/* * edac_device.c * (C) 2007 www.douglaskthompson.com * * This file may be distributed under the terms of the * GNU General Public License. * * Written by Doug Thompson <norsk5@xmission.com> * * edac_device API implementation * 19 Jan 2007 */ #include <linux/module.h> #include <linux/types.h> #include <linux/smp.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/highmem.h> #include <linux/timer.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/sysdev.h> #include <linux/ctype.h> #include <linux/workqueue.h> #include <asm/uaccess.h> #include <asm/page.h> #include "edac_core.h" #include "edac_module.h" /* lock for the list: 'edac_device_list', manipulation of this list * is protected by the 'device_ctls_mutex' lock */ static DEFINE_MUTEX(device_ctls_mutex); static LIST_HEAD(edac_device_list); #ifdef CONFIG_EDAC_DEBUG static void edac_device_dump_device(struct edac_device_ctl_info *edac_dev) { debugf3("\tedac_dev = %p dev_idx=%d \n", edac_dev, edac_dev->dev_idx); debugf4("\tedac_dev->edac_check = %p\n", edac_dev->edac_check); debugf3("\tdev = %p\n", edac_dev->dev); debugf3("\tmod_name:ctl_name = %s:%s\n", edac_dev->mod_name, edac_dev->ctl_name); debugf3("\tpvt_info = %p\n\n", edac_dev->pvt_info); } #endif /* CONFIG_EDAC_DEBUG */ /* * edac_device_alloc_ctl_info() * Allocate a new edac device control info structure * * The control structure is allocated in complete chunk * from the OS. It is in turn sub allocated to the * various objects that compose the struture * * The structure has a 'nr_instance' array within itself. * Each instance represents a major component * Example: L1 cache and L2 cache are 2 instance components * * Within each instance is an array of 'nr_blocks' blockoffsets */ struct edac_device_ctl_info *edac_device_alloc_ctl_info( unsigned sz_private, char *edac_device_name, unsigned nr_instances, char *edac_block_name, unsigned nr_blocks, unsigned offset_value, /* zero, 1, or other based offset */ struct edac_dev_sysfs_block_attribute *attrib_spec, unsigned nr_attrib, int device_index) { struct edac_device_ctl_info *dev_ctl; struct edac_device_instance *dev_inst, *inst; struct edac_device_block *dev_blk, *blk_p, *blk; struct edac_dev_sysfs_block_attribute *dev_attrib, *attrib_p, *attrib; unsigned total_size; unsigned count; unsigned instance, block, attr; void *pvt; int err; debugf4("%s() instances=%d blocks=%d\n", __func__, nr_instances, nr_blocks); /* Calculate the size of memory we need to allocate AND * determine the offsets of the various item arrays * (instance,block,attrib) from the start of an allocated structure. * We want the alignment of each item (instance,block,attrib) * to be at least as stringent as what the compiler would * provide if we could simply hardcode everything into a single struct. */ dev_ctl = (struct edac_device_ctl_info *)NULL; /* Calc the 'end' offset past end of ONE ctl_info structure * which will become the start of the 'instance' array */ dev_inst = edac_align_ptr(&dev_ctl[1], sizeof(*dev_inst)); /* Calc the 'end' offset past the instance array within the ctl_info * which will become the start of the block array */ dev_blk = edac_align_ptr(&dev_inst[nr_instances], sizeof(*dev_blk)); /* Calc the 'end' offset past the dev_blk array * which will become the start of the attrib array, if any. */ count = nr_instances * nr_blocks; dev_attrib = edac_align_ptr(&dev_blk[count], sizeof(*dev_attrib)); /* Check for case of when an attribute array is specified */ if (nr_attrib > 0) { /* calc how many nr_attrib we need */ count *= nr_attrib; /* Calc the 'end' offset past the attributes array */ pvt = edac_align_ptr(&dev_attrib[count], sz_private); } else { /* no attribute array specificed */ pvt = edac_align_ptr(dev_attrib, sz_private); } /* 'pvt' now points to where the private data area is. * At this point 'pvt' (like dev_inst,dev_blk and dev_attrib) * is baselined at ZERO */ total_size = ((unsigned long)pvt) + sz_private; /* Allocate the amount of memory for the set of control structures */ dev_ctl = kzalloc(total_size, GFP_KERNEL); if (dev_ctl == NULL) return NULL; /* Adjust pointers so they point within the actual memory we * just allocated rather than an imaginary chunk of memory * located at address 0. * 'dev_ctl' points to REAL memory, while the others are * ZERO based and thus need to be adjusted to point within * the allocated memory. */ dev_inst = (struct edac_device_instance *) (((char *)dev_ctl) + ((unsigned long)dev_inst)); dev_blk = (struct edac_device_block *) (((char *)dev_ctl) + ((unsigned long)dev_blk)); dev_attrib = (struct edac_dev_sysfs_block_attribute *) (((char *)dev_ctl) + ((unsigned long)dev_attrib)); pvt = sz_private ? (((char *)dev_ctl) + ((unsigned long)pvt)) : NULL; /* Begin storing the information into the control info structure */ dev_ctl->dev_idx = device_index; dev_ctl->nr_instances = nr_instances; dev_ctl->instances = dev_inst; dev_ctl->pvt_info = pvt; /* Default logging of CEs and UEs */ dev_ctl->log_ce = 1; dev_ctl->log_ue = 1; /* Name of this edac device */ snprintf(dev_ctl->name,sizeof(dev_ctl->name),"%s",edac_device_name); debugf4("%s() edac_dev=%p next after end=%p\n", __func__, dev_ctl, pvt + sz_private ); /* Initialize every Instance */ for (instance = 0; instance < nr_instances; instance++) { inst = &dev_inst[instance]; inst->ctl = dev_ctl; inst->nr_blocks = nr_blocks; blk_p = &dev_blk[instance * nr_blocks]; inst->blocks = blk_p; /* name of this instance */ snprintf(inst->name, sizeof(inst->name), "%s%u", edac_device_name, instance); /* Initialize every block in each instance */ for (block = 0; block < nr_blocks; block++) { blk = &blk_p[block]; blk->instance = inst; snprintf(blk->name, sizeof(blk->name), "%s%d", edac_block_name, block+offset_value); debugf4("%s() instance=%d inst_p=%p block=#%d " "block_p=%p name='%s'\n", __func__, instance, inst, block, blk, blk->name); /* if there are NO attributes OR no attribute pointer * then continue on to next block iteration */ if ((nr_attrib == 0) || (attrib_spec == NULL)) continue; /* setup the attribute array for this block */ blk->nr_attribs = nr_attrib; attrib_p = &dev_attrib[block*nr_instances*nr_attrib]; blk->block_attributes = attrib_p; debugf4("%s() THIS BLOCK_ATTRIB=%p\n", __func__, blk->block_attributes); /* Initialize every user specified attribute in this * block with the data the caller passed in * Each block gets its own copy of pointers, * and its unique 'value' */ for (attr = 0; attr < nr_attrib; attr++) { attrib = &attrib_p[attr]; /* populate the unique per attrib * with the code pointers and info */ attrib->attr = attrib_spec[attr].attr; attrib->show = attrib_spec[attr].show; attrib->store = attrib_spec[attr].store; attrib->block = blk; /* up link */ debugf4("%s() alloc-attrib=%p attrib_name='%s' " "attrib-spec=%p spec-name=%s\n", __func__, attrib, attrib->attr.name, &attrib_spec[attr], attrib_spec[attr].attr.name ); } } } /* Mark this instance as merely ALLOCATED */ dev_ctl->op_state = OP_ALLOC; /* * Initialize the 'root' kobj for the edac_device controller */ err = edac_device_register_sysfs_main_kobj(dev_ctl); if (err) { kfree(dev_ctl); return NULL; } /* at this point, the root kobj is valid, and in order to * 'free' the object, then the function: * edac_device_unregister_sysfs_main_kobj() must be called * which will perform kobj unregistration and the actual free * will occur during the kobject callback operation */ return dev_ctl; } EXPORT_SYMBOL_GPL(edac_device_alloc_ctl_info); /* * edac_device_free_ctl_info() * frees the memory allocated by the edac_device_alloc_ctl_info() * function */ void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info) { edac_device_unregister_sysfs_main_kobj(ctl_info); } EXPORT_SYMBOL_GPL(edac_device_free_ctl_info); /* * find_edac_device_by_dev * scans the edac_device list for a specific 'struct device *' * * lock to be held prior to call: device_ctls_mutex * * Return: * pointer to control structure managing 'dev' * NULL if not found on list */ static struct edac_device_ctl_info *find_edac_device_by_dev(struct device *dev) { struct edac_device_ctl_info *edac_dev; struct list_head *item; debugf0("%s()\n", __func__); list_for_each(item, &edac_device_list) { edac_dev = list_entry(item, struct edac_device_ctl_info, link); if (edac_dev->dev == dev) return edac_dev; } return NULL; } /* * add_edac_dev_to_global_list * Before calling this function, caller must * assign a unique value to edac_dev->dev_idx. * * lock to be held prior to call: device_ctls_mutex * * Return: * 0 on success * 1 on failure. */ static int add_edac_dev_to_global_list(struct edac_device_ctl_info *edac_dev) { struct list_head *item, *insert_before; struct edac_device_ctl_info *rover; insert_before = &edac_device_list; /* Determine if already on the list */ rover = find_edac_device_by_dev(edac_dev->dev); if (unlikely(rover != NULL)) goto fail0; /* Insert in ascending order by 'dev_idx', so find position */ list_for_each(item, &edac_device_list) { rover = list_entry(item, struct edac_device_ctl_info, link); if (rover->dev_idx >= edac_dev->dev_idx) { if (unlikely(rover->dev_idx == edac_dev->dev_idx)) goto fail1; insert_before = item; break; } } list_add_tail_rcu(&edac_dev->link, insert_before); return 0; fail0: edac_printk(KERN_WARNING, EDAC_MC, "%s (%s) %s %s already assigned %d\n", dev_name(rover->dev), edac_dev_name(rover), rover->mod_name, rover->ctl_name, rover->dev_idx); return 1; fail1: edac_printk(KERN_WARNING, EDAC_MC, "bug in low-level driver: attempt to assign\n" " duplicate dev_idx %d in %s()\n", rover->dev_idx, __func__); return 1; } /* * del_edac_device_from_global_list */ static void del_edac_device_from_global_list(struct edac_device_ctl_info *edac_device) { list_del_rcu(&edac_device->link); /* these are for safe removal of devices from global list while * NMI handlers may be traversing list */ synchronize_rcu(); INIT_LIST_HEAD(&edac_device->link); } /* * edac_device_workq_function * performs the operation scheduled by a workq request * * this workq is embedded within an edac_device_ctl_info * structure, that needs to be polled for possible error events. * * This operation is to acquire the list mutex lock * (thus preventing insertation or deletion) * and then call the device's poll function IFF this device is * running polled and there is a poll function defined. */ static void edac_device_workq_function(struct work_struct *work_req) { struct delayed_work *d_work = to_delayed_work(work_req); struct edac_device_ctl_info *edac_dev = to_edac_device_ctl_work(d_work); mutex_lock(&device_ctls_mutex); /* If we are being removed, bail out immediately */ if (edac_dev->op_state == OP_OFFLINE) { mutex_unlock(&device_ctls_mutex); return; } /* Only poll controllers that are running polled and have a check */ if ((edac_dev->op_state == OP_RUNNING_POLL) && (edac_dev->edac_check != NULL)) { edac_dev->edac_check(edac_dev); } mutex_unlock(&device_ctls_mutex); /* Reschedule the workq for the next time period to start again * if the number of msec is for 1 sec, then adjust to the next * whole one second to save timers fireing all over the period * between integral seconds */ if (edac_dev->poll_msec == 1000) queue_delayed_work(edac_workqueue, &edac_dev->work, round_jiffies_relative(edac_dev->delay)); else queue_delayed_work(edac_workqueue, &edac_dev->work, edac_dev->delay); } /* * edac_device_workq_setup * initialize a workq item for this edac_device instance * passing in the new delay period in msec */ void edac_device_workq_setup(struct edac_device_ctl_info *edac_dev, unsigned msec) { debugf0("%s()\n", __func__); /* take the arg 'msec' and set it into the control structure * to used in the time period calculation * then calc the number of jiffies that represents */ edac_dev->poll_msec = msec; edac_dev->delay = msecs_to_jiffies(msec); INIT_DELAYED_WORK(&edac_dev->work, edac_device_workq_function); /* optimize here for the 1 second case, which will be normal value, to * fire ON the 1 second time event. This helps reduce all sorts of * timers firing on sub-second basis, while they are happy * to fire together on the 1 second exactly */ if (edac_dev->poll_msec == 1000) queue_delayed_work(edac_workqueue, &edac_dev->work, round_jiffies_relative(edac_dev->delay)); else queue_delayed_work(edac_workqueue, &edac_dev->work, edac_dev->delay); } /* * edac_device_workq_teardown * stop the workq processing on this edac_dev */ void edac_device_workq_teardown(struct edac_device_ctl_info *edac_dev) { int status; status = cancel_delayed_work(&edac_dev->work); if (status == 0) { /* workq instance might be running, wait for it */ flush_workqueue(edac_workqueue); } } /* * edac_device_reset_delay_period * * need to stop any outstanding workq queued up at this time * because we will be resetting the sleep time. * Then restart the workq on the new delay */ void edac_device_reset_delay_period(struct edac_device_ctl_info *edac_dev, unsigned long value) { /* cancel the current workq request, without the mutex lock */ edac_device_workq_teardown(edac_dev); /* acquire the mutex before doing the workq setup */ mutex_lock(&device_ctls_mutex); /* restart the workq request, with new delay value */ edac_device_workq_setup(edac_dev, value); mutex_unlock(&device_ctls_mutex); } /* * edac_device_alloc_index: Allocate a unique device index number * * Return: * allocated index number */ int edac_device_alloc_index(void) { static atomic_t device_indexes = ATOMIC_INIT(0); return atomic_inc_return(&device_indexes) - 1; } EXPORT_SYMBOL_GPL(edac_device_alloc_index); /** * edac_device_add_device: Insert the 'edac_dev' structure into the * edac_device global list and create sysfs entries associated with * edac_device structure. * @edac_device: pointer to the edac_device structure to be added to the list * 'edac_device' structure. * * Return: * 0 Success * !0 Failure */ int edac_device_add_device(struct edac_device_ctl_info *edac_dev) { debugf0("%s()\n", __func__); #ifdef CONFIG_EDAC_DEBUG if (edac_debug_level >= 3) edac_device_dump_device(edac_dev); #endif mutex_lock(&device_ctls_mutex); if (add_edac_dev_to_global_list(edac_dev)) goto fail0; /* set load time so that error rate can be tracked */ edac_dev->start_time = jiffies; /* create this instance's sysfs entries */ if (edac_device_create_sysfs(edac_dev)) { edac_device_printk(edac_dev, KERN_WARNING, "failed to create sysfs device\n"); goto fail1; } /* If there IS a check routine, then we are running POLLED */ if (edac_dev->edac_check != NULL) { /* This instance is NOW RUNNING */ edac_dev->op_state = OP_RUNNING_POLL; /* * enable workq processing on this instance, * default = 1000 msec */ edac_device_workq_setup(edac_dev, 1000); } else { edac_dev->op_state = OP_RUNNING_INTERRUPT; } /* Report action taken */ edac_device_printk(edac_dev, KERN_INFO, "Giving out device to module '%s' controller " "'%s': DEV '%s' (%s)\n", edac_dev->mod_name, edac_dev->ctl_name, edac_dev_name(edac_dev), edac_op_state_to_string(edac_dev->op_state)); mutex_unlock(&device_ctls_mutex); return 0; fail1: /* Some error, so remove the entry from the lsit */ del_edac_device_from_global_list(edac_dev); fail0: mutex_unlock(&device_ctls_mutex); return 1; } EXPORT_SYMBOL_GPL(edac_device_add_device); /** * edac_device_del_device: * Remove sysfs entries for specified edac_device structure and * then remove edac_device structure from global list * * @pdev: * Pointer to 'struct device' representing edac_device * structure to remove. * * Return: * Pointer to removed edac_device structure, * OR NULL if device not found. */ struct edac_device_ctl_info *edac_device_del_device(struct device *dev) { struct edac_device_ctl_info *edac_dev; debugf0("%s()\n", __func__); mutex_lock(&device_ctls_mutex); /* Find the structure on the list, if not there, then leave */ edac_dev = find_edac_device_by_dev(dev); if (edac_dev == NULL) { mutex_unlock(&device_ctls_mutex); return NULL; } /* mark this instance as OFFLINE */ edac_dev->op_state = OP_OFFLINE; /* deregister from global list */ del_edac_device_from_global_list(edac_dev); mutex_unlock(&device_ctls_mutex); /* clear workq processing on this instance */ edac_device_workq_teardown(edac_dev); /* Tear down the sysfs entries for this instance */ edac_device_remove_sysfs(edac_dev); edac_printk(KERN_INFO, EDAC_MC, "Removed device %d for %s %s: DEV %s\n", edac_dev->dev_idx, edac_dev->mod_name, edac_dev->ctl_name, edac_dev_name(edac_dev)); return edac_dev; } EXPORT_SYMBOL_GPL(edac_device_del_device); static inline int edac_device_get_log_ce(struct edac_device_ctl_info *edac_dev) { return edac_dev->log_ce; } static inline int edac_device_get_log_ue(struct edac_device_ctl_info *edac_dev) { return edac_dev->log_ue; } static inline int edac_device_get_panic_on_ue(struct edac_device_ctl_info *edac_dev) { return edac_dev->panic_on_ue; } /* * edac_device_handle_ce * perform a common output and handling of an 'edac_dev' CE event */ void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev, int inst_nr, int block_nr, const char *msg) { struct edac_device_instance *instance; struct edac_device_block *block = NULL; if ((inst_nr >= edac_dev->nr_instances) || (inst_nr < 0)) { edac_device_printk(edac_dev, KERN_ERR, "INTERNAL ERROR: 'instance' out of range " "(%d >= %d)\n", inst_nr, edac_dev->nr_instances); return; } instance = edac_dev->instances + inst_nr; if ((block_nr >= instance->nr_blocks) || (block_nr < 0)) { edac_device_printk(edac_dev, KERN_ERR, "INTERNAL ERROR: instance %d 'block' " "out of range (%d >= %d)\n", inst_nr, block_nr, instance->nr_blocks); return; } if (instance->nr_blocks > 0) { block = instance->blocks + block_nr; block->counters.ce_count++; } /* Propagate the count up the 'totals' tree */ instance->counters.ce_count++; edac_dev->counters.ce_count++; if (edac_device_get_log_ce(edac_dev)) edac_device_printk(edac_dev, KERN_WARNING, "CE: %s instance: %s block: %s '%s'\n", edac_dev->ctl_name, instance->name, block ? block->name : "N/A", msg); } EXPORT_SYMBOL_GPL(edac_device_handle_ce); /* * edac_device_handle_ue * perform a common output and handling of an 'edac_dev' UE event */ void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev, int inst_nr, int block_nr, const char *msg) { struct edac_device_instance *instance; struct edac_device_block *block = NULL; if ((inst_nr >= edac_dev->nr_instances) || (inst_nr < 0)) { edac_device_printk(edac_dev, KERN_ERR, "INTERNAL ERROR: 'instance' out of range " "(%d >= %d)\n", inst_nr, edac_dev->nr_instances); return; } instance = edac_dev->instances + inst_nr; if ((block_nr >= instance->nr_blocks) || (block_nr < 0)) { edac_device_printk(edac_dev, KERN_ERR, "INTERNAL ERROR: instance %d 'block' " "out of range (%d >= %d)\n", inst_nr, block_nr, instance->nr_blocks); return; } if (instance->nr_blocks > 0) { block = instance->blocks + block_nr; block->counters.ue_count++; } /* Propagate the count up the 'totals' tree */ instance->counters.ue_count++; edac_dev->counters.ue_count++; if (edac_device_get_log_ue(edac_dev)) edac_device_printk(edac_dev, KERN_EMERG, "UE: %s instance: %s block: %s '%s'\n", edac_dev->ctl_name, instance->name, block ? block->name : "N/A", msg); if (edac_device_get_panic_on_ue(edac_dev)) panic("EDAC %s: UE instance: %s block %s '%s'\n", edac_dev->ctl_name, instance->name, block ? block->name : "N/A", msg); } EXPORT_SYMBOL_GPL(edac_device_handle_ue);