/* * Copyright (C) 2003 - 2006 NetXen, Inc. * All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * The full GNU General Public License is included in this distribution * in the file called LICENSE. * * Contact Information: * info@netxen.com * NetXen, * 3965 Freedom Circle, Fourth floor, * Santa Clara, CA 95054 * * * Source file for NIC routines to initialize the Phantom Hardware * */ #include #include #include "netxen_nic.h" #include "netxen_nic_hw.h" #include "netxen_nic_phan_reg.h" struct crb_addr_pair { u32 addr; u32 data; }; unsigned long last_schedule_time; #define NETXEN_MAX_CRB_XFORM 60 static unsigned int crb_addr_xform[NETXEN_MAX_CRB_XFORM]; #define NETXEN_ADDR_ERROR (0xffffffff) #define crb_addr_transform(name) \ crb_addr_xform[NETXEN_HW_PX_MAP_CRB_##name] = \ NETXEN_HW_CRB_HUB_AGT_ADR_##name << 20 #define NETXEN_NIC_XDMA_RESET 0x8000ff static inline void netxen_nic_locked_write_reg(struct netxen_adapter *adapter, unsigned long off, int *data) { void __iomem *addr = pci_base_offset(adapter, off); writel(*data, addr); } static void crb_addr_transform_setup(void) { crb_addr_transform(XDMA); crb_addr_transform(TIMR); crb_addr_transform(SRE); crb_addr_transform(SQN3); crb_addr_transform(SQN2); crb_addr_transform(SQN1); crb_addr_transform(SQN0); crb_addr_transform(SQS3); crb_addr_transform(SQS2); crb_addr_transform(SQS1); crb_addr_transform(SQS0); crb_addr_transform(RPMX7); crb_addr_transform(RPMX6); crb_addr_transform(RPMX5); crb_addr_transform(RPMX4); crb_addr_transform(RPMX3); crb_addr_transform(RPMX2); crb_addr_transform(RPMX1); crb_addr_transform(RPMX0); crb_addr_transform(ROMUSB); crb_addr_transform(SN); crb_addr_transform(QMN); crb_addr_transform(QMS); crb_addr_transform(PGNI); crb_addr_transform(PGND); crb_addr_transform(PGN3); crb_addr_transform(PGN2); crb_addr_transform(PGN1); crb_addr_transform(PGN0); crb_addr_transform(PGSI); crb_addr_transform(PGSD); crb_addr_transform(PGS3); crb_addr_transform(PGS2); crb_addr_transform(PGS1); crb_addr_transform(PGS0); crb_addr_transform(PS); crb_addr_transform(PH); crb_addr_transform(NIU); crb_addr_transform(I2Q); crb_addr_transform(EG); crb_addr_transform(MN); crb_addr_transform(MS); crb_addr_transform(CAS2); crb_addr_transform(CAS1); crb_addr_transform(CAS0); crb_addr_transform(CAM); crb_addr_transform(C2C1); crb_addr_transform(C2C0); crb_addr_transform(SMB); } int netxen_init_firmware(struct netxen_adapter *adapter) { u32 state = 0, loops = 0, err = 0; /* Window 1 call */ state = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE)); if (state == PHAN_INITIALIZE_ACK) return 0; while (state != PHAN_INITIALIZE_COMPLETE && loops < 2000) { udelay(100); /* Window 1 call */ state = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE)); loops++; } if (loops >= 2000) { printk(KERN_ERR "Cmd Peg initialization not complete:%x.\n", state); err = -EIO; return err; } /* Window 1 call */ writel(INTR_SCHEME_PERPORT, NETXEN_CRB_NORMALIZE(adapter, CRB_NIC_CAPABILITIES_HOST)); writel(MPORT_MULTI_FUNCTION_MODE, NETXEN_CRB_NORMALIZE(adapter, CRB_MPORT_MODE)); writel(PHAN_INITIALIZE_ACK, NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE)); return err; } #define NETXEN_ADDR_LIMIT 0xffffffffULL void *netxen_alloc(struct pci_dev *pdev, size_t sz, dma_addr_t * ptr, struct pci_dev **used_dev) { void *addr; addr = pci_alloc_consistent(pdev, sz, ptr); if ((unsigned long long)(*ptr) < NETXEN_ADDR_LIMIT) { *used_dev = pdev; return addr; } pci_free_consistent(pdev, sz, addr, *ptr); addr = pci_alloc_consistent(NULL, sz, ptr); *used_dev = NULL; return addr; } void netxen_initialize_adapter_sw(struct netxen_adapter *adapter) { int ctxid, ring; u32 i; u32 num_rx_bufs = 0; struct netxen_rcv_desc_ctx *rcv_desc; DPRINTK(INFO, "initializing some queues: %p\n", adapter); for (ctxid = 0; ctxid < MAX_RCV_CTX; ++ctxid) { for (ring = 0; ring < NUM_RCV_DESC_RINGS; ring++) { struct netxen_rx_buffer *rx_buf; rcv_desc = &adapter->recv_ctx[ctxid].rcv_desc[ring]; rcv_desc->rcv_free = rcv_desc->max_rx_desc_count; rcv_desc->begin_alloc = 0; rx_buf = rcv_desc->rx_buf_arr; num_rx_bufs = rcv_desc->max_rx_desc_count; /* * Now go through all of them, set reference handles * and put them in the queues. */ for (i = 0; i < num_rx_bufs; i++) { rx_buf->ref_handle = i; rx_buf->state = NETXEN_BUFFER_FREE; DPRINTK(INFO, "Rx buf:ctx%d i(%d) rx_buf:" "%p\n", ctxid, i, rx_buf); rx_buf++; } } } } void netxen_initialize_adapter_hw(struct netxen_adapter *adapter) { int ports = 0; struct netxen_board_info *board_info = &(adapter->ahw.boardcfg); if (netxen_nic_get_board_info(adapter) != 0) printk("%s: Error getting board config info.\n", netxen_nic_driver_name); get_brd_port_by_type(board_info->board_type, &ports); if (ports == 0) printk(KERN_ERR "%s: Unknown board type\n", netxen_nic_driver_name); adapter->ahw.max_ports = ports; } void netxen_initialize_adapter_ops(struct netxen_adapter *adapter) { switch (adapter->ahw.board_type) { case NETXEN_NIC_GBE: adapter->enable_phy_interrupts = netxen_niu_gbe_enable_phy_interrupts; adapter->disable_phy_interrupts = netxen_niu_gbe_disable_phy_interrupts; adapter->handle_phy_intr = netxen_nic_gbe_handle_phy_intr; adapter->macaddr_set = netxen_niu_macaddr_set; adapter->set_mtu = netxen_nic_set_mtu_gb; adapter->set_promisc = netxen_niu_set_promiscuous_mode; adapter->unset_promisc = netxen_niu_set_promiscuous_mode; adapter->phy_read = netxen_niu_gbe_phy_read; adapter->phy_write = netxen_niu_gbe_phy_write; adapter->init_niu = netxen_nic_init_niu_gb; adapter->stop_port = netxen_niu_disable_gbe_port; break; case NETXEN_NIC_XGBE: adapter->enable_phy_interrupts = netxen_niu_xgbe_enable_phy_interrupts; adapter->disable_phy_interrupts = netxen_niu_xgbe_disable_phy_interrupts; adapter->handle_phy_intr = netxen_nic_xgbe_handle_phy_intr; adapter->macaddr_set = netxen_niu_xg_macaddr_set; adapter->set_mtu = netxen_nic_set_mtu_xgb; adapter->init_port = netxen_niu_xg_init_port; adapter->set_promisc = netxen_niu_xg_set_promiscuous_mode; adapter->unset_promisc = netxen_niu_xg_set_promiscuous_mode; adapter->stop_port = netxen_niu_disable_xg_port; break; default: break; } } /* * netxen_decode_crb_addr(0 - utility to translate from internal Phantom CRB * address to external PCI CRB address. */ u32 netxen_decode_crb_addr(u32 addr) { int i; u32 base_addr, offset, pci_base; crb_addr_transform_setup(); pci_base = NETXEN_ADDR_ERROR; base_addr = addr & 0xfff00000; offset = addr & 0x000fffff; for (i = 0; i < NETXEN_MAX_CRB_XFORM; i++) { if (crb_addr_xform[i] == base_addr) { pci_base = i << 20; break; } } if (pci_base == NETXEN_ADDR_ERROR) return pci_base; else return (pci_base + offset); } static long rom_max_timeout = 100; static long rom_lock_timeout = 10000; static long rom_write_timeout = 700; static inline int rom_lock(struct netxen_adapter *adapter) { int iter; u32 done = 0; int timeout = 0; while (!done) { /* acquire semaphore2 from PCI HW block */ netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_LOCK), &done); if (done == 1) break; if (timeout >= rom_lock_timeout) return -EIO; timeout++; /* * Yield CPU */ if (!in_atomic()) schedule(); else { for (iter = 0; iter < 20; iter++) cpu_relax(); /*This a nop instr on i386 */ } } netxen_nic_reg_write(adapter, NETXEN_ROM_LOCK_ID, ROM_LOCK_DRIVER); return 0; } int netxen_wait_rom_done(struct netxen_adapter *adapter) { long timeout = 0; long done = 0; while (done == 0) { done = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_GLB_STATUS); done &= 2; timeout++; if (timeout >= rom_max_timeout) { printk("Timeout reached waiting for rom done"); return -EIO; } } return 0; } static inline int netxen_rom_wren(struct netxen_adapter *adapter) { /* Set write enable latch in ROM status register */ netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, M25P_INSTR_WREN); if (netxen_wait_rom_done(adapter)) { return -1; } return 0; } static inline unsigned int netxen_rdcrbreg(struct netxen_adapter *adapter, unsigned int addr) { unsigned int data = 0xdeaddead; data = netxen_nic_reg_read(adapter, addr); return data; } static inline int netxen_do_rom_rdsr(struct netxen_adapter *adapter) { netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, M25P_INSTR_RDSR); if (netxen_wait_rom_done(adapter)) { return -1; } return netxen_rdcrbreg(adapter, NETXEN_ROMUSB_ROM_RDATA); } static inline void netxen_rom_unlock(struct netxen_adapter *adapter) { u32 val; /* release semaphore2 */ netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_UNLOCK), &val); } int netxen_rom_wip_poll(struct netxen_adapter *adapter) { long timeout = 0; long wip = 1; int val; netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0); while (wip != 0) { val = netxen_do_rom_rdsr(adapter); wip = val & 1; timeout++; if (timeout > rom_max_timeout) { return -1; } } return 0; } static inline int do_rom_fast_write(struct netxen_adapter *adapter, int addr, int data) { if (netxen_rom_wren(adapter)) { return -1; } netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_WDATA, data); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, M25P_INSTR_PP); if (netxen_wait_rom_done(adapter)) { netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0); return -1; } return netxen_rom_wip_poll(adapter); } static inline int do_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp) { if (jiffies > (last_schedule_time + (8 * HZ))) { last_schedule_time = jiffies; schedule(); } netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3); udelay(100); /* prevent bursting on CRB */ netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0xb); if (netxen_wait_rom_done(adapter)) { printk("Error waiting for rom done\n"); return -EIO; } /* reset abyte_cnt and dummy_byte_cnt */ netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0); udelay(100); /* prevent bursting on CRB */ netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0); *valp = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_ROM_RDATA); return 0; } static inline int do_rom_fast_read_words(struct netxen_adapter *adapter, int addr, u8 *bytes, size_t size) { int addridx; int ret = 0; for (addridx = addr; addridx < (addr + size); addridx += 4) { ret = do_rom_fast_read(adapter, addridx, (int *)bytes); if (ret != 0) break; *(int *)bytes = cpu_to_le32(*(int *)bytes); bytes += 4; } return ret; } int netxen_rom_fast_read_words(struct netxen_adapter *adapter, int addr, u8 *bytes, size_t size) { int ret; ret = rom_lock(adapter); if (ret < 0) return ret; ret = do_rom_fast_read_words(adapter, addr, bytes, size); netxen_rom_unlock(adapter); return ret; } int netxen_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp) { int ret; if (rom_lock(adapter) != 0) return -EIO; ret = do_rom_fast_read(adapter, addr, valp); netxen_rom_unlock(adapter); return ret; } int netxen_rom_fast_write(struct netxen_adapter *adapter, int addr, int data) { int ret = 0; if (rom_lock(adapter) != 0) { return -1; } ret = do_rom_fast_write(adapter, addr, data); netxen_rom_unlock(adapter); return ret; } static inline int do_rom_fast_write_words(struct netxen_adapter *adapter, int addr, u8 *bytes, size_t size) { int addridx = addr; int ret = 0; while (addridx < (addr + size)) { int last_attempt = 0; int timeout = 0; int data; data = le32_to_cpu((*(u32*)bytes)); ret = do_rom_fast_write(adapter, addridx, data); if (ret < 0) return ret; while(1) { int data1; ret = do_rom_fast_read(adapter, addridx, &data1); if (ret < 0) return ret; if (data1 == data) break; if (timeout++ >= rom_write_timeout) { if (last_attempt++ < 4) { ret = do_rom_fast_write(adapter, addridx, data); if (ret < 0) return ret; } else { printk(KERN_INFO "Data write did not " "succeed at address 0x%x\n", addridx); break; } } } bytes += 4; addridx += 4; } return ret; } int netxen_rom_fast_write_words(struct netxen_adapter *adapter, int addr, u8 *bytes, size_t size) { int ret = 0; ret = rom_lock(adapter); if (ret < 0) return ret; ret = do_rom_fast_write_words(adapter, addr, bytes, size); netxen_rom_unlock(adapter); return ret; } int netxen_rom_wrsr(struct netxen_adapter *adapter, int data) { int ret; ret = netxen_rom_wren(adapter); if (ret < 0) return ret; netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_ROM_WDATA, data); netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0x1); ret = netxen_wait_rom_done(adapter); if (ret < 0) return ret; return netxen_rom_wip_poll(adapter); } int netxen_rom_rdsr(struct netxen_adapter *adapter) { int ret; ret = rom_lock(adapter); if (ret < 0) return ret; ret = netxen_do_rom_rdsr(adapter); netxen_rom_unlock(adapter); return ret; } int netxen_backup_crbinit(struct netxen_adapter *adapter) { int ret = FLASH_SUCCESS; int val; char *buffer = kmalloc(NETXEN_FLASH_SECTOR_SIZE, GFP_KERNEL); if (!buffer) return -ENOMEM; /* unlock sector 63 */ val = netxen_rom_rdsr(adapter); val = val & 0xe3; ret = netxen_rom_wrsr(adapter, val); if (ret != FLASH_SUCCESS) goto out_kfree; ret = netxen_rom_wip_poll(adapter); if (ret != FLASH_SUCCESS) goto out_kfree; /* copy sector 0 to sector 63 */ ret = netxen_rom_fast_read_words(adapter, NETXEN_CRBINIT_START, buffer, NETXEN_FLASH_SECTOR_SIZE); if (ret != FLASH_SUCCESS) goto out_kfree; ret = netxen_rom_fast_write_words(adapter, NETXEN_FIXED_START, buffer, NETXEN_FLASH_SECTOR_SIZE); if (ret != FLASH_SUCCESS) goto out_kfree; /* lock sector 63 */ val = netxen_rom_rdsr(adapter); if (!(val & 0x8)) { val |= (0x1 << 2); /* lock sector 63 */ if (netxen_rom_wrsr(adapter, val) == 0) { ret = netxen_rom_wip_poll(adapter); if (ret != FLASH_SUCCESS) goto out_kfree; /* lock SR writes */ ret = netxen_rom_wip_poll(adapter); if (ret != FLASH_SUCCESS) goto out_kfree; } } out_kfree: kfree(buffer); return ret; } int netxen_do_rom_se(struct netxen_adapter *adapter, int addr) { netxen_rom_wren(adapter); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, M25P_INSTR_SE); if (netxen_wait_rom_done(adapter)) { netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0); return -1; } return netxen_rom_wip_poll(adapter); } void check_erased_flash(struct netxen_adapter *adapter, int addr) { int i; int val; int count = 0, erased_errors = 0; int range; range = (addr == NETXEN_USER_START) ? NETXEN_FIXED_START : addr + NETXEN_FLASH_SECTOR_SIZE; for (i = addr; i < range; i += 4) { netxen_rom_fast_read(adapter, i, &val); if (val != 0xffffffff) erased_errors++; count++; } if (erased_errors) printk(KERN_INFO "0x%x out of 0x%x words fail to be erased " "for sector address: %x\n", erased_errors, count, addr); } int netxen_rom_se(struct netxen_adapter *adapter, int addr) { int ret = 0; if (rom_lock(adapter) != 0) { return -1; } ret = netxen_do_rom_se(adapter, addr); netxen_rom_unlock(adapter); msleep(30); check_erased_flash(adapter, addr); return ret; } int netxen_flash_erase_sections(struct netxen_adapter *adapter, int start, int end) { int ret = FLASH_SUCCESS; int i; for (i = start; i < end; i++) { ret = netxen_rom_se(adapter, i * NETXEN_FLASH_SECTOR_SIZE); if (ret) break; ret = netxen_rom_wip_poll(adapter); if (ret < 0) return ret; } return ret; } int netxen_flash_erase_secondary(struct netxen_adapter *adapter) { int ret = FLASH_SUCCESS; int start, end; start = NETXEN_SECONDARY_START / NETXEN_FLASH_SECTOR_SIZE; end = NETXEN_USER_START / NETXEN_FLASH_SECTOR_SIZE; ret = netxen_flash_erase_sections(adapter, start, end); return ret; } int netxen_flash_erase_primary(struct netxen_adapter *adapter) { int ret = FLASH_SUCCESS; int start, end; start = NETXEN_PRIMARY_START / NETXEN_FLASH_SECTOR_SIZE; end = NETXEN_SECONDARY_START / NETXEN_FLASH_SECTOR_SIZE; ret = netxen_flash_erase_sections(adapter, start, end); return ret; } void netxen_halt_pegs(struct netxen_adapter *adapter) { netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x3c, 1); netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x3c, 1); netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x3c, 1); netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x3c, 1); } int netxen_flash_unlock(struct netxen_adapter *adapter) { int ret = 0; ret = netxen_rom_wrsr(adapter, 0); if (ret < 0) return ret; ret = netxen_rom_wren(adapter); if (ret < 0) return ret; return ret; } #define NETXEN_BOARDTYPE 0x4008 #define NETXEN_BOARDNUM 0x400c #define NETXEN_CHIPNUM 0x4010 #define NETXEN_ROMBUS_RESET 0xFFFFFFFF #define NETXEN_ROM_FIRST_BARRIER 0x800000000ULL #define NETXEN_ROM_FOUND_INIT 0x400 int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose) { int addr, val, status; int n, i; int init_delay = 0; struct crb_addr_pair *buf; u32 off; /* resetall */ status = netxen_nic_get_board_info(adapter); if (status) printk("%s: netxen_pinit_from_rom: Error getting board info\n", netxen_nic_driver_name); netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET, NETXEN_ROMBUS_RESET); if (verbose) { int val; if (netxen_rom_fast_read(adapter, NETXEN_BOARDTYPE, &val) == 0) printk("P2 ROM board type: 0x%08x\n", val); else printk("Could not read board type\n"); if (netxen_rom_fast_read(adapter, NETXEN_BOARDNUM, &val) == 0) printk("P2 ROM board num: 0x%08x\n", val); else printk("Could not read board number\n"); if (netxen_rom_fast_read(adapter, NETXEN_CHIPNUM, &val) == 0) printk("P2 ROM chip num: 0x%08x\n", val); else printk("Could not read chip number\n"); } if (netxen_rom_fast_read(adapter, 0, &n) == 0 && (n & NETXEN_ROM_FIRST_BARRIER)) { n &= ~NETXEN_ROM_ROUNDUP; if (n < NETXEN_ROM_FOUND_INIT) { if (verbose) printk("%s: %d CRB init values found" " in ROM.\n", netxen_nic_driver_name, n); } else { printk("%s:n=0x%x Error! NetXen card flash not" " initialized.\n", __FUNCTION__, n); return -EIO; } buf = kcalloc(n, sizeof(struct crb_addr_pair), GFP_KERNEL); if (buf == NULL) { printk("%s: netxen_pinit_from_rom: Unable to calloc " "memory.\n", netxen_nic_driver_name); return -ENOMEM; } for (i = 0; i < n; i++) { if (netxen_rom_fast_read(adapter, 8 * i + 4, &val) != 0 || netxen_rom_fast_read(adapter, 8 * i + 8, &addr) != 0) return -EIO; buf[i].addr = addr; buf[i].data = val; if (verbose) printk("%s: PCI: 0x%08x == 0x%08x\n", netxen_nic_driver_name, (unsigned int) netxen_decode_crb_addr(addr), val); } for (i = 0; i < n; i++) { off = netxen_decode_crb_addr(buf[i].addr); if (off == NETXEN_ADDR_ERROR) { printk(KERN_ERR"CRB init value out of range %x\n", buf[i].addr); continue; } off += NETXEN_PCI_CRBSPACE; /* skipping cold reboot MAGIC */ if (off == NETXEN_CAM_RAM(0x1fc)) continue; /* After writing this register, HW needs time for CRB */ /* to quiet down (else crb_window returns 0xffffffff) */ if (off == NETXEN_ROMUSB_GLB_SW_RESET) { init_delay = 1; /* hold xdma in reset also */ buf[i].data = NETXEN_NIC_XDMA_RESET; } if (ADDR_IN_WINDOW1(off)) { writel(buf[i].data, NETXEN_CRB_NORMALIZE(adapter, off)); } else { netxen_nic_pci_change_crbwindow(adapter, 0); writel(buf[i].data, pci_base_offset(adapter, off)); netxen_nic_pci_change_crbwindow(adapter, 1); } if (init_delay == 1) { ssleep(1); init_delay = 0; } msleep(1); } kfree(buf); /* disable_peg_cache_all */ /* unreset_net_cache */ netxen_nic_hw_read_wx(adapter, NETXEN_ROMUSB_GLB_SW_RESET, &val, 4); netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET, (val & 0xffffff0f)); /* p2dn replyCount */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_D + 0xec, 0x1e); /* disable_peg_cache 0 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_D + 0x4c, 8); /* disable_peg_cache 1 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_I + 0x4c, 8); /* peg_clr_all */ /* peg_clr 0 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x8, 0); netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0xc, 0); /* peg_clr 1 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x8, 0); netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0xc, 0); /* peg_clr 2 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x8, 0); netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0xc, 0); /* peg_clr 3 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x8, 0); netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0xc, 0); } return 0; } int netxen_initialize_adapter_offload(struct netxen_adapter *adapter) { uint64_t addr; uint32_t hi; uint32_t lo; adapter->dummy_dma.addr = pci_alloc_consistent(adapter->ahw.pdev, NETXEN_HOST_DUMMY_DMA_SIZE, &adapter->dummy_dma.phys_addr); if (adapter->dummy_dma.addr == NULL) { printk("%s: ERROR: Could not allocate dummy DMA memory\n", __FUNCTION__); return -ENOMEM; } addr = (uint64_t) adapter->dummy_dma.phys_addr; hi = (addr >> 32) & 0xffffffff; lo = addr & 0xffffffff; writel(hi, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_HI)); writel(lo, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_LO)); return 0; } void netxen_free_adapter_offload(struct netxen_adapter *adapter) { if (adapter->dummy_dma.addr) { writel(0, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_HI)); writel(0, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_LO)); pci_free_consistent(adapter->ahw.pdev, NETXEN_HOST_DUMMY_DMA_SIZE, adapter->dummy_dma.addr, adapter->dummy_dma.phys_addr); adapter->dummy_dma.addr = NULL; } } void netxen_phantom_init(struct netxen_adapter *adapter, int pegtune_val) { u32 val = 0; int loops = 0; if (!pegtune_val) { val = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE)); while (val != PHAN_INITIALIZE_COMPLETE && val != PHAN_INITIALIZE_ACK && loops < 200000) { udelay(100); schedule(); val = readl(NETXEN_CRB_NORMALIZE (adapter, CRB_CMDPEG_STATE)); loops++; } if (val != PHAN_INITIALIZE_COMPLETE) printk("WARNING: Initial boot wait loop failed...\n"); } } int netxen_nic_rx_has_work(struct netxen_adapter *adapter) { int ctx; for (ctx = 0; ctx < MAX_RCV_CTX; ++ctx) { struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]); u32 consumer; struct status_desc *desc_head; struct status_desc *desc; consumer = recv_ctx->status_rx_consumer; desc_head = recv_ctx->rcv_status_desc_head; desc = &desc_head[consumer]; if (netxen_get_sts_owner(desc) & STATUS_OWNER_HOST) return 1; } return 0; } static inline int netxen_nic_check_temp(struct netxen_adapter *adapter) { struct net_device *netdev = adapter->netdev; uint32_t temp, temp_state, temp_val; int rv = 0; temp = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_TEMP_STATE)); temp_state = nx_get_temp_state(temp); temp_val = nx_get_temp_val(temp); if (temp_state == NX_TEMP_PANIC) { printk(KERN_ALERT "%s: Device temperature %d degrees C exceeds" " maximum allowed. Hardware has been shut down.\n", netxen_nic_driver_name, temp_val); netif_carrier_off(netdev); netif_stop_queue(netdev); rv = 1; } else if (temp_state == NX_TEMP_WARN) { if (adapter->temp == NX_TEMP_NORMAL) { printk(KERN_ALERT "%s: Device temperature %d degrees C " "exceeds operating range." " Immediate action needed.\n", netxen_nic_driver_name, temp_val); } } else { if (adapter->temp == NX_TEMP_WARN) { printk(KERN_INFO "%s: Device temperature is now %d degrees C" " in normal range.\n", netxen_nic_driver_name, temp_val); } } adapter->temp = temp_state; return rv; } void netxen_watchdog_task(struct work_struct *work) { struct net_device *netdev; struct netxen_adapter *adapter = container_of(work, struct netxen_adapter, watchdog_task); if ((adapter->portnum == 0) && netxen_nic_check_temp(adapter)) return; if (adapter->handle_phy_intr) adapter->handle_phy_intr(adapter); netdev = adapter->netdev; if ((netif_running(netdev)) && !netif_carrier_ok(netdev) && netxen_nic_link_ok(adapter) ) { printk(KERN_INFO "%s %s (port %d), Link is up\n", netxen_nic_driver_name, netdev->name, adapter->portnum); netif_carrier_on(netdev); netif_wake_queue(netdev); } else if(!(netif_running(netdev)) && netif_carrier_ok(netdev)) { printk(KERN_ERR "%s %s Link is Down\n", netxen_nic_driver_name, netdev->name); netif_carrier_off(netdev); netif_stop_queue(netdev); } mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ); } /* * netxen_process_rcv() send the received packet to the protocol stack. * and if the number of receives exceeds RX_BUFFERS_REFILL, then we * invoke the routine to send more rx buffers to the Phantom... */ void netxen_process_rcv(struct netxen_adapter *adapter, int ctxid, struct status_desc *desc) { struct pci_dev *pdev = adapter->pdev; struct net_device *netdev = adapter->netdev; int index = netxen_get_sts_refhandle(desc); struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]); struct netxen_rx_buffer *buffer; struct sk_buff *skb; u32 length = netxen_get_sts_totallength(desc); u32 desc_ctx; struct netxen_rcv_desc_ctx *rcv_desc; int ret; desc_ctx = netxen_get_sts_type(desc); if (unlikely(desc_ctx >= NUM_RCV_DESC_RINGS)) { printk("%s: %s Bad Rcv descriptor ring\n", netxen_nic_driver_name, netdev->name); return; } rcv_desc = &recv_ctx->rcv_desc[desc_ctx]; if (unlikely(index > rcv_desc->max_rx_desc_count)) { DPRINTK(ERR, "Got a buffer index:%x Max is %x\n", index, rcv_desc->max_rx_desc_count); return; } buffer = &rcv_desc->rx_buf_arr[index]; if (desc_ctx == RCV_DESC_LRO_CTXID) { buffer->lro_current_frags++; if (netxen_get_sts_desc_lro_last_frag(desc)) { buffer->lro_expected_frags = netxen_get_sts_desc_lro_cnt(desc); buffer->lro_length = length; } if (buffer->lro_current_frags != buffer->lro_expected_frags) { if (buffer->lro_expected_frags != 0) { printk("LRO: (refhandle:%x) recv frag." "wait for last. flags: %x expected:%d" "have:%d\n", index, netxen_get_sts_desc_lro_last_frag(desc), buffer->lro_expected_frags, buffer->lro_current_frags); } return; } } pci_unmap_single(pdev, buffer->dma, rcv_desc->dma_size, PCI_DMA_FROMDEVICE); skb = (struct sk_buff *)buffer->skb; if (likely(netxen_get_sts_status(desc) == STATUS_CKSUM_OK)) { adapter->stats.csummed++; skb->ip_summed = CHECKSUM_UNNECESSARY; } if (desc_ctx == RCV_DESC_LRO_CTXID) { /* True length was only available on the last pkt */ skb_put(skb, buffer->lro_length); } else { skb_put(skb, length); } skb->protocol = eth_type_trans(skb, netdev); ret = netif_receive_skb(skb); /* * RH: Do we need these stats on a regular basis. Can we get it from * Linux stats. */ switch (ret) { case NET_RX_SUCCESS: adapter->stats.uphappy++; break; case NET_RX_CN_LOW: adapter->stats.uplcong++; break; case NET_RX_CN_MOD: adapter->stats.upmcong++; break; case NET_RX_CN_HIGH: adapter->stats.uphcong++; break; case NET_RX_DROP: adapter->stats.updropped++; break; default: adapter->stats.updunno++; break; } netdev->last_rx = jiffies; rcv_desc->rcv_free++; rcv_desc->rcv_pending--; /* * We just consumed one buffer so post a buffer. */ buffer->skb = NULL; buffer->state = NETXEN_BUFFER_FREE; buffer->lro_current_frags = 0; buffer->lro_expected_frags = 0; adapter->stats.no_rcv++; adapter->stats.rxbytes += length; } /* Process Receive status ring */ u32 netxen_process_rcv_ring(struct netxen_adapter *adapter, int ctxid, int max) { struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]); struct status_desc *desc_head = recv_ctx->rcv_status_desc_head; struct status_desc *desc; /* used to read status desc here */ u32 consumer = recv_ctx->status_rx_consumer; u32 producer = 0; int count = 0, ring; DPRINTK(INFO, "procesing receive\n"); /* * we assume in this case that there is only one port and that is * port #1...changes need to be done in firmware to indicate port * number as part of the descriptor. This way we will be able to get * the netdev which is associated with that device. */ while (count < max) { desc = &desc_head[consumer]; if (!(netxen_get_sts_owner(desc) & STATUS_OWNER_HOST)) { DPRINTK(ERR, "desc %p ownedby %x\n", desc, netxen_get_sts_owner(desc)); break; } netxen_process_rcv(adapter, ctxid, desc); netxen_clear_sts_owner(desc); netxen_set_sts_owner(desc, STATUS_OWNER_PHANTOM); consumer = (consumer + 1) & (adapter->max_rx_desc_count - 1); count++; } if (count) { for (ring = 0; ring < NUM_RCV_DESC_RINGS; ring++) { netxen_post_rx_buffers_nodb(adapter, ctxid, ring); } } /* update the consumer index in phantom */ if (count) { recv_ctx->status_rx_consumer = consumer; recv_ctx->status_rx_producer = producer; /* Window = 1 */ writel(consumer, NETXEN_CRB_NORMALIZE(adapter, recv_crb_registers[adapter->portnum]. crb_rcv_status_consumer)); } return count; } /* Process Command status ring */ int netxen_process_cmd_ring(unsigned long data) { u32 last_consumer; u32 consumer; struct netxen_adapter *adapter = (struct netxen_adapter *)data; int count1 = 0; int count2 = 0; struct netxen_cmd_buffer *buffer; struct pci_dev *pdev; struct netxen_skb_frag *frag; u32 i; struct sk_buff *skb = NULL; int done; spin_lock(&adapter->tx_lock); last_consumer = adapter->last_cmd_consumer; DPRINTK(INFO, "procesing xmit complete\n"); /* we assume in this case that there is only one port and that is * port #1...changes need to be done in firmware to indicate port * number as part of the descriptor. This way we will be able to get * the netdev which is associated with that device. */ consumer = le32_to_cpu(*(adapter->cmd_consumer)); if (last_consumer == consumer) { /* Ring is empty */ DPRINTK(INFO, "last_consumer %d == consumer %d\n", last_consumer, consumer); spin_unlock(&adapter->tx_lock); return 1; } adapter->proc_cmd_buf_counter++; /* * Not needed - does not seem to be used anywhere. * adapter->cmd_consumer = consumer; */ spin_unlock(&adapter->tx_lock); while ((last_consumer != consumer) && (count1 < MAX_STATUS_HANDLE)) { buffer = &adapter->cmd_buf_arr[last_consumer]; pdev = adapter->pdev; frag = &buffer->frag_array[0]; skb = buffer->skb; if (skb && (cmpxchg(&buffer->skb, skb, 0) == skb)) { pci_unmap_single(pdev, frag->dma, frag->length, PCI_DMA_TODEVICE); for (i = 1; i < buffer->frag_count; i++) { DPRINTK(INFO, "getting fragment no %d\n", i); frag++; /* Get the next frag */ pci_unmap_page(pdev, frag->dma, frag->length, PCI_DMA_TODEVICE); } adapter->stats.skbfreed++; dev_kfree_skb_any(skb); skb = NULL; } else if (adapter->proc_cmd_buf_counter == 1) { adapter->stats.txnullskb++; } if (unlikely(netif_queue_stopped(adapter->netdev) && netif_carrier_ok(adapter->netdev)) && ((jiffies - adapter->netdev->trans_start) > adapter->netdev->watchdog_timeo)) { SCHEDULE_WORK(&adapter->tx_timeout_task); } last_consumer = get_next_index(last_consumer, adapter->max_tx_desc_count); count1++; } count2 = 0; spin_lock(&adapter->tx_lock); if ((--adapter->proc_cmd_buf_counter) == 0) { adapter->last_cmd_consumer = last_consumer; while ((adapter->last_cmd_consumer != consumer) && (count2 < MAX_STATUS_HANDLE)) { buffer = &adapter->cmd_buf_arr[adapter->last_cmd_consumer]; count2++; if (buffer->skb) break; else adapter->last_cmd_consumer = get_next_index(adapter->last_cmd_consumer, adapter->max_tx_desc_count); } } if (count1 || count2) { if (netif_queue_stopped(adapter->netdev) && (adapter->flags & NETXEN_NETDEV_STATUS)) { netif_wake_queue(adapter->netdev); adapter->flags &= ~NETXEN_NETDEV_STATUS; } } /* * If everything is freed up to consumer then check if the ring is full * If the ring is full then check if more needs to be freed and * schedule the call back again. * * This happens when there are 2 CPUs. One could be freeing and the * other filling it. If the ring is full when we get out of here and * the card has already interrupted the host then the host can miss the * interrupt. * * There is still a possible race condition and the host could miss an * interrupt. The card has to take care of this. */ if (adapter->last_cmd_consumer == consumer && (((adapter->cmd_producer + 1) % adapter->max_tx_desc_count) == adapter->last_cmd_consumer)) { consumer = le32_to_cpu(*(adapter->cmd_consumer)); } done = (adapter->last_cmd_consumer == consumer); spin_unlock(&adapter->tx_lock); DPRINTK(INFO, "last consumer is %d in %s\n", last_consumer, __FUNCTION__); return (done); } /* * netxen_post_rx_buffers puts buffer in the Phantom memory */ void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ctx, u32 ringid) { struct pci_dev *pdev = adapter->ahw.pdev; struct sk_buff *skb; struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]); struct netxen_rcv_desc_ctx *rcv_desc = NULL; uint producer; struct rcv_desc *pdesc; struct netxen_rx_buffer *buffer; int count = 0; int index = 0; netxen_ctx_msg msg = 0; dma_addr_t dma; rcv_desc = &recv_ctx->rcv_desc[ringid]; producer = rcv_desc->producer; index = rcv_desc->begin_alloc; buffer = &rcv_desc->rx_buf_arr[index]; /* We can start writing rx descriptors into the phantom memory. */ while (buffer->state == NETXEN_BUFFER_FREE) { skb = dev_alloc_skb(rcv_desc->skb_size); if (unlikely(!skb)) { /* * TODO * We need to schedule the posting of buffers to the pegs. */ rcv_desc->begin_alloc = index; DPRINTK(ERR, "netxen_post_rx_buffers: " " allocated only %d buffers\n", count); break; } count++; /* now there should be no failure */ pdesc = &rcv_desc->desc_head[producer]; #if defined(XGB_DEBUG) *(unsigned long *)(skb->head) = 0xc0debabe; if (skb_is_nonlinear(skb)) { printk("Allocated SKB @%p is nonlinear\n"); } #endif skb_reserve(skb, 2); /* This will be setup when we receive the * buffer after it has been filled FSL TBD TBD * skb->dev = netdev; */ dma = pci_map_single(pdev, skb->data, rcv_desc->dma_size, PCI_DMA_FROMDEVICE); pdesc->addr_buffer = cpu_to_le64(dma); buffer->skb = skb; buffer->state = NETXEN_BUFFER_BUSY; buffer->dma = dma; /* make a rcv descriptor */ pdesc->reference_handle = cpu_to_le16(buffer->ref_handle); pdesc->buffer_length = cpu_to_le32(rcv_desc->dma_size); DPRINTK(INFO, "done writing descripter\n"); producer = get_next_index(producer, rcv_desc->max_rx_desc_count); index = get_next_index(index, rcv_desc->max_rx_desc_count); buffer = &rcv_desc->rx_buf_arr[index]; } /* if we did allocate buffers, then write the count to Phantom */ if (count) { rcv_desc->begin_alloc = index; rcv_desc->rcv_pending += count; rcv_desc->producer = producer; if (rcv_desc->rcv_free >= 32) { rcv_desc->rcv_free = 0; /* Window = 1 */ writel((producer - 1) & (rcv_desc->max_rx_desc_count - 1), NETXEN_CRB_NORMALIZE(adapter, recv_crb_registers[ adapter->portnum]. rcv_desc_crb[ringid]. crb_rcv_producer_offset)); /* * Write a doorbell msg to tell phanmon of change in * receive ring producer */ netxen_set_msg_peg_id(msg, NETXEN_RCV_PEG_DB_ID); netxen_set_msg_privid(msg); netxen_set_msg_count(msg, ((producer - 1) & (rcv_desc-> max_rx_desc_count - 1))); netxen_set_msg_ctxid(msg, adapter->portnum); netxen_set_msg_opcode(msg, NETXEN_RCV_PRODUCER(ringid)); writel(msg, DB_NORMALIZE(adapter, NETXEN_RCV_PRODUCER_OFFSET)); } } } void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter, uint32_t ctx, uint32_t ringid) { struct pci_dev *pdev = adapter->ahw.pdev; struct sk_buff *skb; struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]); struct netxen_rcv_desc_ctx *rcv_desc = NULL; u32 producer; struct rcv_desc *pdesc; struct netxen_rx_buffer *buffer; int count = 0; int index = 0; rcv_desc = &recv_ctx->rcv_desc[ringid]; producer = rcv_desc->producer; index = rcv_desc->begin_alloc; buffer = &rcv_desc->rx_buf_arr[index]; /* We can start writing rx descriptors into the phantom memory. */ while (buffer->state == NETXEN_BUFFER_FREE) { skb = dev_alloc_skb(rcv_desc->skb_size); if (unlikely(!skb)) { /* * We need to schedule the posting of buffers to the pegs. */ rcv_desc->begin_alloc = index; DPRINTK(ERR, "netxen_post_rx_buffers_nodb: " " allocated only %d buffers\n", count); break; } count++; /* now there should be no failure */ pdesc = &rcv_desc->desc_head[producer]; skb_reserve(skb, 2); /* * This will be setup when we receive the * buffer after it has been filled * skb->dev = netdev; */ buffer->skb = skb; buffer->state = NETXEN_BUFFER_BUSY; buffer->dma = pci_map_single(pdev, skb->data, rcv_desc->dma_size, PCI_DMA_FROMDEVICE); /* make a rcv descriptor */ pdesc->reference_handle = cpu_to_le16(buffer->ref_handle); pdesc->buffer_length = cpu_to_le32(rcv_desc->dma_size); pdesc->addr_buffer = cpu_to_le64(buffer->dma); DPRINTK(INFO, "done writing descripter\n"); producer = get_next_index(producer, rcv_desc->max_rx_desc_count); index = get_next_index(index, rcv_desc->max_rx_desc_count); buffer = &rcv_desc->rx_buf_arr[index]; } /* if we did allocate buffers, then write the count to Phantom */ if (count) { rcv_desc->begin_alloc = index; rcv_desc->rcv_pending += count; rcv_desc->producer = producer; if (rcv_desc->rcv_free >= 32) { rcv_desc->rcv_free = 0; /* Window = 1 */ writel((producer - 1) & (rcv_desc->max_rx_desc_count - 1), NETXEN_CRB_NORMALIZE(adapter, recv_crb_registers[ adapter->portnum]. rcv_desc_crb[ringid]. crb_rcv_producer_offset)); wmb(); } } } int netxen_nic_tx_has_work(struct netxen_adapter *adapter) { if (find_diff_among(adapter->last_cmd_consumer, adapter->cmd_producer, adapter->max_tx_desc_count) > 0) return 1; return 0; } void netxen_nic_clear_stats(struct netxen_adapter *adapter) { memset(&adapter->stats, 0, sizeof(adapter->stats)); return; }