// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation. All rights reserved. */ #include #include #include #include "cxlmem.h" #include "cxlpci.h" /** * DOC: cxl mem * * CXL memory endpoint devices and switches are CXL capable devices that are * participating in CXL.mem protocol. Their functionality builds on top of the * CXL.io protocol that allows enumerating and configuring components via * standard PCI mechanisms. * * The cxl_mem driver owns kicking off the enumeration of this CXL.mem * capability. With the detection of a CXL capable endpoint, the driver will * walk up to find the platform specific port it is connected to, and determine * if there are intervening switches in the path. If there are switches, a * secondary action is to enumerate those (implemented in cxl_core). Finally the * cxl_mem driver adds the device it is bound to as a CXL endpoint-port for use * in higher level operations. */ static int wait_for_media(struct cxl_memdev *cxlmd) { struct cxl_dev_state *cxlds = cxlmd->cxlds; struct cxl_endpoint_dvsec_info *info = &cxlds->info; int rc; if (!info->mem_enabled) return -EBUSY; rc = cxlds->wait_media_ready(cxlds); if (rc) return rc; /* * We know the device is active, and enabled, if any ranges are non-zero * we'll need to check later before adding the port since that owns the * HDM decoder registers. */ return 0; } static int create_endpoint(struct cxl_memdev *cxlmd, struct cxl_port *parent_port) { struct cxl_dev_state *cxlds = cxlmd->cxlds; struct cxl_port *endpoint; endpoint = devm_cxl_add_port(&parent_port->dev, &cxlmd->dev, cxlds->component_reg_phys, parent_port); if (IS_ERR(endpoint)) return PTR_ERR(endpoint); dev_dbg(&cxlmd->dev, "add: %s\n", dev_name(&endpoint->dev)); if (!endpoint->dev.driver) { dev_err(&cxlmd->dev, "%s failed probe\n", dev_name(&endpoint->dev)); return -ENXIO; } return cxl_endpoint_autoremove(cxlmd, endpoint); } /** * cxl_hdm_decode_init() - Setup HDM decoding for the endpoint * @cxlds: Device state * * Additionally, enables global HDM decoding. Warning: don't call this outside * of probe. Once probe is complete, the port driver owns all access to the HDM * decoder registers. * * Returns: false if DVSEC Ranges are being used instead of HDM * decoders, or if it can not be determined if DVSEC Ranges are in use. * Otherwise, returns true. */ __mock bool cxl_hdm_decode_init(struct cxl_dev_state *cxlds) { struct cxl_endpoint_dvsec_info *info = &cxlds->info; struct cxl_register_map map; struct cxl_component_reg_map *cmap = &map.component_map; bool global_enable, retval = false; void __iomem *crb; u32 global_ctrl; if (info->ranges < 0) return false; /* map hdm decoder */ crb = ioremap(cxlds->component_reg_phys, CXL_COMPONENT_REG_BLOCK_SIZE); if (!crb) { dev_dbg(cxlds->dev, "Failed to map component registers\n"); return false; } cxl_probe_component_regs(cxlds->dev, crb, cmap); if (!cmap->hdm_decoder.valid) { dev_dbg(cxlds->dev, "Invalid HDM decoder registers\n"); goto out; } global_ctrl = readl(crb + cmap->hdm_decoder.offset + CXL_HDM_DECODER_CTRL_OFFSET); global_enable = global_ctrl & CXL_HDM_DECODER_ENABLE; /* * Per CXL 2.0 Section 8.1.3.8.3 and 8.1.3.8.4 DVSEC CXL Range 1 Base * [High,Low] when HDM operation is enabled the range register values * are ignored by the device, but the spec also recommends matching the * DVSEC Range 1,2 to HDM Decoder Range 0,1. So, non-zero info->ranges * are expected even though Linux does not require or maintain that * match. */ if (!global_enable && info->ranges) goto out; retval = true; /* * Permanently (for this boot at least) opt the device into HDM * operation. Individual HDM decoders still need to be enabled after * this point. */ if (!global_enable) { dev_dbg(cxlds->dev, "Enabling HDM decode\n"); writel(global_ctrl | CXL_HDM_DECODER_ENABLE, crb + cmap->hdm_decoder.offset + CXL_HDM_DECODER_CTRL_OFFSET); } out: iounmap(crb); return retval; } static void enable_suspend(void *data) { cxl_mem_active_dec(); } static int cxl_mem_probe(struct device *dev) { struct cxl_memdev *cxlmd = to_cxl_memdev(dev); struct cxl_dev_state *cxlds = cxlmd->cxlds; struct cxl_port *parent_port; int rc; /* * Someone is trying to reattach this device after it lost its port * connection (an endpoint port previously registered by this memdev was * disabled). This racy check is ok because if the port is still gone, * no harm done, and if the port hierarchy comes back it will re-trigger * this probe. Port rescan and memdev detach work share the same * single-threaded workqueue. */ if (work_pending(&cxlmd->detach_work)) return -EBUSY; rc = wait_for_media(cxlmd); if (rc) { dev_err(dev, "Media not active (%d)\n", rc); return rc; } /* * If DVSEC ranges are being used instead of HDM decoder registers there * is no use in trying to manage those. */ if (!cxl_hdm_decode_init(cxlds)) { dev_err(dev, "Legacy range registers configuration prevents HDM operation.\n"); return -EBUSY; } rc = devm_cxl_enumerate_ports(cxlmd); if (rc) return rc; parent_port = cxl_mem_find_port(cxlmd); if (!parent_port) { dev_err(dev, "CXL port topology not found\n"); return -ENXIO; } cxl_device_lock(&parent_port->dev); if (!parent_port->dev.driver) { dev_err(dev, "CXL port topology %s not enabled\n", dev_name(&parent_port->dev)); rc = -ENXIO; goto out; } rc = create_endpoint(cxlmd, parent_port); out: cxl_device_unlock(&parent_port->dev); put_device(&parent_port->dev); /* * The kernel may be operating out of CXL memory on this device, * there is no spec defined way to determine whether this device * preserves contents over suspend, and there is no simple way * to arrange for the suspend image to avoid CXL memory which * would setup a circular dependency between PCI resume and save * state restoration. * * TODO: support suspend when all the regions this device is * hosting are locked and covered by the system address map, * i.e. platform firmware owns restoring the HDM configuration * that it locked. */ cxl_mem_active_inc(); return devm_add_action_or_reset(dev, enable_suspend, NULL); } static struct cxl_driver cxl_mem_driver = { .name = "cxl_mem", .probe = cxl_mem_probe, .id = CXL_DEVICE_MEMORY_EXPANDER, }; module_cxl_driver(cxl_mem_driver); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(CXL); MODULE_ALIAS_CXL(CXL_DEVICE_MEMORY_EXPANDER); /* * create_endpoint() wants to validate port driver attach immediately after * endpoint registration. */ MODULE_SOFTDEP("pre: cxl_port");