// SPDX-License-Identifier: GPL-2.0-or-later /* FarSync WAN driver for Linux (2.6.x kernel version) * * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards * * Copyright (C) 2001-2004 FarSite Communications Ltd. * www.farsite.co.uk * * Author: R.J.Dunlop * Maintainer: Kevin Curtis */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "farsync.h" /* Module info */ MODULE_AUTHOR("R.J.Dunlop "); MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd."); MODULE_LICENSE("GPL"); /* Driver configuration and global parameters * ========================================== */ /* Number of ports (per card) and cards supported */ #define FST_MAX_PORTS 4 #define FST_MAX_CARDS 32 /* Default parameters for the link */ #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is * useful */ #define FST_TXQ_DEPTH 16 /* This one is for the buffering * of frames on the way down to the card * so that we can keep the card busy * and maximise throughput */ #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control * network layer */ #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow * control from network layer */ #define FST_MAX_MTU 8000 /* Huge but possible */ #define FST_DEF_MTU 1500 /* Common sane value */ #define FST_TX_TIMEOUT (2 * HZ) #ifdef ARPHRD_RAWHDLC #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */ #else #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */ #endif /* Modules parameters and associated variables */ static int fst_txq_low = FST_LOW_WATER_MARK; static int fst_txq_high = FST_HIGH_WATER_MARK; static int fst_max_reads = 7; static int fst_excluded_cards; static int fst_excluded_list[FST_MAX_CARDS]; module_param(fst_txq_low, int, 0); module_param(fst_txq_high, int, 0); module_param(fst_max_reads, int, 0); module_param(fst_excluded_cards, int, 0); module_param_array(fst_excluded_list, int, NULL, 0); /* Card shared memory layout * ========================= */ #pragma pack(1) /* This information is derived in part from the FarSite FarSync Smc.h * file. Unfortunately various name clashes and the non-portability of the * bit field declarations in that file have meant that I have chosen to * recreate the information here. * * The SMC (Shared Memory Configuration) has a version number that is * incremented every time there is a significant change. This number can * be used to check that we have not got out of step with the firmware * contained in the .CDE files. */ #define SMC_VERSION 24 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */ #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main * configuration structure */ #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA * buffers */ #define LEN_TX_BUFFER 8192 /* Size of packet buffers */ #define LEN_RX_BUFFER 8192 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */ #define LEN_SMALL_RX_BUFFER 256 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */ #define NUM_RX_BUFFER 8 /* Interrupt retry time in milliseconds */ #define INT_RETRY_TIME 2 /* The Am186CH/CC processors support a SmartDMA mode using circular pools * of buffer descriptors. The structure is almost identical to that used * in the LANCE Ethernet controllers. Details available as PDF from the * AMD web site: https://www.amd.com/products/epd/processors/\ * 2.16bitcont/3.am186cxfa/a21914/21914.pdf */ struct txdesc { /* Transmit descriptor */ volatile u16 ladr; /* Low order address of packet. This is a * linear address in the Am186 memory space */ volatile u8 hadr; /* High order address. Low 4 bits only, high 4 * bits must be zero */ volatile u8 bits; /* Status and config */ volatile u16 bcnt; /* 2s complement of packet size in low 15 bits. * Transmit terminal count interrupt enable in * top bit. */ u16 unused; /* Not used in Tx */ }; struct rxdesc { /* Receive descriptor */ volatile u16 ladr; /* Low order address of packet */ volatile u8 hadr; /* High order address */ volatile u8 bits; /* Status and config */ volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits. * Receive terminal count interrupt enable in * top bit. */ volatile u16 mcnt; /* Message byte count (15 bits) */ }; /* Convert a length into the 15 bit 2's complement */ /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */ /* Since we need to set the high bit to enable the completion interrupt this * can be made a lot simpler */ #define cnv_bcnt(len) (-(len)) /* Status and config bits for the above */ #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */ #define TX_STP 0x02 /* Tx: start of packet */ #define TX_ENP 0x01 /* Tx: end of packet */ #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */ #define RX_FRAM 0x20 /* Rx: framing error */ #define RX_OFLO 0x10 /* Rx: overflow error */ #define RX_CRC 0x08 /* Rx: CRC error */ #define RX_HBUF 0x04 /* Rx: buffer error */ #define RX_STP 0x02 /* Rx: start of packet */ #define RX_ENP 0x01 /* Rx: end of packet */ /* Interrupts from the card are caused by various events which are presented * in a circular buffer as several events may be processed on one physical int */ #define MAX_CIRBUFF 32 struct cirbuff { u8 rdindex; /* read, then increment and wrap */ u8 wrindex; /* write, then increment and wrap */ u8 evntbuff[MAX_CIRBUFF]; }; /* Interrupt event codes. * Where appropriate the two low order bits indicate the port number */ #define CTLA_CHG 0x18 /* Control signal changed */ #define CTLB_CHG 0x19 #define CTLC_CHG 0x1A #define CTLD_CHG 0x1B #define INIT_CPLT 0x20 /* Initialisation complete */ #define INIT_FAIL 0x21 /* Initialisation failed */ #define ABTA_SENT 0x24 /* Abort sent */ #define ABTB_SENT 0x25 #define ABTC_SENT 0x26 #define ABTD_SENT 0x27 #define TXA_UNDF 0x28 /* Transmission underflow */ #define TXB_UNDF 0x29 #define TXC_UNDF 0x2A #define TXD_UNDF 0x2B #define F56_INT 0x2C #define M32_INT 0x2D #define TE1_ALMA 0x30 /* Port physical configuration. See farsync.h for field values */ struct port_cfg { u16 lineInterface; /* Physical interface type */ u8 x25op; /* Unused at present */ u8 internalClock; /* 1 => internal clock, 0 => external */ u8 transparentMode; /* 1 => on, 0 => off */ u8 invertClock; /* 0 => normal, 1 => inverted */ u8 padBytes[6]; /* Padding */ u32 lineSpeed; /* Speed in bps */ }; /* TE1 port physical configuration */ struct su_config { u32 dataRate; u8 clocking; u8 framing; u8 structure; u8 interface; u8 coding; u8 lineBuildOut; u8 equalizer; u8 transparentMode; u8 loopMode; u8 range; u8 txBufferMode; u8 rxBufferMode; u8 startingSlot; u8 losThreshold; u8 enableIdleCode; u8 idleCode; u8 spare[44]; }; /* TE1 Status */ struct su_status { u32 receiveBufferDelay; u32 framingErrorCount; u32 codeViolationCount; u32 crcErrorCount; u32 lineAttenuation; u8 portStarted; u8 lossOfSignal; u8 receiveRemoteAlarm; u8 alarmIndicationSignal; u8 spare[40]; }; /* Finally sling all the above together into the shared memory structure. * Sorry it's a hodge podge of arrays, structures and unused bits, it's been * evolving under NT for some time so I guess we're stuck with it. * The structure starts at offset SMC_BASE. * See farsync.h for some field values. */ struct fst_shared { /* DMA descriptor rings */ struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER]; struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER]; /* Obsolete small buffers */ u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER]; u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER]; u8 taskStatus; /* 0x00 => initialising, 0x01 => running, * 0xFF => halted */ u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt, * set to 0xEE by host to acknowledge interrupt */ u16 smcVersion; /* Must match SMC_VERSION */ u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major * version, RR = revision and BB = build */ u16 txa_done; /* Obsolete completion flags */ u16 rxa_done; u16 txb_done; u16 rxb_done; u16 txc_done; u16 rxc_done; u16 txd_done; u16 rxd_done; u16 mailbox[4]; /* Diagnostics mailbox. Not used */ struct cirbuff interruptEvent; /* interrupt causes */ u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */ u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */ struct port_cfg portConfig[FST_MAX_PORTS]; u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */ u16 cableStatus; /* lsb: 0=> present, 1=> absent */ u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */ u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */ u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */ u16 cardMailbox[4]; /* Not used */ /* Number of times the card thinks the host has * missed an interrupt by not acknowledging * within 2mS (I guess NT has problems) */ u32 interruptRetryCount; /* Driver private data used as an ID. We'll not * use this as I'd rather keep such things * in main memory rather than on the PCI bus */ u32 portHandle[FST_MAX_PORTS]; /* Count of Tx underflows for stats */ u32 transmitBufferUnderflow[FST_MAX_PORTS]; /* Debounced V.24 control input status */ u32 v24DebouncedSts[FST_MAX_PORTS]; /* Adapter debounce timers. Don't touch */ u32 ctsTimer[FST_MAX_PORTS]; u32 ctsTimerRun[FST_MAX_PORTS]; u32 dcdTimer[FST_MAX_PORTS]; u32 dcdTimerRun[FST_MAX_PORTS]; u32 numberOfPorts; /* Number of ports detected at startup */ u16 _reserved[64]; u16 cardMode; /* Bit-mask to enable features: * Bit 0: 1 enables LED identify mode */ u16 portScheduleOffset; struct su_config suConfig; /* TE1 Bits */ struct su_status suStatus; u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of * the structure and marks the end of shared * memory. Adapter code initializes it as * END_SIG. */ }; /* endOfSmcSignature value */ #define END_SIG 0x12345678 /* Mailbox values. (portMailbox) */ #define NOP 0 /* No operation */ #define ACK 1 /* Positive acknowledgement to PC driver */ #define NAK 2 /* Negative acknowledgement to PC driver */ #define STARTPORT 3 /* Start an HDLC port */ #define STOPPORT 4 /* Stop an HDLC port */ #define ABORTTX 5 /* Abort the transmitter for a port */ #define SETV24O 6 /* Set V24 outputs */ /* PLX Chip Register Offsets */ #define CNTRL_9052 0x50 /* Control Register */ #define CNTRL_9054 0x6c /* Control Register */ #define INTCSR_9052 0x4c /* Interrupt control/status register */ #define INTCSR_9054 0x68 /* Interrupt control/status register */ /* 9054 DMA Registers */ /* Note that we will be using DMA Channel 0 for copying rx data * and Channel 1 for copying tx data */ #define DMAMODE0 0x80 #define DMAPADR0 0x84 #define DMALADR0 0x88 #define DMASIZ0 0x8c #define DMADPR0 0x90 #define DMAMODE1 0x94 #define DMAPADR1 0x98 #define DMALADR1 0x9c #define DMASIZ1 0xa0 #define DMADPR1 0xa4 #define DMACSR0 0xa8 #define DMACSR1 0xa9 #define DMAARB 0xac #define DMATHR 0xb0 #define DMADAC0 0xb4 #define DMADAC1 0xb8 #define DMAMARBR 0xac #define FST_MIN_DMA_LEN 64 #define FST_RX_DMA_INT 0x01 #define FST_TX_DMA_INT 0x02 #define FST_CARD_INT 0x04 /* Larger buffers are positioned in memory at offset BFM_BASE */ struct buf_window { u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER]; u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER]; }; /* Calculate offset of a buffer object within the shared memory window */ #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X)) #pragma pack() /* Device driver private information * ================================= */ /* Per port (line or channel) information */ struct fst_port_info { struct net_device *dev; /* Device struct - must be first */ struct fst_card_info *card; /* Card we're associated with */ int index; /* Port index on the card */ int hwif; /* Line hardware (lineInterface copy) */ int run; /* Port is running */ int mode; /* Normal or FarSync raw */ int rxpos; /* Next Rx buffer to use */ int txpos; /* Next Tx buffer to use */ int txipos; /* Next Tx buffer to check for free */ int start; /* Indication of start/stop to network */ /* A sixteen entry transmit queue */ int txqs; /* index to get next buffer to tx */ int txqe; /* index to queue next packet */ struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */ int rxqdepth; }; /* Per card information */ struct fst_card_info { char __iomem *mem; /* Card memory mapped to kernel space */ char __iomem *ctlmem; /* Control memory for PCI cards */ unsigned int phys_mem; /* Physical memory window address */ unsigned int phys_ctlmem; /* Physical control memory address */ unsigned int irq; /* Interrupt request line number */ unsigned int nports; /* Number of serial ports */ unsigned int type; /* Type index of card */ unsigned int state; /* State of card */ spinlock_t card_lock; /* Lock for SMP access */ unsigned short pci_conf; /* PCI card config in I/O space */ /* Per port info */ struct fst_port_info ports[FST_MAX_PORTS]; struct pci_dev *device; /* Information about the pci device */ int card_no; /* Inst of the card on the system */ int family; /* TxP or TxU */ int dmarx_in_progress; int dmatx_in_progress; unsigned long int_count; unsigned long int_time_ave; void *rx_dma_handle_host; dma_addr_t rx_dma_handle_card; void *tx_dma_handle_host; dma_addr_t tx_dma_handle_card; struct sk_buff *dma_skb_rx; struct fst_port_info *dma_port_rx; struct fst_port_info *dma_port_tx; int dma_len_rx; int dma_len_tx; int dma_txpos; int dma_rxpos; }; /* Convert an HDLC device pointer into a port info pointer and similar */ #define dev_to_port(D) (dev_to_hdlc(D)->priv) #define port_to_dev(P) ((P)->dev) /* Shared memory window access macros * * We have a nice memory based structure above, which could be directly * mapped on i386 but might not work on other architectures unless we use * the readb,w,l and writeb,w,l macros. Unfortunately these macros take * physical offsets so we have to convert. The only saving grace is that * this should all collapse back to a simple indirection eventually. */ #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X)) #define FST_RDB(C, E) (readb((C)->mem + WIN_OFFSET(E))) #define FST_RDW(C, E) (readw((C)->mem + WIN_OFFSET(E))) #define FST_RDL(C, E) (readl((C)->mem + WIN_OFFSET(E))) #define FST_WRB(C, E, B) (writeb((B), (C)->mem + WIN_OFFSET(E))) #define FST_WRW(C, E, W) (writew((W), (C)->mem + WIN_OFFSET(E))) #define FST_WRL(C, E, L) (writel((L), (C)->mem + WIN_OFFSET(E))) /* Debug support */ #if FST_DEBUG static int fst_debug_mask = { FST_DEBUG }; /* Most common debug activity is to print something if the corresponding bit * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to * support variable numbers of macro parameters. The inverted if prevents us * eating someone else's else clause. */ #define dbg(F, fmt, args...) \ do { \ if (fst_debug_mask & (F)) \ printk(KERN_DEBUG pr_fmt(fmt), ##args); \ } while (0) #else #define dbg(F, fmt, args...) \ do { \ if (0) \ printk(KERN_DEBUG pr_fmt(fmt), ##args); \ } while (0) #endif /* PCI ID lookup table */ static const struct pci_device_id fst_pci_dev_id[] = { {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FST_TYPE_T2P}, {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FST_TYPE_T4P}, {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FST_TYPE_T1U}, {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FST_TYPE_T2U}, {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FST_TYPE_T4U}, {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, {0,} /* End */ }; MODULE_DEVICE_TABLE(pci, fst_pci_dev_id); /* Device Driver Work Queues * * So that we don't spend too much time processing events in the * Interrupt Service routine, we will declare a work queue per Card * and make the ISR schedule a task in the queue for later execution. * In the 2.4 Kernel we used to use the immediate queue for BH's * Now that they are gone, tasklets seem to be much better than work * queues. */ static void do_bottom_half_tx(struct fst_card_info *card); static void do_bottom_half_rx(struct fst_card_info *card); static void fst_process_tx_work_q(struct tasklet_struct *unused); static void fst_process_int_work_q(struct tasklet_struct *unused); static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q); static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q); static struct fst_card_info *fst_card_array[FST_MAX_CARDS]; static DEFINE_SPINLOCK(fst_work_q_lock); static u64 fst_work_txq; static u64 fst_work_intq; static void fst_q_work_item(u64 *queue, int card_index) { unsigned long flags; u64 mask; /* Grab the queue exclusively */ spin_lock_irqsave(&fst_work_q_lock, flags); /* Making an entry in the queue is simply a matter of setting * a bit for the card indicating that there is work to do in the * bottom half for the card. Note the limitation of 64 cards. * That ought to be enough */ mask = (u64)1 << card_index; *queue |= mask; spin_unlock_irqrestore(&fst_work_q_lock, flags); } static void fst_process_tx_work_q(struct tasklet_struct *unused) { unsigned long flags; u64 work_txq; int i; /* Grab the queue exclusively */ dbg(DBG_TX, "fst_process_tx_work_q\n"); spin_lock_irqsave(&fst_work_q_lock, flags); work_txq = fst_work_txq; fst_work_txq = 0; spin_unlock_irqrestore(&fst_work_q_lock, flags); /* Call the bottom half for each card with work waiting */ for (i = 0; i < FST_MAX_CARDS; i++) { if (work_txq & 0x01) { if (fst_card_array[i]) { dbg(DBG_TX, "Calling tx bh for card %d\n", i); do_bottom_half_tx(fst_card_array[i]); } } work_txq = work_txq >> 1; } } static void fst_process_int_work_q(struct tasklet_struct *unused) { unsigned long flags; u64 work_intq; int i; /* Grab the queue exclusively */ dbg(DBG_INTR, "fst_process_int_work_q\n"); spin_lock_irqsave(&fst_work_q_lock, flags); work_intq = fst_work_intq; fst_work_intq = 0; spin_unlock_irqrestore(&fst_work_q_lock, flags); /* Call the bottom half for each card with work waiting */ for (i = 0; i < FST_MAX_CARDS; i++) { if (work_intq & 0x01) { if (fst_card_array[i]) { dbg(DBG_INTR, "Calling rx & tx bh for card %d\n", i); do_bottom_half_rx(fst_card_array[i]); do_bottom_half_tx(fst_card_array[i]); } } work_intq = work_intq >> 1; } } /* Card control functions * ====================== */ /* Place the processor in reset state * * Used to be a simple write to card control space but a glitch in the latest * AMD Am186CH processor means that we now have to do it by asserting and de- * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register * at offset 9052_CNTRL. Note the updates for the TXU. */ static inline void fst_cpureset(struct fst_card_info *card) { unsigned char interrupt_line_register; unsigned int regval; if (card->family == FST_FAMILY_TXU) { if (pci_read_config_byte (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) { dbg(DBG_ASS, "Error in reading interrupt line register\n"); } /* Assert PLX software reset and Am186 hardware reset * and then deassert the PLX software reset but 186 still in reset */ outw(0x440f, card->pci_conf + CNTRL_9054 + 2); outw(0x040f, card->pci_conf + CNTRL_9054 + 2); /* We are delaying here to allow the 9054 to reset itself */ usleep_range(10, 20); outw(0x240f, card->pci_conf + CNTRL_9054 + 2); /* We are delaying here to allow the 9054 to reload its eeprom */ usleep_range(10, 20); outw(0x040f, card->pci_conf + CNTRL_9054 + 2); if (pci_write_config_byte (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) { dbg(DBG_ASS, "Error in writing interrupt line register\n"); } } else { regval = inl(card->pci_conf + CNTRL_9052); outl(regval | 0x40000000, card->pci_conf + CNTRL_9052); outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052); } } /* Release the processor from reset */ static inline void fst_cpurelease(struct fst_card_info *card) { if (card->family == FST_FAMILY_TXU) { /* Force posted writes to complete */ (void)readb(card->mem); /* Release LRESET DO = 1 * Then release Local Hold, DO = 1 */ outw(0x040e, card->pci_conf + CNTRL_9054 + 2); outw(0x040f, card->pci_conf + CNTRL_9054 + 2); } else { (void)readb(card->ctlmem); } } /* Clear the cards interrupt flag */ static inline void fst_clear_intr(struct fst_card_info *card) { if (card->family == FST_FAMILY_TXU) { (void)readb(card->ctlmem); } else { /* Poke the appropriate PLX chip register (same as enabling interrupts) */ outw(0x0543, card->pci_conf + INTCSR_9052); } } /* Enable card interrupts */ static inline void fst_enable_intr(struct fst_card_info *card) { if (card->family == FST_FAMILY_TXU) outl(0x0f0c0900, card->pci_conf + INTCSR_9054); else outw(0x0543, card->pci_conf + INTCSR_9052); } /* Disable card interrupts */ static inline void fst_disable_intr(struct fst_card_info *card) { if (card->family == FST_FAMILY_TXU) outl(0x00000000, card->pci_conf + INTCSR_9054); else outw(0x0000, card->pci_conf + INTCSR_9052); } /* Process the result of trying to pass a received frame up the stack */ static void fst_process_rx_status(int rx_status, char *name) { switch (rx_status) { case NET_RX_SUCCESS: { /* Nothing to do here */ break; } case NET_RX_DROP: { dbg(DBG_ASS, "%s: Received packet dropped\n", name); break; } } } /* Initilaise DMA for PLX 9054 */ static inline void fst_init_dma(struct fst_card_info *card) { /* This is only required for the PLX 9054 */ if (card->family == FST_FAMILY_TXU) { pci_set_master(card->device); outl(0x00020441, card->pci_conf + DMAMODE0); outl(0x00020441, card->pci_conf + DMAMODE1); outl(0x0, card->pci_conf + DMATHR); } } /* Tx dma complete interrupt */ static void fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, int len, int txpos) { struct net_device *dev = port_to_dev(port); /* Everything is now set, just tell the card to go */ dbg(DBG_TX, "fst_tx_dma_complete\n"); FST_WRB(card, txDescrRing[port->index][txpos].bits, DMA_OWN | TX_STP | TX_ENP); dev->stats.tx_packets++; dev->stats.tx_bytes += len; netif_trans_update(dev); } /* Mark it for our own raw sockets interface */ static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev) { skb->dev = dev; skb_reset_mac_header(skb); skb->pkt_type = PACKET_HOST; return htons(ETH_P_CUST); } /* Rx dma complete interrupt */ static void fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, int len, struct sk_buff *skb, int rxp) { struct net_device *dev = port_to_dev(port); int pi; int rx_status; dbg(DBG_TX, "fst_rx_dma_complete\n"); pi = port->index; skb_put_data(skb, card->rx_dma_handle_host, len); /* Reset buffer descriptor */ FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); /* Update stats */ dev->stats.rx_packets++; dev->stats.rx_bytes += len; /* Push upstream */ dbg(DBG_RX, "Pushing the frame up the stack\n"); if (port->mode == FST_RAW) skb->protocol = farsync_type_trans(skb, dev); else skb->protocol = hdlc_type_trans(skb, dev); rx_status = netif_rx(skb); fst_process_rx_status(rx_status, port_to_dev(port)->name); if (rx_status == NET_RX_DROP) dev->stats.rx_dropped++; } /* Receive a frame through the DMA */ static inline void fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len) { /* This routine will setup the DMA and start it */ dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len); if (card->dmarx_in_progress) dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n"); outl(dma, card->pci_conf + DMAPADR0); /* Copy to here */ outl(mem, card->pci_conf + DMALADR0); /* from here */ outl(len, card->pci_conf + DMASIZ0); /* for this length */ outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */ /* We use the dmarx_in_progress flag to flag the channel as busy */ card->dmarx_in_progress = 1; outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */ } /* Send a frame through the DMA */ static inline void fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len) { /* This routine will setup the DMA and start it. */ dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len); if (card->dmatx_in_progress) dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n"); outl(dma, card->pci_conf + DMAPADR1); /* Copy from here */ outl(mem, card->pci_conf + DMALADR1); /* to here */ outl(len, card->pci_conf + DMASIZ1); /* for this length */ outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */ /* We use the dmatx_in_progress to flag the channel as busy */ card->dmatx_in_progress = 1; outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */ } /* Issue a Mailbox command for a port. * Note we issue them on a fire and forget basis, not expecting to see an * error and not waiting for completion. */ static void fst_issue_cmd(struct fst_port_info *port, unsigned short cmd) { struct fst_card_info *card; unsigned short mbval; unsigned long flags; int safety; card = port->card; spin_lock_irqsave(&card->card_lock, flags); mbval = FST_RDW(card, portMailbox[port->index][0]); safety = 0; /* Wait for any previous command to complete */ while (mbval > NAK) { spin_unlock_irqrestore(&card->card_lock, flags); schedule_timeout_uninterruptible(1); spin_lock_irqsave(&card->card_lock, flags); if (++safety > 2000) { pr_err("Mailbox safety timeout\n"); break; } mbval = FST_RDW(card, portMailbox[port->index][0]); } if (safety > 0) dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety); if (mbval == NAK) dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n"); FST_WRW(card, portMailbox[port->index][0], cmd); if (cmd == ABORTTX || cmd == STARTPORT) { port->txpos = 0; port->txipos = 0; port->start = 0; } spin_unlock_irqrestore(&card->card_lock, flags); } /* Port output signals control */ static inline void fst_op_raise(struct fst_port_info *port, unsigned int outputs) { outputs |= FST_RDL(port->card, v24OpSts[port->index]); FST_WRL(port->card, v24OpSts[port->index], outputs); if (port->run) fst_issue_cmd(port, SETV24O); } static inline void fst_op_lower(struct fst_port_info *port, unsigned int outputs) { outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]); FST_WRL(port->card, v24OpSts[port->index], outputs); if (port->run) fst_issue_cmd(port, SETV24O); } /* Setup port Rx buffers */ static void fst_rx_config(struct fst_port_info *port) { int i; int pi; unsigned int offset; unsigned long flags; struct fst_card_info *card; pi = port->index; card = port->card; spin_lock_irqsave(&card->card_lock, flags); for (i = 0; i < NUM_RX_BUFFER; i++) { offset = BUF_OFFSET(rxBuffer[pi][i][0]); FST_WRW(card, rxDescrRing[pi][i].ladr, (u16)offset); FST_WRB(card, rxDescrRing[pi][i].hadr, (u8)(offset >> 16)); FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER)); FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER); FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN); } port->rxpos = 0; spin_unlock_irqrestore(&card->card_lock, flags); } /* Setup port Tx buffers */ static void fst_tx_config(struct fst_port_info *port) { int i; int pi; unsigned int offset; unsigned long flags; struct fst_card_info *card; pi = port->index; card = port->card; spin_lock_irqsave(&card->card_lock, flags); for (i = 0; i < NUM_TX_BUFFER; i++) { offset = BUF_OFFSET(txBuffer[pi][i][0]); FST_WRW(card, txDescrRing[pi][i].ladr, (u16)offset); FST_WRB(card, txDescrRing[pi][i].hadr, (u8)(offset >> 16)); FST_WRW(card, txDescrRing[pi][i].bcnt, 0); FST_WRB(card, txDescrRing[pi][i].bits, 0); } port->txpos = 0; port->txipos = 0; port->start = 0; spin_unlock_irqrestore(&card->card_lock, flags); } /* TE1 Alarm change interrupt event */ static void fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port) { u8 los; u8 rra; u8 ais; los = FST_RDB(card, suStatus.lossOfSignal); rra = FST_RDB(card, suStatus.receiveRemoteAlarm); ais = FST_RDB(card, suStatus.alarmIndicationSignal); if (los) { /* Lost the link */ if (netif_carrier_ok(port_to_dev(port))) { dbg(DBG_INTR, "Net carrier off\n"); netif_carrier_off(port_to_dev(port)); } } else { /* Link available */ if (!netif_carrier_ok(port_to_dev(port))) { dbg(DBG_INTR, "Net carrier on\n"); netif_carrier_on(port_to_dev(port)); } } if (los) dbg(DBG_INTR, "Assert LOS Alarm\n"); else dbg(DBG_INTR, "De-assert LOS Alarm\n"); if (rra) dbg(DBG_INTR, "Assert RRA Alarm\n"); else dbg(DBG_INTR, "De-assert RRA Alarm\n"); if (ais) dbg(DBG_INTR, "Assert AIS Alarm\n"); else dbg(DBG_INTR, "De-assert AIS Alarm\n"); } /* Control signal change interrupt event */ static void fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port) { int signals; signals = FST_RDL(card, v24DebouncedSts[port->index]); if (signals & ((port->hwif == X21 || port->hwif == X21D) ? IPSTS_INDICATE : IPSTS_DCD)) { if (!netif_carrier_ok(port_to_dev(port))) { dbg(DBG_INTR, "DCD active\n"); netif_carrier_on(port_to_dev(port)); } } else { if (netif_carrier_ok(port_to_dev(port))) { dbg(DBG_INTR, "DCD lost\n"); netif_carrier_off(port_to_dev(port)); } } } /* Log Rx Errors */ static void fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port, unsigned char dmabits, int rxp, unsigned short len) { struct net_device *dev = port_to_dev(port); /* Increment the appropriate error counter */ dev->stats.rx_errors++; if (dmabits & RX_OFLO) { dev->stats.rx_fifo_errors++; dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n", card->card_no, port->index, rxp); } if (dmabits & RX_CRC) { dev->stats.rx_crc_errors++; dbg(DBG_ASS, "Rx crc error on card %d port %d\n", card->card_no, port->index); } if (dmabits & RX_FRAM) { dev->stats.rx_frame_errors++; dbg(DBG_ASS, "Rx frame error on card %d port %d\n", card->card_no, port->index); } if (dmabits == (RX_STP | RX_ENP)) { dev->stats.rx_length_errors++; dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n", len, card->card_no, port->index); } } /* Rx Error Recovery */ static void fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port, unsigned char dmabits, int rxp, unsigned short len) { int i; int pi; pi = port->index; /* Discard buffer descriptors until we see the start of the * next frame. Note that for long frames this could be in * a subsequent interrupt. */ i = 0; while ((dmabits & (DMA_OWN | RX_STP)) == 0) { FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); rxp = (rxp + 1) % NUM_RX_BUFFER; if (++i > NUM_RX_BUFFER) { dbg(DBG_ASS, "intr_rx: Discarding more bufs" " than we have\n"); break; } dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits); } dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i); /* Discard the terminal buffer */ if (!(dmabits & DMA_OWN)) { FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); rxp = (rxp + 1) % NUM_RX_BUFFER; } port->rxpos = rxp; } /* Rx complete interrupt */ static void fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port) { unsigned char dmabits; int pi; int rxp; int rx_status; unsigned short len; struct sk_buff *skb; struct net_device *dev = port_to_dev(port); /* Check we have a buffer to process */ pi = port->index; rxp = port->rxpos; dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); if (dmabits & DMA_OWN) { dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n", pi, rxp); return; } if (card->dmarx_in_progress) return; /* Get buffer length */ len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt); /* Discard the CRC */ len -= 2; if (len == 0) { /* This seems to happen on the TE1 interface sometimes * so throw the frame away and log the event. */ pr_err("Frame received with 0 length. Card %d Port %d\n", card->card_no, port->index); /* Return descriptor to card */ FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); rxp = (rxp + 1) % NUM_RX_BUFFER; port->rxpos = rxp; return; } /* Check buffer length and for other errors. We insist on one packet * in one buffer. This simplifies things greatly and since we've * allocated 8K it shouldn't be a real world limitation */ dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len); if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) { fst_log_rx_error(card, port, dmabits, rxp, len); fst_recover_rx_error(card, port, dmabits, rxp, len); return; } /* Allocate SKB */ skb = dev_alloc_skb(len); if (!skb) { dbg(DBG_RX, "intr_rx: can't allocate buffer\n"); dev->stats.rx_dropped++; /* Return descriptor to card */ FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); rxp = (rxp + 1) % NUM_RX_BUFFER; port->rxpos = rxp; return; } /* We know the length we need to receive, len. * It's not worth using the DMA for reads of less than * FST_MIN_DMA_LEN */ if (len < FST_MIN_DMA_LEN || card->family == FST_FAMILY_TXP) { memcpy_fromio(skb_put(skb, len), card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]), len); /* Reset buffer descriptor */ FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); /* Update stats */ dev->stats.rx_packets++; dev->stats.rx_bytes += len; /* Push upstream */ dbg(DBG_RX, "Pushing frame up the stack\n"); if (port->mode == FST_RAW) skb->protocol = farsync_type_trans(skb, dev); else skb->protocol = hdlc_type_trans(skb, dev); rx_status = netif_rx(skb); fst_process_rx_status(rx_status, port_to_dev(port)->name); if (rx_status == NET_RX_DROP) dev->stats.rx_dropped++; } else { card->dma_skb_rx = skb; card->dma_port_rx = port; card->dma_len_rx = len; card->dma_rxpos = rxp; fst_rx_dma(card, card->rx_dma_handle_card, BUF_OFFSET(rxBuffer[pi][rxp][0]), len); } if (rxp != port->rxpos) { dbg(DBG_ASS, "About to increment rxpos by more than 1\n"); dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos); } rxp = (rxp + 1) % NUM_RX_BUFFER; port->rxpos = rxp; } /* The bottom half to the ISR * */ static void do_bottom_half_tx(struct fst_card_info *card) { struct fst_port_info *port; int pi; int txq_length; struct sk_buff *skb; unsigned long flags; struct net_device *dev; /* Find a free buffer for the transmit * Step through each port on this card */ dbg(DBG_TX, "do_bottom_half_tx\n"); for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { if (!port->run) continue; dev = port_to_dev(port); while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) & DMA_OWN) && !(card->dmatx_in_progress)) { /* There doesn't seem to be a txdone event per-se * We seem to have to deduce it, by checking the DMA_OWN * bit on the next buffer we think we can use */ spin_lock_irqsave(&card->card_lock, flags); txq_length = port->txqe - port->txqs; if (txq_length < 0) { /* This is the case where one has wrapped and the * maths gives us a negative number */ txq_length = txq_length + FST_TXQ_DEPTH; } spin_unlock_irqrestore(&card->card_lock, flags); if (txq_length > 0) { /* There is something to send */ spin_lock_irqsave(&card->card_lock, flags); skb = port->txq[port->txqs]; port->txqs++; if (port->txqs == FST_TXQ_DEPTH) port->txqs = 0; spin_unlock_irqrestore(&card->card_lock, flags); /* copy the data and set the required indicators on the * card. */ FST_WRW(card, txDescrRing[pi][port->txpos].bcnt, cnv_bcnt(skb->len)); if (skb->len < FST_MIN_DMA_LEN || card->family == FST_FAMILY_TXP) { /* Enqueue the packet with normal io */ memcpy_toio(card->mem + BUF_OFFSET(txBuffer[pi] [port-> txpos][0]), skb->data, skb->len); FST_WRB(card, txDescrRing[pi][port->txpos]. bits, DMA_OWN | TX_STP | TX_ENP); dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; netif_trans_update(dev); } else { /* Or do it through dma */ memcpy(card->tx_dma_handle_host, skb->data, skb->len); card->dma_port_tx = port; card->dma_len_tx = skb->len; card->dma_txpos = port->txpos; fst_tx_dma(card, card->tx_dma_handle_card, BUF_OFFSET(txBuffer[pi] [port->txpos][0]), skb->len); } if (++port->txpos >= NUM_TX_BUFFER) port->txpos = 0; /* If we have flow control on, can we now release it? */ if (port->start) { if (txq_length < fst_txq_low) { netif_wake_queue(port_to_dev (port)); port->start = 0; } } dev_kfree_skb(skb); } else { /* Nothing to send so break out of the while loop */ break; } } } } static void do_bottom_half_rx(struct fst_card_info *card) { struct fst_port_info *port; int pi; int rx_count = 0; /* Check for rx completions on all ports on this card */ dbg(DBG_RX, "do_bottom_half_rx\n"); for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { if (!port->run) continue; while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits) & DMA_OWN) && !(card->dmarx_in_progress)) { if (rx_count > fst_max_reads) { /* Don't spend forever in receive processing * Schedule another event */ fst_q_work_item(&fst_work_intq, card->card_no); tasklet_schedule(&fst_int_task); break; /* Leave the loop */ } fst_intr_rx(card, port); rx_count++; } } } /* The interrupt service routine * Dev_id is our fst_card_info pointer */ static irqreturn_t fst_intr(int dummy, void *dev_id) { struct fst_card_info *card = dev_id; struct fst_port_info *port; int rdidx; /* Event buffer indices */ int wridx; int event; /* Actual event for processing */ unsigned int dma_intcsr = 0; unsigned int do_card_interrupt; unsigned int int_retry_count; /* Check to see if the interrupt was for this card * return if not * Note that the call to clear the interrupt is important */ dbg(DBG_INTR, "intr: %d %p\n", card->irq, card); if (card->state != FST_RUNNING) { pr_err("Interrupt received for card %d in a non running state (%d)\n", card->card_no, card->state); /* It is possible to really be running, i.e. we have re-loaded * a running card * Clear and reprime the interrupt source */ fst_clear_intr(card); return IRQ_HANDLED; } /* Clear and reprime the interrupt source */ fst_clear_intr(card); /* Is the interrupt for this card (handshake == 1) */ do_card_interrupt = 0; if (FST_RDB(card, interruptHandshake) == 1) { do_card_interrupt += FST_CARD_INT; /* Set the software acknowledge */ FST_WRB(card, interruptHandshake, 0xEE); } if (card->family == FST_FAMILY_TXU) { /* Is it a DMA Interrupt */ dma_intcsr = inl(card->pci_conf + INTCSR_9054); if (dma_intcsr & 0x00200000) { /* DMA Channel 0 (Rx transfer complete) */ dbg(DBG_RX, "DMA Rx xfer complete\n"); outb(0x8, card->pci_conf + DMACSR0); fst_rx_dma_complete(card, card->dma_port_rx, card->dma_len_rx, card->dma_skb_rx, card->dma_rxpos); card->dmarx_in_progress = 0; do_card_interrupt += FST_RX_DMA_INT; } if (dma_intcsr & 0x00400000) { /* DMA Channel 1 (Tx transfer complete) */ dbg(DBG_TX, "DMA Tx xfer complete\n"); outb(0x8, card->pci_conf + DMACSR1); fst_tx_dma_complete(card, card->dma_port_tx, card->dma_len_tx, card->dma_txpos); card->dmatx_in_progress = 0; do_card_interrupt += FST_TX_DMA_INT; } } /* Have we been missing Interrupts */ int_retry_count = FST_RDL(card, interruptRetryCount); if (int_retry_count) { dbg(DBG_ASS, "Card %d int_retry_count is %d\n", card->card_no, int_retry_count); FST_WRL(card, interruptRetryCount, 0); } if (!do_card_interrupt) return IRQ_HANDLED; /* Scehdule the bottom half of the ISR */ fst_q_work_item(&fst_work_intq, card->card_no); tasklet_schedule(&fst_int_task); /* Drain the event queue */ rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f; wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f; while (rdidx != wridx) { event = FST_RDB(card, interruptEvent.evntbuff[rdidx]); port = &card->ports[event & 0x03]; dbg(DBG_INTR, "Processing Interrupt event: %x\n", event); switch (event) { case TE1_ALMA: dbg(DBG_INTR, "TE1 Alarm intr\n"); if (port->run) fst_intr_te1_alarm(card, port); break; case CTLA_CHG: case CTLB_CHG: case CTLC_CHG: case CTLD_CHG: if (port->run) fst_intr_ctlchg(card, port); break; case ABTA_SENT: case ABTB_SENT: case ABTC_SENT: case ABTD_SENT: dbg(DBG_TX, "Abort complete port %d\n", port->index); break; case TXA_UNDF: case TXB_UNDF: case TXC_UNDF: case TXD_UNDF: /* Difficult to see how we'd get this given that we * always load up the entire packet for DMA. */ dbg(DBG_TX, "Tx underflow port %d\n", port->index); port_to_dev(port)->stats.tx_errors++; port_to_dev(port)->stats.tx_fifo_errors++; dbg(DBG_ASS, "Tx underflow on card %d port %d\n", card->card_no, port->index); break; case INIT_CPLT: dbg(DBG_INIT, "Card init OK intr\n"); break; case INIT_FAIL: dbg(DBG_INIT, "Card init FAILED intr\n"); card->state = FST_IFAILED; break; default: pr_err("intr: unknown card event %d. ignored\n", event); break; } /* Bump and wrap the index */ if (++rdidx >= MAX_CIRBUFF) rdidx = 0; } FST_WRB(card, interruptEvent.rdindex, rdidx); return IRQ_HANDLED; } /* Check that the shared memory configuration is one that we can handle * and that some basic parameters are correct */ static void check_started_ok(struct fst_card_info *card) { int i; /* Check structure version and end marker */ if (FST_RDW(card, smcVersion) != SMC_VERSION) { pr_err("Bad shared memory version %d expected %d\n", FST_RDW(card, smcVersion), SMC_VERSION); card->state = FST_BADVERSION; return; } if (FST_RDL(card, endOfSmcSignature) != END_SIG) { pr_err("Missing shared memory signature\n"); card->state = FST_BADVERSION; return; } /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */ i = FST_RDB(card, taskStatus); if (i == 0x01) { card->state = FST_RUNNING; } else if (i == 0xFF) { pr_err("Firmware initialisation failed. Card halted\n"); card->state = FST_HALTED; return; } else if (i != 0x00) { pr_err("Unknown firmware status 0x%x\n", i); card->state = FST_HALTED; return; } /* Finally check the number of ports reported by firmware against the * number we assumed at card detection. Should never happen with * existing firmware etc so we just report it for the moment. */ if (FST_RDL(card, numberOfPorts) != card->nports) { pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n", card->card_no, FST_RDL(card, numberOfPorts), card->nports); } } static int set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port, struct fstioc_info *info) { int err; unsigned char my_framing; /* Set things according to the user set valid flags * Several of the old options have been invalidated/replaced by the * generic hdlc package. */ err = 0; if (info->valid & FSTVAL_PROTO) { if (info->proto == FST_RAW) port->mode = FST_RAW; else port->mode = FST_GEN_HDLC; } if (info->valid & FSTVAL_CABLE) err = -EINVAL; if (info->valid & FSTVAL_SPEED) err = -EINVAL; if (info->valid & FSTVAL_PHASE) FST_WRB(card, portConfig[port->index].invertClock, info->invertClock); if (info->valid & FSTVAL_MODE) FST_WRW(card, cardMode, info->cardMode); if (info->valid & FSTVAL_TE1) { FST_WRL(card, suConfig.dataRate, info->lineSpeed); FST_WRB(card, suConfig.clocking, info->clockSource); my_framing = FRAMING_E1; if (info->framing == E1) my_framing = FRAMING_E1; if (info->framing == T1) my_framing = FRAMING_T1; if (info->framing == J1) my_framing = FRAMING_J1; FST_WRB(card, suConfig.framing, my_framing); FST_WRB(card, suConfig.structure, info->structure); FST_WRB(card, suConfig.interface, info->interface); FST_WRB(card, suConfig.coding, info->coding); FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut); FST_WRB(card, suConfig.equalizer, info->equalizer); FST_WRB(card, suConfig.transparentMode, info->transparentMode); FST_WRB(card, suConfig.loopMode, info->loopMode); FST_WRB(card, suConfig.range, info->range); FST_WRB(card, suConfig.txBufferMode, info->txBufferMode); FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode); FST_WRB(card, suConfig.startingSlot, info->startingSlot); FST_WRB(card, suConfig.losThreshold, info->losThreshold); if (info->idleCode) FST_WRB(card, suConfig.enableIdleCode, 1); else FST_WRB(card, suConfig.enableIdleCode, 0); FST_WRB(card, suConfig.idleCode, info->idleCode); #if FST_DEBUG if (info->valid & FSTVAL_TE1) { printk("Setting TE1 data\n"); printk("Line Speed = %d\n", info->lineSpeed); printk("Start slot = %d\n", info->startingSlot); printk("Clock source = %d\n", info->clockSource); printk("Framing = %d\n", my_framing); printk("Structure = %d\n", info->structure); printk("interface = %d\n", info->interface); printk("Coding = %d\n", info->coding); printk("Line build out = %d\n", info->lineBuildOut); printk("Equaliser = %d\n", info->equalizer); printk("Transparent mode = %d\n", info->transparentMode); printk("Loop mode = %d\n", info->loopMode); printk("Range = %d\n", info->range); printk("Tx Buffer mode = %d\n", info->txBufferMode); printk("Rx Buffer mode = %d\n", info->rxBufferMode); printk("LOS Threshold = %d\n", info->losThreshold); printk("Idle Code = %d\n", info->idleCode); } #endif } #if FST_DEBUG if (info->valid & FSTVAL_DEBUG) fst_debug_mask = info->debug; #endif return err; } static void gather_conf_info(struct fst_card_info *card, struct fst_port_info *port, struct fstioc_info *info) { int i; memset(info, 0, sizeof(struct fstioc_info)); i = port->index; info->kernelVersion = LINUX_VERSION_CODE; info->nports = card->nports; info->type = card->type; info->state = card->state; info->proto = FST_GEN_HDLC; info->index = i; #if FST_DEBUG info->debug = fst_debug_mask; #endif /* Only mark information as valid if card is running. * Copy the data anyway in case it is useful for diagnostics */ info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD) #if FST_DEBUG | FSTVAL_DEBUG #endif ; info->lineInterface = FST_RDW(card, portConfig[i].lineInterface); info->internalClock = FST_RDB(card, portConfig[i].internalClock); info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed); info->invertClock = FST_RDB(card, portConfig[i].invertClock); info->v24IpSts = FST_RDL(card, v24IpSts[i]); info->v24OpSts = FST_RDL(card, v24OpSts[i]); info->clockStatus = FST_RDW(card, clockStatus[i]); info->cableStatus = FST_RDW(card, cableStatus); info->cardMode = FST_RDW(card, cardMode); info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion); /* The T2U can report cable presence for both A or B * in bits 0 and 1 of cableStatus. See which port we are and * do the mapping. */ if (card->family == FST_FAMILY_TXU) { if (port->index == 0) { /* Port A */ info->cableStatus = info->cableStatus & 1; } else { /* Port B */ info->cableStatus = info->cableStatus >> 1; info->cableStatus = info->cableStatus & 1; } } /* Some additional bits if we are TE1 */ if (card->type == FST_TYPE_TE1) { info->lineSpeed = FST_RDL(card, suConfig.dataRate); info->clockSource = FST_RDB(card, suConfig.clocking); info->framing = FST_RDB(card, suConfig.framing); info->structure = FST_RDB(card, suConfig.structure); info->interface = FST_RDB(card, suConfig.interface); info->coding = FST_RDB(card, suConfig.coding); info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut); info->equalizer = FST_RDB(card, suConfig.equalizer); info->loopMode = FST_RDB(card, suConfig.loopMode); info->range = FST_RDB(card, suConfig.range); info->txBufferMode = FST_RDB(card, suConfig.txBufferMode); info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode); info->startingSlot = FST_RDB(card, suConfig.startingSlot); info->losThreshold = FST_RDB(card, suConfig.losThreshold); if (FST_RDB(card, suConfig.enableIdleCode)) info->idleCode = FST_RDB(card, suConfig.idleCode); else info->idleCode = 0; info->receiveBufferDelay = FST_RDL(card, suStatus.receiveBufferDelay); info->framingErrorCount = FST_RDL(card, suStatus.framingErrorCount); info->codeViolationCount = FST_RDL(card, suStatus.codeViolationCount); info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount); info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation); info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal); info->receiveRemoteAlarm = FST_RDB(card, suStatus.receiveRemoteAlarm); info->alarmIndicationSignal = FST_RDB(card, suStatus.alarmIndicationSignal); } } static int fst_set_iface(struct fst_card_info *card, struct fst_port_info *port, struct ifreq *ifr) { sync_serial_settings sync; int i; if (ifr->ifr_settings.size != sizeof(sync)) return -ENOMEM; if (copy_from_user (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof(sync))) return -EFAULT; if (sync.loopback) return -EINVAL; i = port->index; switch (ifr->ifr_settings.type) { case IF_IFACE_V35: FST_WRW(card, portConfig[i].lineInterface, V35); port->hwif = V35; break; case IF_IFACE_V24: FST_WRW(card, portConfig[i].lineInterface, V24); port->hwif = V24; break; case IF_IFACE_X21: FST_WRW(card, portConfig[i].lineInterface, X21); port->hwif = X21; break; case IF_IFACE_X21D: FST_WRW(card, portConfig[i].lineInterface, X21D); port->hwif = X21D; break; case IF_IFACE_T1: FST_WRW(card, portConfig[i].lineInterface, T1); port->hwif = T1; break; case IF_IFACE_E1: FST_WRW(card, portConfig[i].lineInterface, E1); port->hwif = E1; break; case IF_IFACE_SYNC_SERIAL: break; default: return -EINVAL; } switch (sync.clock_type) { case CLOCK_EXT: FST_WRB(card, portConfig[i].internalClock, EXTCLK); break; case CLOCK_INT: FST_WRB(card, portConfig[i].internalClock, INTCLK); break; default: return -EINVAL; } FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate); return 0; } static int fst_get_iface(struct fst_card_info *card, struct fst_port_info *port, struct ifreq *ifr) { sync_serial_settings sync; int i; /* First check what line type is set, we'll default to reporting X.21 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be * changed */ switch (port->hwif) { case E1: ifr->ifr_settings.type = IF_IFACE_E1; break; case T1: ifr->ifr_settings.type = IF_IFACE_T1; break; case V35: ifr->ifr_settings.type = IF_IFACE_V35; break; case V24: ifr->ifr_settings.type = IF_IFACE_V24; break; case X21D: ifr->ifr_settings.type = IF_IFACE_X21D; break; case X21: default: ifr->ifr_settings.type = IF_IFACE_X21; break; } if (ifr->ifr_settings.size == 0) return 0; /* only type requested */ if (ifr->ifr_settings.size < sizeof(sync)) return -ENOMEM; i = port->index; memset(&sync, 0, sizeof(sync)); sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed); /* Lucky card and linux use same encoding here */ sync.clock_type = FST_RDB(card, portConfig[i].internalClock) == INTCLK ? CLOCK_INT : CLOCK_EXT; sync.loopback = 0; if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof(sync))) return -EFAULT; ifr->ifr_settings.size = sizeof(sync); return 0; } static int fst_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd) { struct fst_card_info *card; struct fst_port_info *port; struct fstioc_write wrthdr; struct fstioc_info info; unsigned long flags; void *buf; dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, data); port = dev_to_port(dev); card = port->card; if (!capable(CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case FSTCPURESET: fst_cpureset(card); card->state = FST_RESET; return 0; case FSTCPURELEASE: fst_cpurelease(card); card->state = FST_STARTING; return 0; case FSTWRITE: /* Code write (download) */ /* First copy in the header with the length and offset of data * to write */ if (!data) return -EINVAL; if (copy_from_user(&wrthdr, data, sizeof(struct fstioc_write))) return -EFAULT; /* Sanity check the parameters. We don't support partial writes * when going over the top */ if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE || wrthdr.size + wrthdr.offset > FST_MEMSIZE) return -ENXIO; /* Now copy the data to the card. */ buf = memdup_user(data + sizeof(struct fstioc_write), wrthdr.size); if (IS_ERR(buf)) return PTR_ERR(buf); memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size); kfree(buf); /* Writes to the memory of a card in the reset state constitute * a download */ if (card->state == FST_RESET) card->state = FST_DOWNLOAD; return 0; case FSTGETCONF: /* If card has just been started check the shared memory config * version and marker */ if (card->state == FST_STARTING) { check_started_ok(card); /* If everything checked out enable card interrupts */ if (card->state == FST_RUNNING) { spin_lock_irqsave(&card->card_lock, flags); fst_enable_intr(card); FST_WRB(card, interruptHandshake, 0xEE); spin_unlock_irqrestore(&card->card_lock, flags); } } if (!data) return -EINVAL; gather_conf_info(card, port, &info); if (copy_to_user(data, &info, sizeof(info))) return -EFAULT; return 0; case FSTSETCONF: /* Most of the settings have been moved to the generic ioctls * this just covers debug and board ident now */ if (card->state != FST_RUNNING) { pr_err("Attempt to configure card %d in non-running state (%d)\n", card->card_no, card->state); return -EIO; } if (copy_from_user(&info, data, sizeof(info))) return -EFAULT; return set_conf_from_info(card, port, &info); default: return -EINVAL; } } static int fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct fst_card_info *card; struct fst_port_info *port; dbg(DBG_IOCTL, "ioctl: %x, %x\n", cmd, ifr->ifr_settings.type); port = dev_to_port(dev); card = port->card; if (!capable(CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case SIOCWANDEV: switch (ifr->ifr_settings.type) { case IF_GET_IFACE: return fst_get_iface(card, port, ifr); case IF_IFACE_SYNC_SERIAL: case IF_IFACE_V35: case IF_IFACE_V24: case IF_IFACE_X21: case IF_IFACE_X21D: case IF_IFACE_T1: case IF_IFACE_E1: return fst_set_iface(card, port, ifr); case IF_PROTO_RAW: port->mode = FST_RAW; return 0; case IF_GET_PROTO: if (port->mode == FST_RAW) { ifr->ifr_settings.type = IF_PROTO_RAW; return 0; } return hdlc_ioctl(dev, ifr, cmd); default: port->mode = FST_GEN_HDLC; dbg(DBG_IOCTL, "Passing this type to hdlc %x\n", ifr->ifr_settings.type); return hdlc_ioctl(dev, ifr, cmd); } default: /* Not one of ours. Pass through to HDLC package */ return hdlc_ioctl(dev, ifr, cmd); } } static void fst_openport(struct fst_port_info *port) { int signals; /* Only init things if card is actually running. This allows open to * succeed for downloads etc. */ if (port->card->state == FST_RUNNING) { if (port->run) { dbg(DBG_OPEN, "open: found port already running\n"); fst_issue_cmd(port, STOPPORT); port->run = 0; } fst_rx_config(port); fst_tx_config(port); fst_op_raise(port, OPSTS_RTS | OPSTS_DTR); fst_issue_cmd(port, STARTPORT); port->run = 1; signals = FST_RDL(port->card, v24DebouncedSts[port->index]); if (signals & ((port->hwif == X21 || port->hwif == X21D) ? IPSTS_INDICATE : IPSTS_DCD)) netif_carrier_on(port_to_dev(port)); else netif_carrier_off(port_to_dev(port)); port->txqe = 0; port->txqs = 0; } } static void fst_closeport(struct fst_port_info *port) { if (port->card->state == FST_RUNNING) { if (port->run) { port->run = 0; fst_op_lower(port, OPSTS_RTS | OPSTS_DTR); fst_issue_cmd(port, STOPPORT); } else { dbg(DBG_OPEN, "close: port not running\n"); } } } static int fst_open(struct net_device *dev) { int err; struct fst_port_info *port; port = dev_to_port(dev); if (!try_module_get(THIS_MODULE)) return -EBUSY; if (port->mode != FST_RAW) { err = hdlc_open(dev); if (err) { module_put(THIS_MODULE); return err; } } fst_openport(port); netif_wake_queue(dev); return 0; } static int fst_close(struct net_device *dev) { struct fst_port_info *port; struct fst_card_info *card; unsigned char tx_dma_done; unsigned char rx_dma_done; port = dev_to_port(dev); card = port->card; tx_dma_done = inb(card->pci_conf + DMACSR1); rx_dma_done = inb(card->pci_conf + DMACSR0); dbg(DBG_OPEN, "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n", card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress, rx_dma_done); netif_stop_queue(dev); fst_closeport(dev_to_port(dev)); if (port->mode != FST_RAW) hdlc_close(dev); module_put(THIS_MODULE); return 0; } static int fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) { /* Setting currently fixed in FarSync card so we check and forget */ if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT) return -EINVAL; return 0; } static void fst_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct fst_port_info *port; struct fst_card_info *card; port = dev_to_port(dev); card = port->card; dev->stats.tx_errors++; dev->stats.tx_aborted_errors++; dbg(DBG_ASS, "Tx timeout card %d port %d\n", card->card_no, port->index); fst_issue_cmd(port, ABORTTX); netif_trans_update(dev); netif_wake_queue(dev); port->start = 0; } static netdev_tx_t fst_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct fst_card_info *card; struct fst_port_info *port; unsigned long flags; int txq_length; port = dev_to_port(dev); card = port->card; dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len); /* Drop packet with error if we don't have carrier */ if (!netif_carrier_ok(dev)) { dev_kfree_skb(skb); dev->stats.tx_errors++; dev->stats.tx_carrier_errors++; dbg(DBG_ASS, "Tried to transmit but no carrier on card %d port %d\n", card->card_no, port->index); return NETDEV_TX_OK; } /* Drop it if it's too big! MTU failure ? */ if (skb->len > LEN_TX_BUFFER) { dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len, LEN_TX_BUFFER); dev_kfree_skb(skb); dev->stats.tx_errors++; return NETDEV_TX_OK; } /* We are always going to queue the packet * so that the bottom half is the only place we tx from * Check there is room in the port txq */ spin_lock_irqsave(&card->card_lock, flags); txq_length = port->txqe - port->txqs; if (txq_length < 0) { /* This is the case where the next free has wrapped but the * last used hasn't */ txq_length = txq_length + FST_TXQ_DEPTH; } spin_unlock_irqrestore(&card->card_lock, flags); if (txq_length > fst_txq_high) { /* We have got enough buffers in the pipeline. Ask the network * layer to stop sending frames down */ netif_stop_queue(dev); port->start = 1; /* I'm using this to signal stop sent up */ } if (txq_length == FST_TXQ_DEPTH - 1) { /* This shouldn't have happened but such is life */ dev_kfree_skb(skb); dev->stats.tx_errors++; dbg(DBG_ASS, "Tx queue overflow card %d port %d\n", card->card_no, port->index); return NETDEV_TX_OK; } /* queue the buffer */ spin_lock_irqsave(&card->card_lock, flags); port->txq[port->txqe] = skb; port->txqe++; if (port->txqe == FST_TXQ_DEPTH) port->txqe = 0; spin_unlock_irqrestore(&card->card_lock, flags); /* Scehdule the bottom half which now does transmit processing */ fst_q_work_item(&fst_work_txq, card->card_no); tasklet_schedule(&fst_tx_task); return NETDEV_TX_OK; } /* Card setup having checked hardware resources. * Should be pretty bizarre if we get an error here (kernel memory * exhaustion is one possibility). If we do see a problem we report it * via a printk and leave the corresponding interface and all that follow * disabled. */ static char *type_strings[] = { "no hardware", /* Should never be seen */ "FarSync T2P", "FarSync T4P", "FarSync T1U", "FarSync T2U", "FarSync T4U", "FarSync TE1" }; static int fst_init_card(struct fst_card_info *card) { int i; int err; /* We're working on a number of ports based on the card ID. If the * firmware detects something different later (should never happen) * we'll have to revise it in some way then. */ for (i = 0; i < card->nports; i++) { err = register_hdlc_device(card->ports[i].dev); if (err < 0) { pr_err("Cannot register HDLC device for port %d (errno %d)\n", i, -err); while (i--) unregister_hdlc_device(card->ports[i].dev); return err; } } pr_info("%s-%s: %s IRQ%d, %d ports\n", port_to_dev(&card->ports[0])->name, port_to_dev(&card->ports[card->nports - 1])->name, type_strings[card->type], card->irq, card->nports); return 0; } static const struct net_device_ops fst_ops = { .ndo_open = fst_open, .ndo_stop = fst_close, .ndo_start_xmit = hdlc_start_xmit, .ndo_do_ioctl = fst_ioctl, .ndo_siocdevprivate = fst_siocdevprivate, .ndo_tx_timeout = fst_tx_timeout, }; /* Initialise card when detected. * Returns 0 to indicate success, or errno otherwise. */ static int fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static int no_of_cards_added; struct fst_card_info *card; int err = 0; int i; printk_once(KERN_INFO pr_fmt("FarSync WAN driver " FST_USER_VERSION " (c) 2001-2004 FarSite Communications Ltd.\n")); #if FST_DEBUG dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask); #endif /* We are going to be clever and allow certain cards not to be * configured. An exclude list can be provided in /etc/modules.conf */ if (fst_excluded_cards != 0) { /* There are cards to exclude * */ for (i = 0; i < fst_excluded_cards; i++) { if (pdev->devfn >> 3 == fst_excluded_list[i]) { pr_info("FarSync PCI device %d not assigned\n", (pdev->devfn) >> 3); return -EBUSY; } } } /* Allocate driver private data */ card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL); if (!card) return -ENOMEM; /* Try to enable the device */ err = pci_enable_device(pdev); if (err) { pr_err("Failed to enable card. Err %d\n", -err); goto enable_fail; } err = pci_request_regions(pdev, "FarSync"); if (err) { pr_err("Failed to allocate regions. Err %d\n", -err); goto regions_fail; } /* Get virtual addresses of memory regions */ card->pci_conf = pci_resource_start(pdev, 1); card->phys_mem = pci_resource_start(pdev, 2); card->phys_ctlmem = pci_resource_start(pdev, 3); card->mem = ioremap(card->phys_mem, FST_MEMSIZE); if (!card->mem) { pr_err("Physical memory remap failed\n"); err = -ENODEV; goto ioremap_physmem_fail; } card->ctlmem = ioremap(card->phys_ctlmem, 0x10); if (!card->ctlmem) { pr_err("Control memory remap failed\n"); err = -ENODEV; goto ioremap_ctlmem_fail; } dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem); /* Register the interrupt handler */ if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) { pr_err("Unable to register interrupt %d\n", card->irq); err = -ENODEV; goto irq_fail; } /* Record info we need */ card->irq = pdev->irq; card->type = ent->driver_data; card->family = ((ent->driver_data == FST_TYPE_T2P) || (ent->driver_data == FST_TYPE_T4P)) ? FST_FAMILY_TXP : FST_FAMILY_TXU; if (ent->driver_data == FST_TYPE_T1U || ent->driver_data == FST_TYPE_TE1) card->nports = 1; else card->nports = ((ent->driver_data == FST_TYPE_T2P) || (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4; card->state = FST_UNINIT; spin_lock_init(&card->card_lock); for (i = 0; i < card->nports; i++) { struct net_device *dev = alloc_hdlcdev(&card->ports[i]); hdlc_device *hdlc; if (!dev) { while (i--) free_netdev(card->ports[i].dev); pr_err("FarSync: out of memory\n"); err = -ENOMEM; goto hdlcdev_fail; } card->ports[i].dev = dev; card->ports[i].card = card; card->ports[i].index = i; card->ports[i].run = 0; hdlc = dev_to_hdlc(dev); /* Fill in the net device info */ /* Since this is a PCI setup this is purely * informational. Give them the buffer addresses * and basic card I/O. */ dev->mem_start = card->phys_mem + BUF_OFFSET(txBuffer[i][0][0]); dev->mem_end = card->phys_mem + BUF_OFFSET(txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]); dev->base_addr = card->pci_conf; dev->irq = card->irq; dev->netdev_ops = &fst_ops; dev->tx_queue_len = FST_TX_QUEUE_LEN; dev->watchdog_timeo = FST_TX_TIMEOUT; hdlc->attach = fst_attach; hdlc->xmit = fst_start_xmit; } card->device = pdev; dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type, card->nports, card->irq); dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n", card->pci_conf, card->phys_mem, card->phys_ctlmem); /* Reset the card's processor */ fst_cpureset(card); card->state = FST_RESET; /* Initialise DMA (if required) */ fst_init_dma(card); /* Record driver data for later use */ pci_set_drvdata(pdev, card); /* Remainder of card setup */ if (no_of_cards_added >= FST_MAX_CARDS) { pr_err("FarSync: too many cards\n"); err = -ENOMEM; goto card_array_fail; } fst_card_array[no_of_cards_added] = card; card->card_no = no_of_cards_added++; /* Record instance and bump it */ err = fst_init_card(card); if (err) goto init_card_fail; if (card->family == FST_FAMILY_TXU) { /* Allocate a dma buffer for transmit and receives */ card->rx_dma_handle_host = dma_alloc_coherent(&card->device->dev, FST_MAX_MTU, &card->rx_dma_handle_card, GFP_KERNEL); if (!card->rx_dma_handle_host) { pr_err("Could not allocate rx dma buffer\n"); err = -ENOMEM; goto rx_dma_fail; } card->tx_dma_handle_host = dma_alloc_coherent(&card->device->dev, FST_MAX_MTU, &card->tx_dma_handle_card, GFP_KERNEL); if (!card->tx_dma_handle_host) { pr_err("Could not allocate tx dma buffer\n"); err = -ENOMEM; goto tx_dma_fail; } } return 0; /* Success */ tx_dma_fail: dma_free_coherent(&card->device->dev, FST_MAX_MTU, card->rx_dma_handle_host, card->rx_dma_handle_card); rx_dma_fail: fst_disable_intr(card); for (i = 0 ; i < card->nports ; i++) unregister_hdlc_device(card->ports[i].dev); init_card_fail: fst_card_array[card->card_no] = NULL; card_array_fail: for (i = 0 ; i < card->nports ; i++) free_netdev(card->ports[i].dev); hdlcdev_fail: free_irq(card->irq, card); irq_fail: iounmap(card->ctlmem); ioremap_ctlmem_fail: iounmap(card->mem); ioremap_physmem_fail: pci_release_regions(pdev); regions_fail: pci_disable_device(pdev); enable_fail: kfree(card); return err; } /* Cleanup and close down a card */ static void fst_remove_one(struct pci_dev *pdev) { struct fst_card_info *card; int i; card = pci_get_drvdata(pdev); for (i = 0; i < card->nports; i++) { struct net_device *dev = port_to_dev(&card->ports[i]); unregister_hdlc_device(dev); } fst_disable_intr(card); free_irq(card->irq, card); iounmap(card->ctlmem); iounmap(card->mem); pci_release_regions(pdev); if (card->family == FST_FAMILY_TXU) { /* Free dma buffers */ dma_free_coherent(&card->device->dev, FST_MAX_MTU, card->rx_dma_handle_host, card->rx_dma_handle_card); dma_free_coherent(&card->device->dev, FST_MAX_MTU, card->tx_dma_handle_host, card->tx_dma_handle_card); } fst_card_array[card->card_no] = NULL; } static struct pci_driver fst_driver = { .name = FST_NAME, .id_table = fst_pci_dev_id, .probe = fst_add_one, .remove = fst_remove_one, }; static int __init fst_init(void) { int i; for (i = 0; i < FST_MAX_CARDS; i++) fst_card_array[i] = NULL; return pci_register_driver(&fst_driver); } static void __exit fst_cleanup_module(void) { pr_info("FarSync WAN driver unloading\n"); pci_unregister_driver(&fst_driver); } module_init(fst_init); module_exit(fst_cleanup_module);