/* * drivers/dma/fsl_raid.c * * Freescale RAID Engine device driver * * Author: * Harninder Rai * Naveen Burmi * * Rewrite: * Xuelin Shi * * Copyright (c) 2010-2014 Freescale Semiconductor, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Theory of operation: * * General capabilities: * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q * calculations required in RAID5 and RAID6 operations. RE driver * registers with Linux's ASYNC layer as dma driver. RE hardware * maintains strict ordering of the requests through chained * command queueing. * * Data flow: * Software RAID layer of Linux (MD layer) maintains RAID partitions, * strips, stripes etc. It sends requests to the underlying ASYNC layer * which further passes it to RE driver. ASYNC layer decides which request * goes to which job ring of RE hardware. For every request processed by * RAID Engine, driver gets an interrupt unless coalescing is set. The * per job ring interrupt handler checks the status register for errors, * clears the interrupt and leave the post interrupt processing to the irq * thread. */ #include #include #include #include #include #include #include #include #include #include #include #include "dmaengine.h" #include "fsl_raid.h" #define FSL_RE_MAX_XOR_SRCS 16 #define FSL_RE_MAX_PQ_SRCS 16 #define FSL_RE_MIN_DESCS 256 #define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS) #define FSL_RE_FRAME_FORMAT 0x1 #define FSL_RE_MAX_DATA_LEN (1024*1024) #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx) /* Add descriptors into per chan software queue - submit_q */ static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx) { struct fsl_re_desc *desc; struct fsl_re_chan *re_chan; dma_cookie_t cookie; unsigned long flags; desc = to_fsl_re_dma_desc(tx); re_chan = container_of(tx->chan, struct fsl_re_chan, chan); spin_lock_irqsave(&re_chan->desc_lock, flags); cookie = dma_cookie_assign(tx); list_add_tail(&desc->node, &re_chan->submit_q); spin_unlock_irqrestore(&re_chan->desc_lock, flags); return cookie; } /* Copy descriptor from per chan software queue into hardware job ring */ static void fsl_re_issue_pending(struct dma_chan *chan) { struct fsl_re_chan *re_chan; int avail; struct fsl_re_desc *desc, *_desc; unsigned long flags; re_chan = container_of(chan, struct fsl_re_chan, chan); spin_lock_irqsave(&re_chan->desc_lock, flags); avail = FSL_RE_SLOT_AVAIL( in_be32(&re_chan->jrregs->inbring_slot_avail)); list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) { if (!avail) break; list_move_tail(&desc->node, &re_chan->active_q); memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count], &desc->hwdesc, sizeof(struct fsl_re_hw_desc)); re_chan->inb_count = (re_chan->inb_count + 1) & FSL_RE_RING_SIZE_MASK; out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1)); avail--; } spin_unlock_irqrestore(&re_chan->desc_lock, flags); } static void fsl_re_desc_done(struct fsl_re_desc *desc) { dma_async_tx_callback callback; void *callback_param; dma_cookie_complete(&desc->async_tx); callback = desc->async_tx.callback; callback_param = desc->async_tx.callback_param; if (callback) callback(callback_param); dma_descriptor_unmap(&desc->async_tx); } static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan) { struct fsl_re_desc *desc, *_desc; unsigned long flags; spin_lock_irqsave(&re_chan->desc_lock, flags); list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) { if (async_tx_test_ack(&desc->async_tx)) list_move_tail(&desc->node, &re_chan->free_q); } spin_unlock_irqrestore(&re_chan->desc_lock, flags); fsl_re_issue_pending(&re_chan->chan); } static void fsl_re_dequeue(unsigned long data) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc, *_desc; struct fsl_re_hw_desc *hwdesc; unsigned long flags; unsigned int count, oub_count; int found; re_chan = dev_get_drvdata((struct device *)data); fsl_re_cleanup_descs(re_chan); spin_lock_irqsave(&re_chan->desc_lock, flags); count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full)); while (count--) { found = 0; hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count]; list_for_each_entry_safe(desc, _desc, &re_chan->active_q, node) { /* compare the hw dma addr to find the completed */ if (desc->hwdesc.lbea32 == hwdesc->lbea32 && desc->hwdesc.addr_low == hwdesc->addr_low) { found = 1; break; } } if (found) { fsl_re_desc_done(desc); list_move_tail(&desc->node, &re_chan->ack_q); } else { dev_err(re_chan->dev, "found hwdesc not in sw queue, discard it\n"); } oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK; re_chan->oub_count = oub_count; out_be32(&re_chan->jrregs->oubring_job_rmvd, FSL_RE_RMVD_JOB(1)); } spin_unlock_irqrestore(&re_chan->desc_lock, flags); } /* Per Job Ring interrupt handler */ static irqreturn_t fsl_re_isr(int irq, void *data) { struct fsl_re_chan *re_chan; u32 irqstate, status; re_chan = dev_get_drvdata((struct device *)data); irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status); if (!irqstate) return IRQ_NONE; /* * There's no way in upper layer (read MD layer) to recover from * error conditions except restart everything. In long term we * need to do something more than just crashing */ if (irqstate & FSL_RE_ERROR) { status = in_be32(&re_chan->jrregs->jr_status); dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n", irqstate, status); } /* Clear interrupt */ out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR); tasklet_schedule(&re_chan->irqtask); return IRQ_HANDLED; } static enum dma_status fsl_re_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { return dma_cookie_status(chan, cookie, txstate); } static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index, size_t length, dma_addr_t addr, bool final) { u32 efrl = length & FSL_RE_CF_LENGTH_MASK; efrl |= final << FSL_RE_CF_FINAL_SHIFT; cf[index].efrl32 = efrl; cf[index].addr_high = upper_32_bits(addr); cf[index].addr_low = lower_32_bits(addr); } static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan, struct fsl_re_desc *desc, void *cf, dma_addr_t paddr) { desc->re_chan = re_chan; desc->async_tx.tx_submit = fsl_re_tx_submit; dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan); INIT_LIST_HEAD(&desc->node); desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT; desc->hwdesc.lbea32 = upper_32_bits(paddr); desc->hwdesc.addr_low = lower_32_bits(paddr); desc->cf_addr = cf; desc->cf_paddr = paddr; desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE); desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE; return desc; } static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan, unsigned long flags) { struct fsl_re_desc *desc = NULL; void *cf; dma_addr_t paddr; unsigned long lock_flag; fsl_re_cleanup_descs(re_chan); spin_lock_irqsave(&re_chan->desc_lock, lock_flag); if (!list_empty(&re_chan->free_q)) { /* take one desc from free_q */ desc = list_first_entry(&re_chan->free_q, struct fsl_re_desc, node); list_del(&desc->node); desc->async_tx.flags = flags; } spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); if (!desc) { desc = kzalloc(sizeof(*desc), GFP_NOWAIT); if (!desc) return NULL; cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT, &paddr); if (!cf) { kfree(desc); return NULL; } desc = fsl_re_init_desc(re_chan, desc, cf, paddr); desc->async_tx.flags = flags; spin_lock_irqsave(&re_chan->desc_lock, lock_flag); re_chan->alloc_count++; spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); } return desc; } static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq( struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, unsigned long flags) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc; struct fsl_re_xor_cdb *xor; struct fsl_re_cmpnd_frame *cf; u32 cdb; unsigned int i, j; unsigned int save_src_cnt = src_cnt; int cont_q = 0; re_chan = container_of(chan, struct fsl_re_chan, chan); if (len > FSL_RE_MAX_DATA_LEN) { dev_err(re_chan->dev, "genq tx length %zu, max length %d\n", len, FSL_RE_MAX_DATA_LEN); return NULL; } desc = fsl_re_chan_alloc_desc(re_chan, flags); if (desc <= 0) return NULL; if (scf && (flags & DMA_PREP_CONTINUE)) { cont_q = 1; src_cnt += 1; } /* Filling xor CDB */ cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; xor = desc->cdb_addr; xor->cdb32 = cdb; if (scf) { /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */ for (i = 0; i < save_src_cnt; i++) xor->gfm[i] = scf[i]; if (cont_q) xor->gfm[i++] = 1; } else { /* compute P, that is XOR all srcs */ for (i = 0; i < src_cnt; i++) xor->gfm[i] = 1; } /* Filling frame 0 of compound frame descriptor with CDB */ cf = desc->cf_addr; fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0); /* Fill CFD's 1st frame with dest buffer */ fill_cfd_frame(cf, 1, len, dest, 0); /* Fill CFD's rest of the frames with source buffers */ for (i = 2, j = 0; j < save_src_cnt; i++, j++) fill_cfd_frame(cf, i, len, src[j], 0); if (cont_q) fill_cfd_frame(cf, i++, len, dest, 0); /* Setting the final bit in the last source buffer frame in CFD */ cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; return &desc->async_tx; } /* * Prep function for P parity calculation.In RAID Engine terminology, * XOR calculation is called GenQ calculation done through GenQ command */ static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor( struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt, size_t len, unsigned long flags) { /* NULL let genq take all coef as 1 */ return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags); } /* * Prep function for P/Q parity calculation.In RAID Engine terminology, * P/Q calculation is called GenQQ done through GenQQ command */ static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq( struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, unsigned long flags) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc; struct fsl_re_pq_cdb *pq; struct fsl_re_cmpnd_frame *cf; u32 cdb; u8 *p; int gfmq_len, i, j; unsigned int save_src_cnt = src_cnt; re_chan = container_of(chan, struct fsl_re_chan, chan); if (len > FSL_RE_MAX_DATA_LEN) { dev_err(re_chan->dev, "pq tx length is %zu, max length is %d\n", len, FSL_RE_MAX_DATA_LEN); return NULL; } /* * RE requires at least 2 sources, if given only one source, we pass the * second source same as the first one. * With only one source, generating P is meaningless, only generate Q. */ if (src_cnt == 1) { struct dma_async_tx_descriptor *tx; dma_addr_t dma_src[2]; unsigned char coef[2]; dma_src[0] = *src; coef[0] = *scf; dma_src[1] = *src; coef[1] = 0; tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len, flags); if (tx) desc = to_fsl_re_dma_desc(tx); return tx; } /* * During RAID6 array creation, Linux's MD layer gets P and Q * calculated separately in two steps. But our RAID Engine has * the capability to calculate both P and Q with a single command * Hence to merge well with MD layer, we need to provide a hook * here and call re_jq_prep_dma_genq() function */ if (flags & DMA_PREP_PQ_DISABLE_P) return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt, scf, len, flags); if (flags & DMA_PREP_CONTINUE) src_cnt += 3; desc = fsl_re_chan_alloc_desc(re_chan, flags); if (desc <= 0) return NULL; /* Filling GenQQ CDB */ cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT; cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; pq = desc->cdb_addr; pq->cdb32 = cdb; p = pq->gfm_q1; /* Init gfm_q1[] */ for (i = 0; i < src_cnt; i++) p[i] = 1; /* Align gfm[] to 32bit */ gfmq_len = ALIGN(src_cnt, 4); /* Init gfm_q2[] */ p += gfmq_len; for (i = 0; i < src_cnt; i++) p[i] = scf[i]; /* Filling frame 0 of compound frame descriptor with CDB */ cf = desc->cf_addr; fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0); /* Fill CFD's 1st & 2nd frame with dest buffers */ for (i = 1, j = 0; i < 3; i++, j++) fill_cfd_frame(cf, i, len, dest[j], 0); /* Fill CFD's rest of the frames with source buffers */ for (i = 3, j = 0; j < save_src_cnt; i++, j++) fill_cfd_frame(cf, i, len, src[j], 0); /* PQ computation continuation */ if (flags & DMA_PREP_CONTINUE) { if (src_cnt - save_src_cnt == 3) { p[save_src_cnt] = 0; p[save_src_cnt + 1] = 0; p[save_src_cnt + 2] = 1; fill_cfd_frame(cf, i++, len, dest[0], 0); fill_cfd_frame(cf, i++, len, dest[1], 0); fill_cfd_frame(cf, i++, len, dest[1], 0); } else { dev_err(re_chan->dev, "PQ tx continuation error!\n"); return NULL; } } /* Setting the final bit in the last source buffer frame in CFD */ cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; return &desc->async_tx; } /* * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE * command. Logic of this function will need to be modified once multipage * support is added in Linux's MD/ASYNC Layer */ static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy( struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc; size_t length; struct fsl_re_cmpnd_frame *cf; struct fsl_re_move_cdb *move; u32 cdb; re_chan = container_of(chan, struct fsl_re_chan, chan); if (len > FSL_RE_MAX_DATA_LEN) { dev_err(re_chan->dev, "cp tx length is %zu, max length is %d\n", len, FSL_RE_MAX_DATA_LEN); return NULL; } desc = fsl_re_chan_alloc_desc(re_chan, flags); if (desc <= 0) return NULL; /* Filling move CDB */ cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; move = desc->cdb_addr; move->cdb32 = cdb; /* Filling frame 0 of CFD with move CDB */ cf = desc->cf_addr; fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0); length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN); /* Fill CFD's 1st frame with dest buffer */ fill_cfd_frame(cf, 1, length, dest, 0); /* Fill CFD's 2nd frame with src buffer */ fill_cfd_frame(cf, 2, length, src, 1); return &desc->async_tx; } static int fsl_re_alloc_chan_resources(struct dma_chan *chan) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc; void *cf; dma_addr_t paddr; int i; re_chan = container_of(chan, struct fsl_re_chan, chan); for (i = 0; i < FSL_RE_MIN_DESCS; i++) { desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) break; cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL, &paddr); if (!cf) { kfree(desc); break; } INIT_LIST_HEAD(&desc->node); fsl_re_init_desc(re_chan, desc, cf, paddr); list_add_tail(&desc->node, &re_chan->free_q); re_chan->alloc_count++; } return re_chan->alloc_count; } static void fsl_re_free_chan_resources(struct dma_chan *chan) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc; re_chan = container_of(chan, struct fsl_re_chan, chan); while (re_chan->alloc_count--) { desc = list_first_entry(&re_chan->free_q, struct fsl_re_desc, node); list_del(&desc->node); dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr, desc->cf_paddr); kfree(desc); } if (!list_empty(&re_chan->free_q)) dev_err(re_chan->dev, "chan resource cannot be cleaned!\n"); } static int fsl_re_chan_probe(struct platform_device *ofdev, struct device_node *np, u8 q, u32 off) { struct device *dev, *chandev; struct fsl_re_drv_private *re_priv; struct fsl_re_chan *chan; struct dma_device *dma_dev; u32 ptr; u32 status; int ret = 0, rc; struct platform_device *chan_ofdev; dev = &ofdev->dev; re_priv = dev_get_drvdata(dev); dma_dev = &re_priv->dma_dev; chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL); if (!chan) return -ENOMEM; /* create platform device for chan node */ chan_ofdev = of_platform_device_create(np, NULL, dev); if (!chan_ofdev) { dev_err(dev, "Not able to create ofdev for jr %d\n", q); ret = -EINVAL; goto err_free; } /* read reg property from dts */ rc = of_property_read_u32(np, "reg", &ptr); if (rc) { dev_err(dev, "Reg property not found in jr %d\n", q); ret = -ENODEV; goto err_free; } chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs + off + ptr); /* read irq property from dts */ chan->irq = irq_of_parse_and_map(np, 0); if (!chan->irq) { dev_err(dev, "No IRQ defined for JR %d\n", q); ret = -ENODEV; goto err_free; } snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q); chandev = &chan_ofdev->dev; tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev); ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev); if (ret) { dev_err(dev, "Unable to register interrupt for JR %d\n", q); ret = -EINVAL; goto err_free; } re_priv->re_jrs[q] = chan; chan->chan.device = dma_dev; chan->chan.private = chan; chan->dev = chandev; chan->re_dev = re_priv; spin_lock_init(&chan->desc_lock); INIT_LIST_HEAD(&chan->ack_q); INIT_LIST_HEAD(&chan->active_q); INIT_LIST_HEAD(&chan->submit_q); INIT_LIST_HEAD(&chan->free_q); chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, GFP_KERNEL, &chan->inb_phys_addr); if (!chan->inb_ring_virt_addr) { dev_err(dev, "No dma memory for inb_ring_virt_addr\n"); ret = -ENOMEM; goto err_free; } chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, GFP_KERNEL, &chan->oub_phys_addr); if (!chan->oub_ring_virt_addr) { dev_err(dev, "No dma memory for oub_ring_virt_addr\n"); ret = -ENOMEM; goto err_free_1; } /* Program the Inbound/Outbound ring base addresses and size */ out_be32(&chan->jrregs->inbring_base_h, chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK); out_be32(&chan->jrregs->oubring_base_h, chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK); out_be32(&chan->jrregs->inbring_base_l, chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); out_be32(&chan->jrregs->oubring_base_l, chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); out_be32(&chan->jrregs->inbring_size, FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); out_be32(&chan->jrregs->oubring_size, FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); /* Read LIODN value from u-boot */ status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK; /* Program the CFG reg */ out_be32(&chan->jrregs->jr_config_1, FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status); dev_set_drvdata(chandev, chan); /* Enable RE/CHAN */ out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE); return 0; err_free_1: dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, chan->inb_phys_addr); err_free: return ret; } /* Probe function for RAID Engine */ static int fsl_re_probe(struct platform_device *ofdev) { struct fsl_re_drv_private *re_priv; struct device_node *np; struct device_node *child; u32 off; u8 ridx = 0; struct dma_device *dma_dev; struct resource *res; int rc; struct device *dev = &ofdev->dev; re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL); if (!re_priv) return -ENOMEM; res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; /* IOMAP the entire RAID Engine region */ re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!re_priv->re_regs) return -EBUSY; /* Program the RE mode */ out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE); /* Program Galois Field polynomial */ out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY); dev_info(dev, "version %x, mode %x, gfp %x\n", in_be32(&re_priv->re_regs->re_version_id), in_be32(&re_priv->re_regs->global_config), in_be32(&re_priv->re_regs->galois_field_config)); dma_dev = &re_priv->dma_dev; dma_dev->dev = dev; INIT_LIST_HEAD(&dma_dev->channels); dma_set_mask(dev, DMA_BIT_MASK(40)); dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources; dma_dev->device_tx_status = fsl_re_tx_status; dma_dev->device_issue_pending = fsl_re_issue_pending; dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS; dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor; dma_cap_set(DMA_XOR, dma_dev->cap_mask); dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS; dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq; dma_cap_set(DMA_PQ, dma_dev->cap_mask); dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy; dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); dma_dev->device_free_chan_resources = fsl_re_free_chan_resources; re_priv->total_chans = 0; re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev, FSL_RE_CF_CDB_SIZE, FSL_RE_CF_CDB_ALIGN, 0); if (!re_priv->cf_desc_pool) { dev_err(dev, "No memory for fsl re_cf desc pool\n"); return -ENOMEM; } re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev, sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE, FSL_RE_FRAME_ALIGN, 0); if (!re_priv->hw_desc_pool) { dev_err(dev, "No memory for fsl re_hw desc pool\n"); return -ENOMEM; } dev_set_drvdata(dev, re_priv); /* Parse Device tree to find out the total number of JQs present */ for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") { rc = of_property_read_u32(np, "reg", &off); if (rc) { dev_err(dev, "Reg property not found in JQ node\n"); return -ENODEV; } /* Find out the Job Rings present under each JQ */ for_each_child_of_node(np, child) { rc = of_device_is_compatible(child, "fsl,raideng-v1.0-job-ring"); if (rc) { fsl_re_chan_probe(ofdev, child, ridx++, off); re_priv->total_chans++; } } } dma_async_device_register(dma_dev); return 0; } static void fsl_re_remove_chan(struct fsl_re_chan *chan) { tasklet_kill(&chan->irqtask); dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, chan->inb_phys_addr); dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr, chan->oub_phys_addr); } static int fsl_re_remove(struct platform_device *ofdev) { struct fsl_re_drv_private *re_priv; struct device *dev; int i; dev = &ofdev->dev; re_priv = dev_get_drvdata(dev); /* Cleanup chan related memory areas */ for (i = 0; i < re_priv->total_chans; i++) fsl_re_remove_chan(re_priv->re_jrs[i]); /* Unregister the driver */ dma_async_device_unregister(&re_priv->dma_dev); return 0; } static struct of_device_id fsl_re_ids[] = { { .compatible = "fsl,raideng-v1.0", }, {} }; static struct platform_driver fsl_re_driver = { .driver = { .name = "fsl-raideng", .of_match_table = fsl_re_ids, }, .probe = fsl_re_probe, .remove = fsl_re_remove, }; module_platform_driver(fsl_re_driver); MODULE_AUTHOR("Harninder Rai "); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");