbus_window_is_remappable(mbus, win)) { u32 remap_low, remap_hi; void __iomem *addr_rmp = mbus->mbuswins_base + mbus->soc->win_remap_offset(win); remap_low = readl(addr_rmp + WIN_REMAP_LO_OFF); remap_hi = readl(addr_rmp + WIN_REMAP_HI_OFF); *remap = ((u64)remap_hi << 32) | remap_low; } else *remap = 0; } } static void mvebu_mbus_disable_window(struct mvebu_mbus_state *mbus, int win) { void __iomem *addr; addr = mbus->mbuswins_base + mbus->soc->win_cfg_offset(win); writel(0, addr + WIN_BASE_OFF); writel(0, addr + WIN_CTRL_OFF); if (mvebu_mbus_window_is_remappable(mbus, win)) { addr = mbus->mbuswins_base + mbus->soc->win_remap_offset(win); writel(0, addr + WIN_REMAP_LO_OFF); writel(0, addr + WIN_REMAP_HI_OFF); } } /* Checks whether the given window number is available */ static int mvebu_mbus_window_is_free(struct mvebu_mbus_state *mbus, const int win) { void __iomem *addr = mbus->mbuswins_base + mbus->soc->win_cfg_offset(win); u32 ctrl = readl(addr + WIN_CTRL_OFF); return !(ctrl & WIN_CTRL_ENABLE); } /* * Checks whether the given (base, base+size) area doesn't overlap an * existing region */ static int mvebu_mbus_window_conflicts(struct mvebu_mbus_state *mbus, phys_addr_t base, size_t size, u8 target, u8 attr) { u64 end = (u64)base + size; int win; for (win = 0; win < mbus->soc->num_wins; win++) { u64 wbase, wend; u32 wsize; u8 wtarget, wattr; int enabled; mvebu_mbus_read_window(mbus, win, &enabled, &wbase, &wsize, &wtarget, &wattr, NULL); if (!enabled) continue; wend = wbase + wsize; /* * Check if the current window overlaps with the * proposed physical range */ if ((u64)base < wend && end > wbase) return 0; } return 1; } static int mvebu_mbus_find_window(struct mvebu_mbus_state *mbus, phys_addr_t base, size_t size) { int win; for (win = 0; win < mbus->soc->num_wins; win++) { u64 wbase; u32 wsize; int enabled; mvebu_mbus_read_window(mbus, win, &enabled, &wbase, &wsize, NULL, NULL, NULL); if (!enabled) continue; if (base == wbase && size == wsize) return win; } return -ENODEV; } static int mvebu_mbus_setup_window(struct mvebu_mbus_state *mbus, int win, phys_addr_t base, size_t size, phys_addr_t remap, u8 target, u8 attr) { void __iomem *addr = mbus->mbuswins_base + mbus->soc->win_cfg_offset(win); u32 ctrl, remap_addr; if (!is_power_of_2(size)) { WARN(true, "Invalid MBus window size: 0x%zx\n", size); return -EINVAL; } if ((base & (phys_addr_t)(size - 1)) != 0) { WARN(true, "Invalid MBus base/size: %pa len 0x%zx\n", &base, size); return -EINVAL; } ctrl = ((size - 1) & WIN_CTRL_SIZE_MASK) | (attr << WIN_CTRL_ATTR_SHIFT) | (target << WIN_CTRL_TGT_SHIFT) | WIN_CTRL_ENABLE; if (mbus->hw_io_coherency) ctrl |= WIN_CTRL_SYNCBARRIER; writel(base & WIN_BASE_LOW, addr + WIN_BASE_OFF); writel(ctrl, addr + WIN_CTRL_OFF); if (mvebu_mbus_window_is_remappable(mbus, win)) { void __iomem *addr_rmp = mbus->mbuswins_base + mbus->soc->win_remap_offset(win); if (remap == MVEBU_MBUS_NO_REMAP) remap_addr = base; else remap_addr = remap; writel(remap_addr & WIN_REMAP_LOW, addr_rmp + WIN_REMAP_LO_OFF); writel(0, addr_rmp + WIN_REMAP_HI_OFF); } return 0; } static int mvebu_mbus_alloc_window(struct mvebu_mbus_state *mbus, phys_addr_t base, size_t size, phys_addr_t remap, u8 target, u8 attr) { int win; if (remap == MVEBU_MBUS_NO_REMAP) { for (win = 0; win < mbus->soc->num_wins; win++) { if (mvebu_mbus_window_is_remappable(mbus, win)) continue; if (mvebu_mbus_window_is_free(mbus, win)) return mvebu_mbus_setup_window(mbus, win, base, size, remap, target, attr); } } for (win = 0; win < mbus->soc->num_wins; win++) { /* Skip window if need remap but is not supported */ if ((remap != MVEBU_MBUS_NO_REMAP) && !mvebu_mbus_window_is_remappable(mbus, win)) continue; if (mvebu_mbus_window_is_free(mbus, win)) return mvebu_mbus_setup_window(mbus, win, base, size, remap, target, attr); } return -ENOMEM; } /* * Debugfs debugging */ /* Common function used for Dove, Kirkwood, Armada 370/XP and Orion 5x */ static int mvebu_sdram_debug_show_orion(struct mvebu_mbus_state *mbus, struct seq_file *seq, void *v) { int i; for (i = 0; i < 4; i++) { u32 basereg = readl(mbus->sdramwins_base + DDR_BASE_CS_OFF(i)); u32 sizereg = readl(mbus->sdramwins_base + DDR_SIZE_CS_OFF(i)); u64 base; u32 size; if (!(sizereg & DDR_SIZE_ENABLED)) { seq_printf(seq, "[%d] disabled\n", i); continue; } base = ((u64)basereg & DDR_BASE_CS_HIGH_MASK) << 32; base |= basereg & DDR_BASE_CS_LOW_MASK; size = (sizereg | ~DDR_SIZE_MASK); seq_printf(seq, "[%d] %016llx - %016llx : cs%d\n", i, (unsigned long long)base, (unsigned long long)base + size + 1, (sizereg & DDR_SIZE_CS_MASK) >> DDR_SIZE_CS_SHIFT); } return 0; } /* Special function for Dove */ static int mvebu_sdram_debug_show_dove(struct mvebu_mbus_state *mbus, struct seq_file *seq, void *v) { int i; for (i = 0; i < 2; i++) { u32 map = readl(mbus->sdramwins_base + DOVE_DDR_BASE_CS_OFF(i)); u64 base; u32 size; if (!(map & 1)) { seq_printf(seq, "[%d] disabled\n", i); continue; } base = map & 0xff800000; size = 0x100000 << (((map & 0x000f0000) >> 16) - 4); seq_printf(seq, "[%d] %016llx - %016llx : cs%d\n", i, (unsigned long long)base, (unsigned long long)base + size, i); } return 0; } static int mvebu_sdram_debug_show(struct seq_file *seq, void *v) { struct mvebu_mbus_state *mbus = &mbus_state; return mbus->soc->show_cpu_target(mbus, seq, v); } static int mvebu_sdram_debug_open(struct inode *inode, struct file *file) { return single_open(file, mvebu_sdram_debug_show, inode->i_private); } static const struct file_operations mvebu_sdram_debug_fops = { .open = mvebu_sdram_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int mvebu_devs_debug_show(struct seq_file *seq, void *v) { struct mvebu_mbus_state *mbus = &mbus_state; int win; for (win = 0; win < mbus->soc->num_wins; win++) { u64 wbase, wremap; u32 wsize; u8 wtarget, wattr; int enabled; mvebu_mbus_read_window(mbus, win, &enabled, &wbase, &wsize, &wtarget, &wattr, &wremap); if (!enabled) { seq_printf(seq, "[%02d] disabled\n", win); continue; } seq_printf(seq, "[%02d] %016llx - %016llx : %04x:%04x", win, (unsigned long long)wbase, (unsigned long long)(wbase + wsize), wtarget, wattr); if (!is_power_of_2(wsize) || ((wbase & (u64)(wsize - 1)) != 0)) seq_puts(seq, " (Invalid base/size!!)"); if (mvebu_mbus_window_is_remappable(mbus, win)) { seq_printf(seq, " (remap %016llx)\n", (unsigned long long)wremap); } else seq_printf(seq, "\n"); } return 0; } static int mvebu_devs_debug_open(struct inode *inode, struct file *file) { return single_open(file, mvebu_devs_debug_show, inode->i_private); } static const struct file_operations mvebu_devs_debug_fops = { .open = mvebu_devs_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /* * SoC-specific functions and definitions */ static unsigned int generic_mbus_win_cfg_offset(int win) { return win << 4; } static unsigned int armada_370_xp_mbus_win_cfg_offset(int win) { /* The register layout is a bit annoying and the below code * tries to cope with it. * - At offset 0x0, there are the registers for the first 8 * windows, with 4 registers of 32 bits per window (ctrl, * base, remap low, remap high) * - Then at offset 0x80, there is a hole of 0x10 bytes for * the internal registers base address and internal units * sync barrier register. * - Then at offset 0x90, there the registers for 12 * windows, with only 2 registers of 32 bits per window * (ctrl, base). */ if (win < 8) return win << 4; else return 0x90 + ((win - 8) << 3); } static unsigned int mv78xx0_mbus_win_cfg_offset(int win) { if (win < 8) return win << 4; else return 0x900 + ((win - 8) << 4); } static unsigned int generic_mbus_win_remap_2_offset(int win) { if (win < 2) return generic_mbus_win_cfg_offset(win); else return MVEBU_MBUS_NO_REMAP; } static unsigned int generic_mbus_win_remap_4_offset(int win) { if (win < 4) return generic_mbus_win_cfg_offset(win); else return MVEBU_MBUS_NO_REMAP; } static unsigned int generic_mbus_win_remap_8_offset(int win) { if (win < 8) return generic_mbus_win_cfg_offset(win); else return MVEBU_MBUS_NO_REMAP; } static unsigned int armada_xp_mbus_win_remap_offset(int win) { if (win < 8) return generic_mbus_win_cfg_offset(win); else if (win == 13) return 0xF0 - WIN_REMAP_LO_OFF; else return MVEBU_MBUS_NO_REMAP; } /* * Use the memblock information to find the MBus bridge hole in the * physical address space. */ static void __init mvebu_mbus_find_bridge_hole(uint64_t *start, uint64_t *end) { struct memblock_region *r; uint64_t s = 0; for_each_memblock(memory, r) { /* * This part of the memory is above 4 GB, so we don't * care for the MBus bridge hole. */ if (r->base >= 0x100000000ULL) continue; /* * The MBus bridge hole is at the end of the RAM under * the 4 GB limit. */ if (r->base + r->size > s) s = r->base + r->size; } *start = s; *end = 0x100000000ULL; } /* * This function fills in the mvebu_mbus_dram_info_nooverlap data * structure, by looking at the mvebu_mbus_dram_info data, and * removing the parts of it that overlap with I/O windows. */ static void __init mvebu_mbus_setup_cpu_target_nooverlap(struct mvebu_mbus_state *mbus) { uint64_t mbus_bridge_base, mbus_bridge_end; int cs_nooverlap = 0; int i; mvebu_mbus_find_bridge_hole(&mbus_bridge_base, &mbus_bridge_end); for (i = 0; i < mvebu_mbus_dram_info.num_cs; i++) { struct mbus_dram_window *w; u64 base, size, end; w = &mvebu_mbus_dram_info.cs[i]; base = w->base; size = w->size; end = base + size; /* * The CS is fully enclosed inside the MBus bridge * area, so ignore it. */ if (base >= mbus_bridge_base && end <= mbus_bridge_end) continue; /* * Beginning of CS overlaps with end of MBus, raise CS * base address, and shrink its size. */ if (base >= mbus_bridge_base && end > mbus_bridge_end) { size -= mbus_bridge_end - base; base = mbus_bridge_end; } /* * End of CS overlaps with beginning of MBus, shrink * CS size. */ if (base < mbus_bridge_base && end > mbus_bridge_base) size -= end - mbus_bridge_base; w = &mvebu_mbus_dram_info_nooverlap.cs[cs_nooverlap++]; w->cs_index = i; w->mbus_attr = 0xf & ~(1 << i); if (mbus->hw_io_coherency) w->mbus_attr |= ATTR_HW_COHERENCY; w->base = base; w->size = size; } mvebu_mbus_dram_info_nooverlap.mbus_dram_target_id = TARGET_DDR; mvebu_mbus_dram_info_nooverlap.num_cs = cs_nooverlap; } static void __init mvebu_mbus_default_setup_cpu_target(struct mvebu_mbus_state *mbus) { int i; int cs; mvebu_mbus_dram_info.mbus_dram_target_id = TARGET_DDR; for (i = 0, cs = 0; i < 4; i++) { u32 base = readl(mbus->sdramwins_base + DDR_BASE_CS_OFF(i)); u32 size = readl(mbus->sdramwins_base + DDR_SIZE_CS_OFF(i)); /* * We only take care of entries for which the chip * select is enabled, and that don't have high base * address bits set (devices can only access the first * 32 bits of the memory). */ if ((size & DDR_SIZE_ENABLED) && !(base & DDR_BASE_CS_HIGH_MASK)) { struct mbus_dram_window *w; w = &mvebu_mbus_dram_info.cs[cs++]; w->cs_index = i; w->mbus_attr = 0xf & ~(1 << i); if (mbus->hw_io_coherency) w->mbus_attr |= ATTR_HW_COHERENCY; w->base = base & DDR_BASE_CS_LOW_MASK; w->size = (size | ~DDR_SIZE_MASK) + 1; } } mvebu_mbus_dram_info.num_cs = cs; } static int mvebu_mbus_default_save_cpu_target(struct mvebu_mbus_state *mbus, u32 __iomem *store_addr) { int i; for (i = 0; i < 4; i++) { u32 base = readl(mbus->sdramwins_base + DDR_BASE_CS_OFF(i)); u32 size = readl(mbus->sdramwins_base + DDR_SIZE_CS_OFF(i)); writel(mbus->sdramwins_phys_base + DDR_BASE_CS_OFF(i), store_addr++); writel(base, store_addr++); writel(mbus->sdramwins_phys_base + DDR_SIZE_CS_OFF(i), store_addr++); writel(size, store_addr++); } /* We've written 16 words to the store address */ return 16; } static void __init mvebu_mbus_dove_setup_cpu_target(struct mvebu_mbus_state *mbus) { int i; int cs; mvebu_mbus_dram_info.mbus_dram_target_id = TARGET_DDR; for (i = 0, cs = 0; i < 2; i++) { u32 map = readl(mbus->sdramwins_base + DOVE_DDR_BASE_CS_OFF(i)); /* * Chip select enabled? */ if (map & 1) { struct mbus_dram_window *w; w = &mvebu_mbus_dram_info.cs[cs++]; w->cs_index = i; w->mbus_attr = 0; /* CS address decoding done inside */ /* the DDR controller, no need to */ /* provide attributes */ w->base = map & 0xff800000; w->size = 0x100000 << (((map & 0x000f0000) >> 16) - 4); } } mvebu_mbus_dram_info.num_cs = cs; } static int mvebu_mbus_dove_save_cpu_target(struct mvebu_mbus_state *mbus, u32 __iomem *store_addr) { int i; for (i = 0; i < 2; i++) { u32 map = readl(mbus->sdramwins_base + DOVE_DDR_BASE_CS_OFF(i)); writel(mbus->sdramwins_phys_base + DOVE_DDR_BASE_CS_OFF(i), store_addr++); writel(map, store_addr++); } /* We've written 4 words to the store address */ return 4; } int mvebu_mbus_save_cpu_target(u32 __iomem *store_addr) { return mbus_state.soc->save_cpu_target(&mbus_state, store_addr); } static const struct mvebu_mbus_soc_data armada_370_mbus_data = { .num_wins = 20, .has_mbus_bridge = true, .win_cfg_offset = armada_370_xp_mbus_win_cfg_offset, .win_remap_offset = generic_mbus_win_remap_8_offset, .setup_cpu_target = mvebu_mbus_default_setup_cpu_target, .show_cpu_target = mvebu_sdram_debug_show_orion, .save_cpu_target = mvebu_mbus_default_save_cpu_target, }; static const struct mvebu_mbus_soc_data armada_xp_mbus_data = { .num_wins = 20, .has_mbus_bridge = true, .win_cfg_offset = armada_370_xp_mbus_win_cfg_offset, .win_remap_offset = armada_xp_mbus_win_remap_offset, .setup_cpu_target = mvebu_mbus_default_setup_cpu_target, .show_cpu_target = mvebu_sdram_debug_show_orion, .save_cpu_target = mvebu_mbus_default_save_cpu_target, }; static const struct mvebu_mbus_soc_data kirkwood_mbus_data = { .num_wins = 8, .win_cfg_offset = generic_mbus_win_cfg_offset, .save_cpu_target = mvebu_mbus_default_save_cpu_target, .win_remap_offset = generic_mbus_win_remap_4_offset, .setup_cpu_target = mvebu_mbus_default_setup_cpu_target, .show_cpu_target = mvebu_sdram_debug_show_orion, }; static const struct mvebu_mbus_soc_data dove_mbus_data = { .num_wins = 8, .win_cfg_offset = generic_mbus_win_cfg_offset, .save_cpu_target = mvebu_mbus_dove_save_cpu_target, .win_remap_offset = generic_mbus_win_remap_4_offset, .setup_cpu_target = mvebu_mbus_dove_setup_cpu_target, .show_cpu_target = mvebu_sdram_debug_show_dove, }; /* * Some variants of Orion5x have 4 remappable windows, some other have * only two of them. */ static const struct mvebu_mbus_soc_data orion5x_4win_mbus_data = { .num_wins = 8, .win_cfg_offset = generic_mbus_win_cfg_offset, .save_cpu_target = mvebu_mbus_default_save_cpu_target, .win_remap_offset = generic_mbus_win_remap_4_offset, .setup_cpu_target = mvebu_mbus_default_setup_cpu_target, .show_cpu_target = mvebu_sdram_debug_show_orion, }; static const struct mvebu_mbus_soc_data orion5x_2win_mbus_data = { .num_wins = 8, .win_cfg_offset = generic_mbus_win_cfg_offset, .save_cpu_target = mvebu_mbus_default_save_cpu_target, .win_remap_offset = generic_mbus_win_remap_2_offset, .setup_cpu_target = mvebu_mbus_default_setup_cpu_target, .show_cpu_target = mvebu_sdram_debug_show_orion, }; static const struct mvebu_mbus_soc_data mv78xx0_mbus_data = { .num_wins = 14, .win_cfg_offset = mv78xx0_mbus_win_cfg_offset, .save_cpu_target = mvebu_mbus_default_save_cpu_target, .win_remap_offset = generic_mbus_win_remap_8_offset, .setup_cpu_target = mvebu_mbus_default_setup_cpu_target, .show_cpu_target = mvebu_sdram_debug_show_orion, }; static const struct of_device_id of_mvebu_mbus_ids[] = { { .compatible = "marvell,armada370-mbus", .data = &armada_370_mbus_data, }, { .compatible = "marvell,armada375-mbus", .data = &armada_xp_mbus_data, }, { .compatible = "marvell,armada380-mbus", .data = &armada_xp_mbus_data, }, { .compatible = "marvell,armadaxp-mbus", .data = &armada_xp_mbus_data, }, { .compatible = "marvell,kirkwood-mbus", .data = &kirkwood_mbus_data, }, { .compatible = "marvell,dove-mbus", .data = &dove_mbus_data, }, { .compatible = "marvell,orion5x-88f5281-mbus", .data = &orion5x_4win_mbus_data, }, { .compatible = "marvell,orion5x-88f5182-mbus", .data = &orion5x_2win_mbus_data, }, { .compatible = "marvell,orion5x-88f5181-mbus", .data = &orion5x_2win_mbus_data, }, { .compatible = "marvell,orion5x-88f6183-mbus", .data = &orion5x_4win_mbus_data, }, { .compatible = "marvell,mv78xx0-mbus", .data = &mv78xx0_mbus_data, }, { }, }; /* * Public API of the driver */ int mvebu_mbus_add_window_remap_by_id(unsigned int target, unsigned int attribute, phys_addr_t base, size_t size, phys_addr_t remap) { struct mvebu_mbus_state *s = &mbus_state; if (!mvebu_mbus_window_conflicts(s, base, size, target, attribute)) { pr_err("cannot add window '%x:%x', conflicts with another window\n", target, attribute); return -EINVAL; } return mvebu_mbus_alloc_window(s, base, size, remap, target, attribute); } int mvebu_mbus_add_window_by_id(unsigned int target, unsigned int attribute, phys_addr_t base, size_t size) { return mvebu_mbus_add_window_remap_by_id(target, attribute, base, size, MVEBU_MBUS_NO_REMAP); } int mvebu_mbus_del_window(phys_addr_t base, size_t size) { int win; win = mvebu_mbus_find_window(&mbus_state, base, size); if (win < 0) return win; mvebu_mbus_disable_window(&mbus_state, win); return 0; } void mvebu_mbus_get_pcie_mem_aperture(struct resource *res) { if (!res) return; *res = mbus_state.pcie_mem_aperture; } void mvebu_mbus_get_pcie_io_aperture(struct resource *res) { if (!res) return; *res = mbus_state.pcie_io_aperture; } int mvebu_mbus_get_dram_win_info(phys_addr_t phyaddr, u8 *target, u8 *attr) { const struct mbus_dram_target_info *dram; int i; /* Get dram info */ dram = mv_mbus_dram_info(); if (!dram) { pr_err("missing DRAM information\n"); return -ENODEV; } /* Try to find matching DRAM window for phyaddr */ for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; if (cs->base <= phyaddr && phyaddr <= (cs->base + cs->size - 1)) { *target = dram->mbus_dram_target_id; *attr = cs->mbus_attr; return 0; } } pr_err("invalid dram address %pa\n", &phyaddr); return -EINVAL; } EXPORT_SYMBOL_GPL(mvebu_mbus_get_dram_win_info); int mvebu_mbus_get_io_win_info(phys_addr_t phyaddr, u32 *size, u8 *target, u8 *attr) { int win; for (win = 0; win < mbus_state.soc->num_wins; win++) { u64 wbase; int enabled; mvebu_mbus_read_window(&mbus_state, win, &enabled, &wbase, size, target, attr, NULL); if (!enabled) continue; if (wbase <= phyaddr && phyaddr <= wbase + *size) return win; } return -EINVAL; } EXPORT_SYMBOL_GPL(mvebu_mbus_get_io_win_info); static __init int mvebu_mbus_debugfs_init(void) { struct mvebu_mbus_state *s = &mbus_state; /* * If no base has been initialized, doesn't make sense to * register the debugfs entries. We may be on a multiplatform * kernel that isn't running a Marvell EBU SoC. */ if (!s->mbuswins_base) return 0; s->debugfs_root = debugfs_create_dir("mvebu-mbus", NULL); if (s->debugfs_root) { s->debugfs_sdram = debugfs_create_file("sdram", S_IRUGO, s->debugfs_root, NULL, &mvebu_sdram_debug_fops); s->debugfs_devs = debugfs_create_file("devices", S_IRUGO, s->debugfs_root, NULL, &mvebu_devs_debug_fops); } return 0; } fs_initcall(mvebu_mbus_debugfs_init); static int mvebu_mbus_suspend(void) { struct mvebu_mbus_state *s = &mbus_state; int win; if (!s->mbusbridge_base) return -ENODEV; for (win = 0; win < s->soc->num_wins; win++) { void __iomem *addr = s->mbuswins_base + s->soc->win_cfg_offset(win); void __iomem *addr_rmp; s->wins[win].base = readl(addr + WIN_BASE_OFF); s->wins[win].ctrl = readl(addr + WIN_CTRL_OFF); if (!mvebu_mbus_window_is_remappable(s, win)) continue; addr_rmp = s->mbuswins_base + s->soc->win_remap_offset(win); s->wins[win].remap_lo = readl(addr_rmp + WIN_REMAP_LO_OFF); s->wins[win].remap_hi = readl(addr_rmp + WIN_REMAP_HI_OFF); } s->mbus_bridge_ctrl = readl(s->mbusbridge_base + MBUS_BRIDGE_CTRL_OFF); s->mbus_bridge_base = readl(s->mbusbridge_base + MBUS_BRIDGE_BASE_OFF); return 0; } static void mvebu_mbus_resume(void) { struct mvebu_mbus_state *s = &mbus_state; int win; writel(s->mbus_bridge_ctrl, s->mbusbridge_base + MBUS_BRIDGE_CTRL_OFF); writel(s->mbus_bridge_base, s->mbusbridge_base + MBUS_BRIDGE_BASE_OFF); for (win = 0; win < s->soc->num_wins; win++) { void __iomem *addr = s->mbuswins_base + s->soc->win_cfg_offset(win); void __iomem *addr_rmp; writel(s->wins[win].base, addr + WIN_BASE_OFF); writel(s->wins[win].ctrl, addr + WIN_CTRL_OFF); if (!mvebu_mbus_window_is_remappable(s, win)) continue; addr_rmp = s->mbuswins_base + s->soc->win_remap_offset(win); writel(s->wins[win].remap_lo, addr_rmp + WIN_REMAP_LO_OFF); writel(s->wins[win].remap_hi, addr_rmp + WIN_REMAP_HI_OFF); } } static struct syscore_ops mvebu_mbus_syscore_ops = { .suspend = mvebu_mbus_suspend, .resume = mvebu_mbus_resume, }; static int __init mvebu_mbus_common_init(struct mvebu_mbus_state *mbus, phys_addr_t mbuswins_phys_base, size_t mbuswins_size, phys_addr_t sdramwins_phys_base, size_t sdramwins_size, phys_addr_t mbusbridge_phys_base, size_t mbusbridge_size, bool is_coherent) { int win; mbus->mbuswins_base = ioremap(mbuswins_phys_base, mbuswins_size); if (!mbus->mbuswins_base) return -ENOMEM; mbus->sdramwins_base = ioremap(sdramwins_phys_base, sdramwins_size); if (!mbus->sdramwins_base) { iounmap(mbus_state.mbuswins_base); return -ENOMEM; } mbus->sdramwins_phys_base = sdramwins_phys_base; if (mbusbridge_phys_base) { mbus->mbusbridge_base = ioremap(mbusbridge_phys_base, mbusbridge_size); if (!mbus->mbusbridge_base) { iounmap(mbus->sdramwins_base); iounmap(mbus->mbuswins_base); return -ENOMEM; } } else mbus->mbusbridge_base = NULL; for (win = 0; win < mbus->soc->num_wins; win++) mvebu_mbus_disable_window(mbus, win); mbus->soc->setup_cpu_target(mbus); mvebu_mbus_setup_cpu_target_nooverlap(mbus); if (is_coherent) writel(UNIT_SYNC_BARRIER_ALL, mbus->mbuswins_base + UNIT_SYNC_BARRIER_OFF); register_syscore_ops(&mvebu_mbus_syscore_ops); return 0; } int __init mvebu_mbus_init(const char *soc, phys_addr_t mbuswins_phys_base, size_t mbuswins_size, phys_addr_t sdramwins_phys_base, size_t sdramwins_size) { const struct of_device_id *of_id; for (of_id = of_mvebu_mbus_ids; of_id->compatible[0]; of_id++) if (!strcmp(of_id->compatible, soc)) break; if (!of_id->compatible[0]) { pr_err("could not find a matching SoC family\n"); return -ENODEV; } mbus_state.soc = of_id->data; return mvebu_mbus_common_init(&mbus_state, mbuswins_phys_base, mbuswins_size, sdramwins_phys_base, sdramwins_size, 0, 0, false); } #ifdef CONFIG_OF /* * The window IDs in the ranges DT property have the following format: * - bits 28 to 31: MBus custom field * - bits 24 to 27: window target ID * - bits 16 to 23: window attribute ID * - bits 0 to 15: unused */ #define CUSTOM(id) (((id) & 0xF0000000) >> 24) #define TARGET(id) (((id) & 0x0F000000) >> 24) #define ATTR(id) (((id) & 0x00FF0000) >> 16) static int __init mbus_dt_setup_win(struct mvebu_mbus_state *mbus, u32 base, u32 size, u8 target, u8 attr) { if (!mvebu_mbus_window_conflicts(mbus, base, size, target, attr)) { pr_err("cannot add window '%04x:%04x', conflicts with another window\n", target, attr); return -EBUSY; } if (mvebu_mbus_alloc_window(mbus, base, size, MVEBU_MBUS_NO_REMAP, target, attr)) { pr_err("cannot add window '%04x:%04x', too many windows\n", target, attr); return -ENOMEM; } return 0; } static int __init mbus_parse_ranges(struct device_node *node, int *addr_cells, int *c_addr_cells, int *c_size_cells, int *cell_count, const __be32 **ranges_start, const __be32 **ranges_end) { const __be32 *prop; int ranges_len, tuple_len; /* Allow a node with no 'ranges' property */ *ranges_start = of_get_property(node, "ranges", &ranges_len); if (*ranges_start == NULL) { *addr_cells = *c_addr_cells = *c_size_cells = *cell_count = 0; *ranges_start = *ranges_end = NULL; return 0; } *ranges_end = *ranges_start + ranges_len / sizeof(__be32); *addr_cells = of_n_addr_cells(node); prop = of_get_property(node, "#address-cells", NULL); *c_addr_cells = be32_to_cpup(prop); prop = of_get_property(node, "#size-cells", NULL); *c_size_cells = be32_to_cpup(prop); *cell_count = *addr_cells + *c_addr_cells + *c_size_cells; tuple_len = (*cell_count) * sizeof(__be32); if (ranges_len % tuple_len) { pr_warn("malformed ranges entry '%s'\n", node->name); return -EINVAL; } return 0; } static int __init mbus_dt_setup(struct mvebu_mbus_state *mbus, struct device_node *np) { int addr_cells, c_addr_cells, c_size_cells; int i, ret, cell_count; const __be32 *r, *ranges_start, *ranges_end; ret = mbus_parse_ranges(np, &addr_cells, &c_addr_cells, &c_size_cells, &cell_count, &ranges_start, &ranges_end); if (ret < 0) return ret; for (i = 0, r = ranges_start; r < ranges_end; r += cell_count, i++) { u32 windowid, base, size; u8 target, attr; /* * An entry with a non-zero custom field do not * correspond to a static window, so skip it. */ windowid = of_read_number(r, 1); if (CUSTOM(windowid)) continue; target = TARGET(windowid); attr = ATTR(windowid); base = of_read_number(r + c_addr_cells, addr_cells); size = of_read_number(r + c_addr_cells + addr_cells, c_size_cells); ret = mbus_dt_setup_win(mbus, base, size, target, attr); if (ret < 0) return ret; } return 0; } static void __init mvebu_mbus_get_pcie_resources(struct device_node *np, struct resource *mem, struct resource *io) { u32 reg[2]; int ret; /* * These are optional, so we make sure that resource_size(x) will * return 0. */ memset(mem, 0, sizeof(struct resource)); mem->end = -1; memset(io, 0, sizeof(struct resource)); io->end = -1; ret = of_property_read_u32_array(np, "pcie-mem-aperture", reg, ARRAY_SIZE(reg)); if (!ret) { mem->start = reg[0]; mem->end = mem->start + reg[1] - 1; mem->flags = IORESOURCE_MEM; } ret = of_property_read_u32_array(np, "pcie-io-aperture", reg, ARRAY_SIZE(reg)); if (!ret) { io->start = reg[0]; io->end = io->start + reg[1] - 1; io->flags = IORESOURCE_IO; } } int __init mvebu_mbus_dt_init(bool is_coherent) { struct resource mbuswins_res, sdramwins_res, mbusbridge_res; struct device_node *np, *controller; const struct of_device_id *of_id; const __be32 *prop; int ret; np = of_find_matching_node_and_match(NULL, of_mvebu_mbus_ids, &of_id); if (!np) { pr_err("could not find a matching SoC family\n"); return -ENODEV; } mbus_state.soc = of_id->data; prop = of_get_property(np, "controller", NULL); if (!prop) { pr_err("required 'controller' property missing\n"); return -EINVAL; } controller = of_find_node_by_phandle(be32_to_cpup(prop)); if (!controller) { pr_err("could not find an 'mbus-controller' node\n"); return -ENODEV; } if (of_address_to_resource(controller, 0, &mbuswins_res)) { pr_err("cannot get MBUS register address\n"); return -EINVAL; } if (of_address_to_resource(controller, 1, &sdramwins_res)) { pr_err("cannot get SDRAM register address\n"); return -EINVAL; } /* * Set the resource to 0 so that it can be left unmapped by * mvebu_mbus_common_init() if the DT doesn't carry the * necessary information. This is needed to preserve backward * compatibility. */ memset(&mbusbridge_res, 0, sizeof(mbusbridge_res)); if (mbus_state.soc->has_mbus_bridge) { if (of_address_to_resource(controller, 2, &mbusbridge_res)) pr_warn(FW_WARN "deprecated mbus-mvebu Device Tree, suspend/resume will not work\n"); } mbus_state.hw_io_coherency = is_coherent; /* Get optional pcie-{mem,io}-aperture properties */ mvebu_mbus_get_pcie_resources(np, &mbus_state.pcie_mem_aperture, &mbus_state.pcie_io_aperture); ret = mvebu_mbus_common_init(&mbus_state, mbuswins_res.start, resource_size(&mbuswins_res), sdramwins_res.start, resource_size(&sdramwins_res), mbusbridge_res.start, resource_size(&mbusbridge_res), is_coherent); if (ret) return ret; /* Setup statically declared windows in the DT */ return mbus_dt_setup(&mbus_state, np); } #endif