// SPDX-License-Identifier: GPL-2.0-only /* * UART interface for ChromeOS Embedded Controller * * Copyright 2020-2022 Google LLC. */ #include #include #include #include #include #include #include #include #include #include #include #include "cros_ec.h" /* * EC sends contiguous bytes of response packet on UART AP RX. * TTY driver in AP accumulates incoming bytes and calls the registered callback * function. Byte count can range from 1 to MAX bytes supported by EC. * This driver should wait for long time for all callbacks to be processed. * Considering the worst case scenario, wait for 500 msec. This timeout should * account for max latency and some additional guard time. * Best case: Entire packet is received in ~200 ms, wait queue will be released * and packet will be processed. * Worst case: TTY driver sends bytes in multiple callbacks. In this case this * driver will wait for ~1 sec beyond which it will timeout. * This timeout value should not exceed ~500 msec because in case if * EC_CMD_REBOOT_EC sent, high level driver should be able to intercept EC * in RO. */ #define EC_MSG_DEADLINE_MS 500 /** * struct response_info - Encapsulate EC response related * information for passing between function * cros_ec_uart_pkt_xfer() and cros_ec_uart_rx_bytes() * callback. * @data: Copy the data received from EC here. * @max_size: Max size allocated for the @data buffer. If the * received data exceeds this value, we log an error. * @size: Actual size of data received from EC. This is also * used to accumulate byte count with response is received * in dma chunks. * @exp_len: Expected bytes of response from EC including header. * @status: Re-init to 0 before sending a cmd. Updated to 1 when * a response is successfully received, or an error number * on failure. * @wait_queue: Wait queue EC response where the cros_ec sends request * to EC and waits */ struct response_info { void *data; size_t max_size; size_t size; size_t exp_len; int status; wait_queue_head_t wait_queue; }; /** * struct cros_ec_uart - information about a uart-connected EC * * @serdev: serdev uart device we are connected to. * @baudrate: UART baudrate of attached EC device. * @flowcontrol: UART flowcontrol of attached device. * @irq: Linux IRQ number of associated serial device. * @response: Response info passing between cros_ec_uart_pkt_xfer() * and cros_ec_uart_rx_bytes() */ struct cros_ec_uart { struct serdev_device *serdev; u32 baudrate; u8 flowcontrol; u32 irq; struct response_info response; }; static size_t cros_ec_uart_rx_bytes(struct serdev_device *serdev, const u8 *data, size_t count) { struct ec_host_response *host_response; struct cros_ec_device *ec_dev = serdev_device_get_drvdata(serdev); struct cros_ec_uart *ec_uart = ec_dev->priv; struct response_info *resp = &ec_uart->response; /* Check if bytes were sent out of band */ if (!resp->data) { /* Discard all bytes */ dev_warn(ec_dev->dev, "Bytes received out of band, dropping them.\n"); return count; } /* * Check if incoming bytes + resp->size is greater than allocated * buffer in din by cros_ec. This will ensure that if EC sends more * bytes than max_size, waiting process will be notified with an error. */ if (resp->size + count > resp->max_size) { resp->status = -EMSGSIZE; wake_up(&resp->wait_queue); return count; } memcpy(resp->data + resp->size, data, count); resp->size += count; /* Read data_len if we received response header and if exp_len was not read before. */ if (resp->size >= sizeof(*host_response) && resp->exp_len == 0) { host_response = (struct ec_host_response *)resp->data; resp->exp_len = host_response->data_len + sizeof(*host_response); } /* If driver received response header and payload from EC, wake up the wait queue. */ if (resp->size >= sizeof(*host_response) && resp->size == resp->exp_len) { resp->status = 1; wake_up(&resp->wait_queue); } return count; } static int cros_ec_uart_pkt_xfer(struct cros_ec_device *ec_dev, struct cros_ec_command *ec_msg) { struct cros_ec_uart *ec_uart = ec_dev->priv; struct serdev_device *serdev = ec_uart->serdev; struct response_info *resp = &ec_uart->response; struct ec_host_response *host_response; unsigned int len; int ret, i; u8 sum; len = cros_ec_prepare_tx(ec_dev, ec_msg); dev_dbg(ec_dev->dev, "Prepared len=%d\n", len); /* Setup for incoming response */ resp->data = ec_dev->din; resp->max_size = ec_dev->din_size; resp->size = 0; resp->exp_len = 0; resp->status = 0; ret = serdev_device_write_buf(serdev, ec_dev->dout, len); if (ret < 0 || ret < len) { dev_err(ec_dev->dev, "Unable to write data\n"); if (ret >= 0) ret = -EIO; goto exit; } ret = wait_event_timeout(resp->wait_queue, resp->status, msecs_to_jiffies(EC_MSG_DEADLINE_MS)); if (ret == 0) { dev_warn(ec_dev->dev, "Timed out waiting for response.\n"); ret = -ETIMEDOUT; goto exit; } if (resp->status < 0) { ret = resp->status; dev_warn(ec_dev->dev, "Error response received: %d\n", ret); goto exit; } host_response = (struct ec_host_response *)ec_dev->din; ec_msg->result = host_response->result; if (host_response->data_len > ec_msg->insize) { dev_err(ec_dev->dev, "Resp too long (%d bytes, expected %d)\n", host_response->data_len, ec_msg->insize); ret = -ENOSPC; goto exit; } /* Validate checksum */ sum = 0; for (i = 0; i < sizeof(*host_response) + host_response->data_len; i++) sum += ec_dev->din[i]; if (sum) { dev_err(ec_dev->dev, "Bad packet checksum calculated %x\n", sum); ret = -EBADMSG; goto exit; } memcpy(ec_msg->data, ec_dev->din + sizeof(*host_response), host_response->data_len); ret = host_response->data_len; exit: /* Invalidate response buffer to guard against out of band rx data */ resp->data = NULL; if (ec_msg->command == EC_CMD_REBOOT_EC) msleep(EC_REBOOT_DELAY_MS); return ret; } static int cros_ec_uart_resource(struct acpi_resource *ares, void *data) { struct cros_ec_uart *ec_uart = data; struct acpi_resource_uart_serialbus *sb = &ares->data.uart_serial_bus; if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS && sb->type == ACPI_RESOURCE_SERIAL_TYPE_UART) { ec_uart->baudrate = sb->default_baud_rate; dev_dbg(&ec_uart->serdev->dev, "Baudrate %d\n", ec_uart->baudrate); ec_uart->flowcontrol = sb->flow_control; dev_dbg(&ec_uart->serdev->dev, "Flow control %d\n", ec_uart->flowcontrol); } return 0; } static int cros_ec_uart_acpi_probe(struct cros_ec_uart *ec_uart) { int ret; LIST_HEAD(resources); struct acpi_device *adev = ACPI_COMPANION(&ec_uart->serdev->dev); ret = acpi_dev_get_resources(adev, &resources, cros_ec_uart_resource, ec_uart); if (ret < 0) return ret; acpi_dev_free_resource_list(&resources); /* Retrieve GpioInt and translate it to Linux IRQ number */ ret = acpi_dev_gpio_irq_get(adev, 0); if (ret < 0) return ret; ec_uart->irq = ret; dev_dbg(&ec_uart->serdev->dev, "IRQ number %d\n", ec_uart->irq); return 0; } static const struct serdev_device_ops cros_ec_uart_client_ops = { .receive_buf = cros_ec_uart_rx_bytes, }; static int cros_ec_uart_probe(struct serdev_device *serdev) { struct device *dev = &serdev->dev; struct cros_ec_device *ec_dev; struct cros_ec_uart *ec_uart; int ret; ec_uart = devm_kzalloc(dev, sizeof(*ec_uart), GFP_KERNEL); if (!ec_uart) return -ENOMEM; ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL); if (!ec_dev) return -ENOMEM; serdev_device_set_drvdata(serdev, ec_dev); init_waitqueue_head(&ec_uart->response.wait_queue); ec_uart->serdev = serdev; ret = cros_ec_uart_acpi_probe(ec_uart); if (ret < 0) { dev_err(dev, "Failed to get ACPI info (%d)", ret); return ret; } /* Initialize ec_dev for cros_ec */ ec_dev->phys_name = dev_name(dev); ec_dev->dev = dev; ec_dev->priv = ec_uart; ec_dev->irq = ec_uart->irq; ec_dev->cmd_xfer = NULL; ec_dev->pkt_xfer = cros_ec_uart_pkt_xfer; ec_dev->din_size = sizeof(struct ec_host_response) + sizeof(struct ec_response_get_protocol_info); ec_dev->dout_size = sizeof(struct ec_host_request); serdev_device_set_client_ops(serdev, &cros_ec_uart_client_ops); ret = devm_serdev_device_open(dev, serdev); if (ret) { dev_err(dev, "Unable to open UART device"); return ret; } ret = serdev_device_set_baudrate(serdev, ec_uart->baudrate); if (ret < 0) { dev_err(dev, "Failed to set up host baud rate (%d)", ret); return ret; } serdev_device_set_flow_control(serdev, ec_uart->flowcontrol); return cros_ec_register(ec_dev); } static void cros_ec_uart_remove(struct serdev_device *serdev) { struct cros_ec_device *ec_dev = serdev_device_get_drvdata(serdev); cros_ec_unregister(ec_dev); }; static int __maybe_unused cros_ec_uart_suspend(struct device *dev) { struct cros_ec_device *ec_dev = dev_get_drvdata(dev); return cros_ec_suspend(ec_dev); } static int __maybe_unused cros_ec_uart_resume(struct device *dev) { struct cros_ec_device *ec_dev = dev_get_drvdata(dev); return cros_ec_resume(ec_dev); } static SIMPLE_DEV_PM_OPS(cros_ec_uart_pm_ops, cros_ec_uart_suspend, cros_ec_uart_resume); static const struct of_device_id cros_ec_uart_of_match[] = { { .compatible = "google,cros-ec-uart" }, {} }; MODULE_DEVICE_TABLE(of, cros_ec_uart_of_match); #ifdef CONFIG_ACPI static const struct acpi_device_id cros_ec_uart_acpi_id[] = { { "GOOG0019", 0 }, {} }; MODULE_DEVICE_TABLE(acpi, cros_ec_uart_acpi_id); #endif static struct serdev_device_driver cros_ec_uart_driver = { .driver = { .name = "cros-ec-uart", .acpi_match_table = ACPI_PTR(cros_ec_uart_acpi_id), .of_match_table = cros_ec_uart_of_match, .pm = &cros_ec_uart_pm_ops, }, .probe = cros_ec_uart_probe, .remove = cros_ec_uart_remove, }; module_serdev_device_driver(cros_ec_uart_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("UART interface for ChromeOS Embedded Controller"); MODULE_AUTHOR("Bhanu Prakash Maiya ");