/* * macsonic.c * * (C) 2005 Finn Thain * * Converted to DMA API, converted to unified driver model, made it work as * a module again, and from the mac68k project, introduced more 32-bit cards * and dhd's support for 16-bit cards. * * (C) 1998 Alan Cox * * Debugging Andreas Ehliar, Michael Schmitz * * Based on code * (C) 1996 by Thomas Bogendoerfer (tsbogend@bigbug.franken.de) * * This driver is based on work from Andreas Busse, but most of * the code is rewritten. * * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de) * * A driver for the Mac onboard Sonic ethernet chip. * * 98/12/21 MSch: judged from tests on Q800, it's basically working, * but eating up both receive and transmit resources * and duplicating packets. Needs more testing. * * 99/01/03 MSch: upgraded to version 0.92 of the core driver, fixed. * * 00/10/31 sammy@oh.verio.com: Updated driver for 2.4 kernels, fixed problems * on centris. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/gfp.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/nubus.h> #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/bitrev.h> #include <linux/slab.h> #include <asm/bootinfo.h> #include <asm/system.h> #include <asm/pgtable.h> #include <asm/io.h> #include <asm/hwtest.h> #include <asm/dma.h> #include <asm/macintosh.h> #include <asm/macints.h> #include <asm/mac_via.h> static char mac_sonic_string[] = "macsonic"; #include "sonic.h" /* These should basically be bus-size and endian independent (since the SONIC is at least smart enough that it uses the same endianness as the host, unlike certain less enlightened Macintosh NICs) */ #define SONIC_READ(reg) (nubus_readw(dev->base_addr + (reg * 4) \ + lp->reg_offset)) #define SONIC_WRITE(reg,val) (nubus_writew(val, dev->base_addr + (reg * 4) \ + lp->reg_offset)) /* use 0 for production, 1 for verification, >1 for debug */ #ifdef SONIC_DEBUG static unsigned int sonic_debug = SONIC_DEBUG; #else static unsigned int sonic_debug = 1; #endif static int sonic_version_printed; /* For onboard SONIC */ #define ONBOARD_SONIC_REGISTERS 0x50F0A000 #define ONBOARD_SONIC_PROM_BASE 0x50f08000 enum macsonic_type { MACSONIC_DUODOCK, MACSONIC_APPLE, MACSONIC_APPLE16, MACSONIC_DAYNA, MACSONIC_DAYNALINK }; /* For the built-in SONIC in the Duo Dock */ #define DUODOCK_SONIC_REGISTERS 0xe10000 #define DUODOCK_SONIC_PROM_BASE 0xe12000 /* For Apple-style NuBus SONIC */ #define APPLE_SONIC_REGISTERS 0 #define APPLE_SONIC_PROM_BASE 0x40000 /* Daynalink LC SONIC */ #define DAYNALINK_PROM_BASE 0x400000 /* For Dayna-style NuBus SONIC (haven't seen one yet) */ #define DAYNA_SONIC_REGISTERS 0x180000 /* This is what OpenBSD says. However, this is definitely in NuBus ROM space so we should be able to get it by walking the NuBus resource directories */ #define DAYNA_SONIC_MAC_ADDR 0xffe004 #define SONIC_READ_PROM(addr) nubus_readb(prom_addr+addr) /* * For reversing the PROM address */ static inline void bit_reverse_addr(unsigned char addr[6]) { int i; for(i = 0; i < 6; i++) addr[i] = bitrev8(addr[i]); } static irqreturn_t macsonic_interrupt(int irq, void *dev_id) { irqreturn_t result; unsigned long flags; local_irq_save(flags); result = sonic_interrupt(irq, dev_id); local_irq_restore(flags); return result; } static int macsonic_open(struct net_device* dev) { int retval; retval = request_irq(dev->irq, sonic_interrupt, IRQ_FLG_FAST, "sonic", dev); if (retval) { printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq); goto err; } /* Under the A/UX interrupt scheme, the onboard SONIC interrupt comes * in at priority level 3. However, we sometimes get the level 2 inter- * rupt as well, which must prevent re-entrance of the sonic handler. */ if (dev->irq == IRQ_AUTO_3) { retval = request_irq(IRQ_NUBUS_9, macsonic_interrupt, IRQ_FLG_FAST, "sonic", dev); if (retval) { printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, IRQ_NUBUS_9); goto err_irq; } } retval = sonic_open(dev); if (retval) goto err_irq_nubus; return 0; err_irq_nubus: if (dev->irq == IRQ_AUTO_3) free_irq(IRQ_NUBUS_9, dev); err_irq: free_irq(dev->irq, dev); err: return retval; } static int macsonic_close(struct net_device* dev) { int err; err = sonic_close(dev); free_irq(dev->irq, dev); if (dev->irq == IRQ_AUTO_3) free_irq(IRQ_NUBUS_9, dev); return err; } static const struct net_device_ops macsonic_netdev_ops = { .ndo_open = macsonic_open, .ndo_stop = macsonic_close, .ndo_start_xmit = sonic_send_packet, .ndo_set_multicast_list = sonic_multicast_list, .ndo_tx_timeout = sonic_tx_timeout, .ndo_get_stats = sonic_get_stats, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = eth_mac_addr, }; static int __devinit macsonic_init(struct net_device *dev) { struct sonic_local* lp = netdev_priv(dev); /* Allocate the entire chunk of memory for the descriptors. Note that this cannot cross a 64K boundary. */ if ((lp->descriptors = dma_alloc_coherent(lp->device, SIZEOF_SONIC_DESC * SONIC_BUS_SCALE(lp->dma_bitmode), &lp->descriptors_laddr, GFP_KERNEL)) == NULL) { printk(KERN_ERR "%s: couldn't alloc DMA memory for descriptors.\n", dev_name(lp->device)); return -ENOMEM; } /* Now set up the pointers to point to the appropriate places */ lp->cda = lp->descriptors; lp->tda = lp->cda + (SIZEOF_SONIC_CDA * SONIC_BUS_SCALE(lp->dma_bitmode)); lp->rda = lp->tda + (SIZEOF_SONIC_TD * SONIC_NUM_TDS * SONIC_BUS_SCALE(lp->dma_bitmode)); lp->rra = lp->rda + (SIZEOF_SONIC_RD * SONIC_NUM_RDS * SONIC_BUS_SCALE(lp->dma_bitmode)); lp->cda_laddr = lp->descriptors_laddr; lp->tda_laddr = lp->cda_laddr + (SIZEOF_SONIC_CDA * SONIC_BUS_SCALE(lp->dma_bitmode)); lp->rda_laddr = lp->tda_laddr + (SIZEOF_SONIC_TD * SONIC_NUM_TDS * SONIC_BUS_SCALE(lp->dma_bitmode)); lp->rra_laddr = lp->rda_laddr + (SIZEOF_SONIC_RD * SONIC_NUM_RDS * SONIC_BUS_SCALE(lp->dma_bitmode)); dev->netdev_ops = &macsonic_netdev_ops; dev->watchdog_timeo = TX_TIMEOUT; /* * clear tally counter */ SONIC_WRITE(SONIC_CRCT, 0xffff); SONIC_WRITE(SONIC_FAET, 0xffff); SONIC_WRITE(SONIC_MPT, 0xffff); return 0; } #define INVALID_MAC(mac) (memcmp(mac, "\x08\x00\x07", 3) && \ memcmp(mac, "\x00\xA0\x40", 3) && \ memcmp(mac, "\x00\x80\x19", 3) && \ memcmp(mac, "\x00\x05\x02", 3)) static void __devinit mac_onboard_sonic_ethernet_addr(struct net_device *dev) { struct sonic_local *lp = netdev_priv(dev); const int prom_addr = ONBOARD_SONIC_PROM_BASE; unsigned short val; /* * On NuBus boards we can sometimes look in the ROM resources. * No such luck for comm-slot/onboard. * On the PowerBook 520, the PROM base address is a mystery. */ if (hwreg_present((void *)prom_addr)) { int i; for (i = 0; i < 6; i++) dev->dev_addr[i] = SONIC_READ_PROM(i); if (!INVALID_MAC(dev->dev_addr)) return; /* * Most of the time, the address is bit-reversed. The NetBSD * source has a rather long and detailed historical account of * why this is so. */ bit_reverse_addr(dev->dev_addr); if (!INVALID_MAC(dev->dev_addr)) return; /* * If we still have what seems to be a bogus address, we'll * look in the CAM. The top entry should be ours. */ printk(KERN_WARNING "macsonic: MAC address in PROM seems " "to be invalid, trying CAM\n"); } else { printk(KERN_WARNING "macsonic: cannot read MAC address from " "PROM, trying CAM\n"); } /* This only works if MacOS has already initialized the card. */ SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); SONIC_WRITE(SONIC_CEP, 15); val = SONIC_READ(SONIC_CAP2); dev->dev_addr[5] = val >> 8; dev->dev_addr[4] = val & 0xff; val = SONIC_READ(SONIC_CAP1); dev->dev_addr[3] = val >> 8; dev->dev_addr[2] = val & 0xff; val = SONIC_READ(SONIC_CAP0); dev->dev_addr[1] = val >> 8; dev->dev_addr[0] = val & 0xff; if (!INVALID_MAC(dev->dev_addr)) return; /* Still nonsense ... messed up someplace! */ printk(KERN_WARNING "macsonic: MAC address in CAM entry 15 " "seems invalid, will use a random MAC\n"); random_ether_addr(dev->dev_addr); } static int __devinit mac_onboard_sonic_probe(struct net_device *dev) { /* Bwahahaha */ static int once_is_more_than_enough; struct sonic_local* lp = netdev_priv(dev); int sr; int commslot = 0; if (once_is_more_than_enough) return -ENODEV; once_is_more_than_enough = 1; if (!MACH_IS_MAC) return -ENODEV; if (macintosh_config->ether_type != MAC_ETHER_SONIC) return -ENODEV; printk(KERN_INFO "Checking for internal Macintosh ethernet (SONIC).. "); /* Bogus probing, on the models which may or may not have Ethernet (BTW, the Ethernet *is* always at the same address, and nothing else lives there, at least if Apple's documentation is to be believed) */ if (macintosh_config->ident == MAC_MODEL_Q630 || macintosh_config->ident == MAC_MODEL_P588 || macintosh_config->ident == MAC_MODEL_P575 || macintosh_config->ident == MAC_MODEL_C610) { unsigned long flags; int card_present; local_irq_save(flags); card_present = hwreg_present((void*)ONBOARD_SONIC_REGISTERS); local_irq_restore(flags); if (!card_present) { printk("none.\n"); return -ENODEV; } commslot = 1; } printk("yes\n"); /* Danger! My arms are flailing wildly! You *must* set lp->reg_offset * and dev->base_addr before using SONIC_READ() or SONIC_WRITE() */ dev->base_addr = ONBOARD_SONIC_REGISTERS; if (via_alt_mapping) dev->irq = IRQ_AUTO_3; else dev->irq = IRQ_NUBUS_9; if (!sonic_version_printed) { printk(KERN_INFO "%s", version); sonic_version_printed = 1; } printk(KERN_INFO "%s: onboard / comm-slot SONIC at 0x%08lx\n", dev_name(lp->device), dev->base_addr); /* The PowerBook's SONIC is 16 bit always. */ if (macintosh_config->ident == MAC_MODEL_PB520) { lp->reg_offset = 0; lp->dma_bitmode = SONIC_BITMODE16; sr = SONIC_READ(SONIC_SR); } else if (commslot) { /* Some of the comm-slot cards are 16 bit. But some of them are not. The 32-bit cards use offset 2 and have known revisions, we try reading the revision register at offset 2, if we don't get a known revision we assume 16 bit at offset 0. */ lp->reg_offset = 2; lp->dma_bitmode = SONIC_BITMODE16; sr = SONIC_READ(SONIC_SR); if (sr == 0x0004 || sr == 0x0006 || sr == 0x0100 || sr == 0x0101) /* 83932 is 0x0004 or 0x0006, 83934 is 0x0100 or 0x0101 */ lp->dma_bitmode = SONIC_BITMODE32; else { lp->dma_bitmode = SONIC_BITMODE16; lp->reg_offset = 0; sr = SONIC_READ(SONIC_SR); } } else { /* All onboard cards are at offset 2 with 32 bit DMA. */ lp->reg_offset = 2; lp->dma_bitmode = SONIC_BITMODE32; sr = SONIC_READ(SONIC_SR); } printk(KERN_INFO "%s: revision 0x%04x, using %d bit DMA and register offset %d\n", dev_name(lp->device), sr, lp->dma_bitmode?32:16, lp->reg_offset); #if 0 /* This is sometimes useful to find out how MacOS configured the card. */ printk(KERN_INFO "%s: DCR: 0x%04x, DCR2: 0x%04x\n", dev_name(lp->device), SONIC_READ(SONIC_DCR) & 0xffff, SONIC_READ(SONIC_DCR2) & 0xffff); #endif /* Software reset, then initialize control registers. */ SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); SONIC_WRITE(SONIC_DCR, SONIC_DCR_EXBUS | SONIC_DCR_BMS | SONIC_DCR_RFT1 | SONIC_DCR_TFT0 | (lp->dma_bitmode ? SONIC_DCR_DW : 0)); /* This *must* be written back to in order to restore the * extended programmable output bits, as it may not have been * initialised since the hardware reset. */ SONIC_WRITE(SONIC_DCR2, 0); /* Clear *and* disable interrupts to be on the safe side */ SONIC_WRITE(SONIC_IMR, 0); SONIC_WRITE(SONIC_ISR, 0x7fff); /* Now look for the MAC address. */ mac_onboard_sonic_ethernet_addr(dev); /* Shared init code */ return macsonic_init(dev); } static int __devinit mac_nubus_sonic_ethernet_addr(struct net_device *dev, unsigned long prom_addr, int id) { int i; for(i = 0; i < 6; i++) dev->dev_addr[i] = SONIC_READ_PROM(i); /* Some of the addresses are bit-reversed */ if (id != MACSONIC_DAYNA) bit_reverse_addr(dev->dev_addr); return 0; } static int __devinit macsonic_ident(struct nubus_dev *ndev) { if (ndev->dr_hw == NUBUS_DRHW_ASANTE_LC && ndev->dr_sw == NUBUS_DRSW_SONIC_LC) return MACSONIC_DAYNALINK; if (ndev->dr_hw == NUBUS_DRHW_SONIC && ndev->dr_sw == NUBUS_DRSW_APPLE) { /* There has to be a better way to do this... */ if (strstr(ndev->board->name, "DuoDock")) return MACSONIC_DUODOCK; else return MACSONIC_APPLE; } if (ndev->dr_hw == NUBUS_DRHW_SMC9194 && ndev->dr_sw == NUBUS_DRSW_DAYNA) return MACSONIC_DAYNA; if (ndev->dr_hw == NUBUS_DRHW_APPLE_SONIC_LC && ndev->dr_sw == 0) { /* huh? */ return MACSONIC_APPLE16; } return -1; } static int __devinit mac_nubus_sonic_probe(struct net_device *dev) { static int slots; struct nubus_dev* ndev = NULL; struct sonic_local* lp = netdev_priv(dev); unsigned long base_addr, prom_addr; u16 sonic_dcr; int id = -1; int reg_offset, dma_bitmode; /* Find the first SONIC that hasn't been initialized already */ while ((ndev = nubus_find_type(NUBUS_CAT_NETWORK, NUBUS_TYPE_ETHERNET, ndev)) != NULL) { /* Have we seen it already? */ if (slots & (1<<ndev->board->slot)) continue; slots |= 1<<ndev->board->slot; /* Is it one of ours? */ if ((id = macsonic_ident(ndev)) != -1) break; } if (ndev == NULL) return -ENODEV; switch (id) { case MACSONIC_DUODOCK: base_addr = ndev->board->slot_addr + DUODOCK_SONIC_REGISTERS; prom_addr = ndev->board->slot_addr + DUODOCK_SONIC_PROM_BASE; sonic_dcr = SONIC_DCR_EXBUS | SONIC_DCR_RFT0 | SONIC_DCR_RFT1 | SONIC_DCR_TFT0; reg_offset = 2; dma_bitmode = SONIC_BITMODE32; break; case MACSONIC_APPLE: base_addr = ndev->board->slot_addr + APPLE_SONIC_REGISTERS; prom_addr = ndev->board->slot_addr + APPLE_SONIC_PROM_BASE; sonic_dcr = SONIC_DCR_BMS | SONIC_DCR_RFT1 | SONIC_DCR_TFT0; reg_offset = 0; dma_bitmode = SONIC_BITMODE32; break; case MACSONIC_APPLE16: base_addr = ndev->board->slot_addr + APPLE_SONIC_REGISTERS; prom_addr = ndev->board->slot_addr + APPLE_SONIC_PROM_BASE; sonic_dcr = SONIC_DCR_EXBUS | SONIC_DCR_RFT1 | SONIC_DCR_TFT0 | SONIC_DCR_PO1 | SONIC_DCR_BMS; reg_offset = 0; dma_bitmode = SONIC_BITMODE16; break; case MACSONIC_DAYNALINK: base_addr = ndev->board->slot_addr + APPLE_SONIC_REGISTERS; prom_addr = ndev->board->slot_addr + DAYNALINK_PROM_BASE; sonic_dcr = SONIC_DCR_RFT1 | SONIC_DCR_TFT0 | SONIC_DCR_PO1 | SONIC_DCR_BMS; reg_offset = 0; dma_bitmode = SONIC_BITMODE16; break; case MACSONIC_DAYNA: base_addr = ndev->board->slot_addr + DAYNA_SONIC_REGISTERS; prom_addr = ndev->board->slot_addr + DAYNA_SONIC_MAC_ADDR; sonic_dcr = SONIC_DCR_BMS | SONIC_DCR_RFT1 | SONIC_DCR_TFT0 | SONIC_DCR_PO1; reg_offset = 0; dma_bitmode = SONIC_BITMODE16; break; default: printk(KERN_ERR "macsonic: WTF, id is %d\n", id); return -ENODEV; } /* Danger! My arms are flailing wildly! You *must* set lp->reg_offset * and dev->base_addr before using SONIC_READ() or SONIC_WRITE() */ dev->base_addr = base_addr; lp->reg_offset = reg_offset; lp->dma_bitmode = dma_bitmode; dev->irq = SLOT2IRQ(ndev->board->slot); if (!sonic_version_printed) { printk(KERN_INFO "%s", version); sonic_version_printed = 1; } printk(KERN_INFO "%s: %s in slot %X\n", dev_name(lp->device), ndev->board->name, ndev->board->slot); printk(KERN_INFO "%s: revision 0x%04x, using %d bit DMA and register offset %d\n", dev_name(lp->device), SONIC_READ(SONIC_SR), dma_bitmode?32:16, reg_offset); #if 0 /* This is sometimes useful to find out how MacOS configured the card. */ printk(KERN_INFO "%s: DCR: 0x%04x, DCR2: 0x%04x\n", dev_name(lp->device), SONIC_READ(SONIC_DCR) & 0xffff, SONIC_READ(SONIC_DCR2) & 0xffff); #endif /* Software reset, then initialize control registers. */ SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); SONIC_WRITE(SONIC_DCR, sonic_dcr | (dma_bitmode ? SONIC_DCR_DW : 0)); /* This *must* be written back to in order to restore the * extended programmable output bits, since it may not have been * initialised since the hardware reset. */ SONIC_WRITE(SONIC_DCR2, 0); /* Clear *and* disable interrupts to be on the safe side */ SONIC_WRITE(SONIC_IMR, 0); SONIC_WRITE(SONIC_ISR, 0x7fff); /* Now look for the MAC address. */ if (mac_nubus_sonic_ethernet_addr(dev, prom_addr, id) != 0) return -ENODEV; /* Shared init code */ return macsonic_init(dev); } static int __devinit mac_sonic_probe(struct platform_device *pdev) { struct net_device *dev; struct sonic_local *lp; int err; dev = alloc_etherdev(sizeof(struct sonic_local)); if (!dev) return -ENOMEM; lp = netdev_priv(dev); lp->device = &pdev->dev; SET_NETDEV_DEV(dev, &pdev->dev); platform_set_drvdata(pdev, dev); /* This will catch fatal stuff like -ENOMEM as well as success */ err = mac_onboard_sonic_probe(dev); if (err == 0) goto found; if (err != -ENODEV) goto out; err = mac_nubus_sonic_probe(dev); if (err) goto out; found: err = register_netdev(dev); if (err) goto out; printk("%s: MAC %pM IRQ %d\n", dev->name, dev->dev_addr, dev->irq); return 0; out: free_netdev(dev); return err; } MODULE_DESCRIPTION("Macintosh SONIC ethernet driver"); module_param(sonic_debug, int, 0); MODULE_PARM_DESC(sonic_debug, "macsonic debug level (1-4)"); MODULE_ALIAS("platform:macsonic"); #include "sonic.c" static int __devexit mac_sonic_device_remove (struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct sonic_local* lp = netdev_priv(dev); unregister_netdev(dev); dma_free_coherent(lp->device, SIZEOF_SONIC_DESC * SONIC_BUS_SCALE(lp->dma_bitmode), lp->descriptors, lp->descriptors_laddr); free_netdev(dev); return 0; } static struct platform_driver mac_sonic_driver = { .probe = mac_sonic_probe, .remove = __devexit_p(mac_sonic_device_remove), .driver = { .name = mac_sonic_string, .owner = THIS_MODULE, }, }; static int __init mac_sonic_init_module(void) { return platform_driver_register(&mac_sonic_driver); } static void __exit mac_sonic_cleanup_module(void) { platform_driver_unregister(&mac_sonic_driver); } module_init(mac_sonic_init_module); module_exit(mac_sonic_cleanup_module);