/* * This is the Fusion MPT base driver providing common API layer interface * for access to MPT (Message Passing Technology) firmware. * * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c * Copyright (C) 2012-2014 LSI Corporation * Copyright (C) 2013-2014 Avago Technologies * (mailto: MPT-FusionLinux.pdl@avagotech.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * NO WARRANTY * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is * solely responsible for determining the appropriateness of using and * distributing the Program and assumes all risks associated with its * exercise of rights under this Agreement, including but not limited to * the risks and costs of program errors, damage to or loss of data, * programs or equipment, and unavailability or interruption of operations. * DISCLAIMER OF LIABILITY * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, * USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* To get host page size per arch */ #include #include "mpt3sas_base.h" static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ /* maximum controller queue depth */ #define MAX_HBA_QUEUE_DEPTH 30000 #define MAX_CHAIN_DEPTH 100000 static int max_queue_depth = -1; module_param(max_queue_depth, int, 0); MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); static int max_sgl_entries = -1; module_param(max_sgl_entries, int, 0); MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); static int msix_disable = -1; module_param(msix_disable, int, 0); MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); static int smp_affinity_enable = 1; module_param(smp_affinity_enable, int, S_IRUGO); MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)"); static int max_msix_vectors = -1; module_param(max_msix_vectors, int, 0); MODULE_PARM_DESC(max_msix_vectors, " max msix vectors"); static int mpt3sas_fwfault_debug; MODULE_PARM_DESC(mpt3sas_fwfault_debug, " enable detection of firmware fault and halt firmware - (default=0)"); static int _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); /** * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. * */ static int _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) { int ret = param_set_int(val, kp); struct MPT3SAS_ADAPTER *ioc; if (ret) return ret; /* global ioc spinlock to protect controller list on list operations */ pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); spin_lock(&gioc_lock); list_for_each_entry(ioc, &mpt3sas_ioc_list, list) ioc->fwfault_debug = mpt3sas_fwfault_debug; spin_unlock(&gioc_lock); return 0; } module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, param_get_int, &mpt3sas_fwfault_debug, 0644); /** * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc * @arg: input argument, used to derive ioc * * Return 0 if controller is removed from pci subsystem. * Return -1 for other case. */ static int mpt3sas_remove_dead_ioc_func(void *arg) { struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; struct pci_dev *pdev; if ((ioc == NULL)) return -1; pdev = ioc->pdev; if ((pdev == NULL)) return -1; pci_stop_and_remove_bus_device_locked(pdev); return 0; } /** * _base_fault_reset_work - workq handling ioc fault conditions * @work: input argument, used to derive ioc * Context: sleep. * * Return nothing. */ static void _base_fault_reset_work(struct work_struct *work) { struct MPT3SAS_ADAPTER *ioc = container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); unsigned long flags; u32 doorbell; int rc; struct task_struct *p; spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); if (ioc->shost_recovery || ioc->pci_error_recovery) goto rearm_timer; spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); doorbell = mpt3sas_base_get_iocstate(ioc, 0); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n", ioc->name); /* It may be possible that EEH recovery can resolve some of * pci bus failure issues rather removing the dead ioc function * by considering controller is in a non-operational state. So * here priority is given to the EEH recovery. If it doesn't * not resolve this issue, mpt3sas driver will consider this * controller to non-operational state and remove the dead ioc * function. */ if (ioc->non_operational_loop++ < 5) { spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); goto rearm_timer; } /* * Call _scsih_flush_pending_cmds callback so that we flush all * pending commands back to OS. This call is required to aovid * deadlock at block layer. Dead IOC will fail to do diag reset, * and this call is safe since dead ioc will never return any * command back from HW. */ ioc->schedule_dead_ioc_flush_running_cmds(ioc); /* * Set remove_host flag early since kernel thread will * take some time to execute. */ ioc->remove_host = 1; /*Remove the Dead Host */ p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, "%s_dead_ioc_%d", ioc->driver_name, ioc->id); if (IS_ERR(p)) pr_err(MPT3SAS_FMT "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", ioc->name, __func__); else pr_err(MPT3SAS_FMT "%s: Running mpt3sas_dead_ioc thread success !!!!\n", ioc->name, __func__); return; /* don't rearm timer */ } ioc->non_operational_loop = 0; if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name, __func__, (rc == 0) ? "success" : "failed"); doorbell = mpt3sas_base_get_iocstate(ioc, 0); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) mpt3sas_base_fault_info(ioc, doorbell & MPI2_DOORBELL_DATA_MASK); if (rc && (doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) return; /* don't rearm timer */ } spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); rearm_timer: if (ioc->fault_reset_work_q) queue_delayed_work(ioc->fault_reset_work_q, &ioc->fault_reset_work, msecs_to_jiffies(FAULT_POLLING_INTERVAL)); spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); } /** * mpt3sas_base_start_watchdog - start the fault_reset_work_q * @ioc: per adapter object * Context: sleep. * * Return nothing. */ void mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) { unsigned long flags; if (ioc->fault_reset_work_q) return; /* initialize fault polling */ INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); snprintf(ioc->fault_reset_work_q_name, sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", ioc->driver_name, ioc->id); ioc->fault_reset_work_q = create_singlethread_workqueue(ioc->fault_reset_work_q_name); if (!ioc->fault_reset_work_q) { pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n", ioc->name, __func__, __LINE__); return; } spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); if (ioc->fault_reset_work_q) queue_delayed_work(ioc->fault_reset_work_q, &ioc->fault_reset_work, msecs_to_jiffies(FAULT_POLLING_INTERVAL)); spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); } /** * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q * @ioc: per adapter object * Context: sleep. * * Return nothing. */ void mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) { unsigned long flags; struct workqueue_struct *wq; spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); wq = ioc->fault_reset_work_q; ioc->fault_reset_work_q = NULL; spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); if (wq) { if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) flush_workqueue(wq); destroy_workqueue(wq); } } /** * mpt3sas_base_fault_info - verbose translation of firmware FAULT code * @ioc: per adapter object * @fault_code: fault code * * Return nothing. */ void mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) { pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n", ioc->name, fault_code); } /** * mpt3sas_halt_firmware - halt's mpt controller firmware * @ioc: per adapter object * * For debugging timeout related issues. Writing 0xCOFFEE00 * to the doorbell register will halt controller firmware. With * the purpose to stop both driver and firmware, the enduser can * obtain a ring buffer from controller UART. */ void mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) { u32 doorbell; if (!ioc->fwfault_debug) return; dump_stack(); doorbell = readl(&ioc->chip->Doorbell); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) mpt3sas_base_fault_info(ioc , doorbell); else { writel(0xC0FFEE00, &ioc->chip->Doorbell); pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n", ioc->name); } if (ioc->fwfault_debug == 2) for (;;) ; else panic("panic in %s\n", __func__); } /** * _base_sas_ioc_info - verbose translation of the ioc status * @ioc: per adapter object * @mpi_reply: reply mf payload returned from firmware * @request_hdr: request mf * * Return nothing. */ static void _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, MPI2RequestHeader_t *request_hdr) { u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; char *desc = NULL; u16 frame_sz; char *func_str = NULL; /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) return; if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) return; switch (ioc_status) { /**************************************************************************** * Common IOCStatus values for all replies ****************************************************************************/ case MPI2_IOCSTATUS_INVALID_FUNCTION: desc = "invalid function"; break; case MPI2_IOCSTATUS_BUSY: desc = "busy"; break; case MPI2_IOCSTATUS_INVALID_SGL: desc = "invalid sgl"; break; case MPI2_IOCSTATUS_INTERNAL_ERROR: desc = "internal error"; break; case MPI2_IOCSTATUS_INVALID_VPID: desc = "invalid vpid"; break; case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: desc = "insufficient resources"; break; case MPI2_IOCSTATUS_INSUFFICIENT_POWER: desc = "insufficient power"; break; case MPI2_IOCSTATUS_INVALID_FIELD: desc = "invalid field"; break; case MPI2_IOCSTATUS_INVALID_STATE: desc = "invalid state"; break; case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: desc = "op state not supported"; break; /**************************************************************************** * Config IOCStatus values ****************************************************************************/ case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: desc = "config invalid action"; break; case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: desc = "config invalid type"; break; case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: desc = "config invalid page"; break; case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: desc = "config invalid data"; break; case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: desc = "config no defaults"; break; case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: desc = "config cant commit"; break; /**************************************************************************** * SCSI IO Reply ****************************************************************************/ case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: break; /**************************************************************************** * For use by SCSI Initiator and SCSI Target end-to-end data protection ****************************************************************************/ case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: desc = "eedp guard error"; break; case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: desc = "eedp ref tag error"; break; case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: desc = "eedp app tag error"; break; /**************************************************************************** * SCSI Target values ****************************************************************************/ case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: desc = "target invalid io index"; break; case MPI2_IOCSTATUS_TARGET_ABORTED: desc = "target aborted"; break; case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: desc = "target no conn retryable"; break; case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: desc = "target no connection"; break; case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: desc = "target xfer count mismatch"; break; case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: desc = "target data offset error"; break; case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: desc = "target too much write data"; break; case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: desc = "target iu too short"; break; case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: desc = "target ack nak timeout"; break; case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: desc = "target nak received"; break; /**************************************************************************** * Serial Attached SCSI values ****************************************************************************/ case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: desc = "smp request failed"; break; case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: desc = "smp data overrun"; break; /**************************************************************************** * Diagnostic Buffer Post / Diagnostic Release values ****************************************************************************/ case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: desc = "diagnostic released"; break; default: break; } if (!desc) return; switch (request_hdr->Function) { case MPI2_FUNCTION_CONFIG: frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; func_str = "config_page"; break; case MPI2_FUNCTION_SCSI_TASK_MGMT: frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); func_str = "task_mgmt"; break; case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); func_str = "sas_iounit_ctl"; break; case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: frame_sz = sizeof(Mpi2SepRequest_t); func_str = "enclosure"; break; case MPI2_FUNCTION_IOC_INIT: frame_sz = sizeof(Mpi2IOCInitRequest_t); func_str = "ioc_init"; break; case MPI2_FUNCTION_PORT_ENABLE: frame_sz = sizeof(Mpi2PortEnableRequest_t); func_str = "port_enable"; break; case MPI2_FUNCTION_SMP_PASSTHROUGH: frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; func_str = "smp_passthru"; break; case MPI2_FUNCTION_NVME_ENCAPSULATED: frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + ioc->sge_size; func_str = "nvme_encapsulated"; break; default: frame_sz = 32; func_str = "unknown"; break; } pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", ioc->name, desc, ioc_status, request_hdr, func_str); _debug_dump_mf(request_hdr, frame_sz/4); } /** * _base_display_event_data - verbose translation of firmware asyn events * @ioc: per adapter object * @mpi_reply: reply mf payload returned from firmware * * Return nothing. */ static void _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, Mpi2EventNotificationReply_t *mpi_reply) { char *desc = NULL; u16 event; if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) return; event = le16_to_cpu(mpi_reply->Event); switch (event) { case MPI2_EVENT_LOG_DATA: desc = "Log Data"; break; case MPI2_EVENT_STATE_CHANGE: desc = "Status Change"; break; case MPI2_EVENT_HARD_RESET_RECEIVED: desc = "Hard Reset Received"; break; case MPI2_EVENT_EVENT_CHANGE: desc = "Event Change"; break; case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: desc = "Device Status Change"; break; case MPI2_EVENT_IR_OPERATION_STATUS: if (!ioc->hide_ir_msg) desc = "IR Operation Status"; break; case MPI2_EVENT_SAS_DISCOVERY: { Mpi2EventDataSasDiscovery_t *event_data = (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name, (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ? "start" : "stop"); if (event_data->DiscoveryStatus) pr_cont(" discovery_status(0x%08x)", le32_to_cpu(event_data->DiscoveryStatus)); pr_cont("\n"); return; } case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: desc = "SAS Broadcast Primitive"; break; case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: desc = "SAS Init Device Status Change"; break; case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: desc = "SAS Init Table Overflow"; break; case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: desc = "SAS Topology Change List"; break; case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: desc = "SAS Enclosure Device Status Change"; break; case MPI2_EVENT_IR_VOLUME: if (!ioc->hide_ir_msg) desc = "IR Volume"; break; case MPI2_EVENT_IR_PHYSICAL_DISK: if (!ioc->hide_ir_msg) desc = "IR Physical Disk"; break; case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: if (!ioc->hide_ir_msg) desc = "IR Configuration Change List"; break; case MPI2_EVENT_LOG_ENTRY_ADDED: if (!ioc->hide_ir_msg) desc = "Log Entry Added"; break; case MPI2_EVENT_TEMP_THRESHOLD: desc = "Temperature Threshold"; break; case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: desc = "Cable Event"; break; case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: desc = "PCIE Device Status Change"; break; case MPI2_EVENT_PCIE_ENUMERATION: { Mpi26EventDataPCIeEnumeration_t *event_data = (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name, (event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED) ? "start" : "stop"); if (event_data->EnumerationStatus) pr_info("enumeration_status(0x%08x)", le32_to_cpu(event_data->EnumerationStatus)); pr_info("\n"); return; } case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: desc = "PCIE Topology Change List"; break; } if (!desc) return; pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc); } /** * _base_sas_log_info - verbose translation of firmware log info * @ioc: per adapter object * @log_info: log info * * Return nothing. */ static void _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) { union loginfo_type { u32 loginfo; struct { u32 subcode:16; u32 code:8; u32 originator:4; u32 bus_type:4; } dw; }; union loginfo_type sas_loginfo; char *originator_str = NULL; sas_loginfo.loginfo = log_info; if (sas_loginfo.dw.bus_type != 3 /*SAS*/) return; /* each nexus loss loginfo */ if (log_info == 0x31170000) return; /* eat the loginfos associated with task aborts */ if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 0x31140000 || log_info == 0x31130000)) return; switch (sas_loginfo.dw.originator) { case 0: originator_str = "IOP"; break; case 1: originator_str = "PL"; break; case 2: if (!ioc->hide_ir_msg) originator_str = "IR"; else originator_str = "WarpDrive"; break; } pr_warn(MPT3SAS_FMT "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", ioc->name, log_info, originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); } /** * _base_display_reply_info - * @ioc: per adapter object * @smid: system request message index * @msix_index: MSIX table index supplied by the OS * @reply: reply message frame(lower 32bit addr) * * Return nothing. */ static void _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, u32 reply) { MPI2DefaultReply_t *mpi_reply; u16 ioc_status; u32 loginfo = 0; mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); if (unlikely(!mpi_reply)) { pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n", ioc->name, __FILE__, __LINE__, __func__); return; } ioc_status = le16_to_cpu(mpi_reply->IOCStatus); if ((ioc_status & MPI2_IOCSTATUS_MASK) && (ioc->logging_level & MPT_DEBUG_REPLY)) { _base_sas_ioc_info(ioc , mpi_reply, mpt3sas_base_get_msg_frame(ioc, smid)); } if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); _base_sas_log_info(ioc, loginfo); } if (ioc_status || loginfo) { ioc_status &= MPI2_IOCSTATUS_MASK; mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); } } /** * mpt3sas_base_done - base internal command completion routine * @ioc: per adapter object * @smid: system request message index * @msix_index: MSIX table index supplied by the OS * @reply: reply message frame(lower 32bit addr) * * Return 1 meaning mf should be freed from _base_interrupt * 0 means the mf is freed from this function. */ u8 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, u32 reply) { MPI2DefaultReply_t *mpi_reply; mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) return mpt3sas_check_for_pending_internal_cmds(ioc, smid); if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) return 1; ioc->base_cmds.status |= MPT3_CMD_COMPLETE; if (mpi_reply) { ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); } ioc->base_cmds.status &= ~MPT3_CMD_PENDING; complete(&ioc->base_cmds.done); return 1; } /** * _base_async_event - main callback handler for firmware asyn events * @ioc: per adapter object * @msix_index: MSIX table index supplied by the OS * @reply: reply message frame(lower 32bit addr) * * Return 1 meaning mf should be freed from _base_interrupt * 0 means the mf is freed from this function. */ static u8 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) { Mpi2EventNotificationReply_t *mpi_reply; Mpi2EventAckRequest_t *ack_request; u16 smid; struct _event_ack_list *delayed_event_ack; mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); if (!mpi_reply) return 1; if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) return 1; _base_display_event_data(ioc, mpi_reply); if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) goto out; smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), GFP_ATOMIC); if (!delayed_event_ack) goto out; INIT_LIST_HEAD(&delayed_event_ack->list); delayed_event_ack->Event = mpi_reply->Event; delayed_event_ack->EventContext = mpi_reply->EventContext; list_add_tail(&delayed_event_ack->list, &ioc->delayed_event_ack_list); dewtprintk(ioc, pr_info(MPT3SAS_FMT "DELAYED: EVENT ACK: event (0x%04x)\n", ioc->name, le16_to_cpu(mpi_reply->Event))); goto out; } ack_request = mpt3sas_base_get_msg_frame(ioc, smid); memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); ack_request->Function = MPI2_FUNCTION_EVENT_ACK; ack_request->Event = mpi_reply->Event; ack_request->EventContext = mpi_reply->EventContext; ack_request->VF_ID = 0; /* TODO */ ack_request->VP_ID = 0; ioc->put_smid_default(ioc, smid); out: /* scsih callback handler */ mpt3sas_scsih_event_callback(ioc, msix_index, reply); /* ctl callback handler */ mpt3sas_ctl_event_callback(ioc, msix_index, reply); return 1; } struct scsiio_tracker * mpt3sas_get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) { if (WARN_ON(!smid) || WARN_ON(smid >= ioc->hi_priority_smid)) return NULL; return &ioc->scsi_lookup[smid - 1]; } /** * _base_get_cb_idx - obtain the callback index * @ioc: per adapter object * @smid: system request message index * * Return callback index. */ static u8 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) { int i; u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; u8 cb_idx = 0xFF; if (smid < ioc->hi_priority_smid) { struct scsiio_tracker *st; if (smid < ctl_smid) { st = mpt3sas_get_st_from_smid(ioc, smid); if (st) cb_idx = st->cb_idx; } else if (smid == ctl_smid) cb_idx = ioc->ctl_cb_idx; } else if (smid < ioc->internal_smid) { i = smid - ioc->hi_priority_smid; cb_idx = ioc->hpr_lookup[i].cb_idx; } else if (smid <= ioc->hba_queue_depth) { i = smid - ioc->internal_smid; cb_idx = ioc->internal_lookup[i].cb_idx; } return cb_idx; } /** * _base_mask_interrupts - disable interrupts * @ioc: per adapter object * * Disabling ResetIRQ, Reply and Doorbell Interrupts * * Return nothing. */ static void _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) { u32 him_register; ioc->mask_interrupts = 1; him_register = readl(&ioc->chip->HostInterruptMask); him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; writel(him_register, &ioc->chip->HostInterruptMask); readl(&ioc->chip->HostInterruptMask); } /** * _base_unmask_interrupts - enable interrupts * @ioc: per adapter object * * Enabling only Reply Interrupts * * Return nothing. */ static void _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) { u32 him_register; him_register = readl(&ioc->chip->HostInterruptMask); him_register &= ~MPI2_HIM_RIM; writel(him_register, &ioc->chip->HostInterruptMask); ioc->mask_interrupts = 0; } union reply_descriptor { u64 word; struct { u32 low; u32 high; } u; }; /** * _base_interrupt - MPT adapter (IOC) specific interrupt handler. * @irq: irq number (not used) * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure * @r: pt_regs pointer (not used) * * Return IRQ_HANDLE if processed, else IRQ_NONE. */ static irqreturn_t _base_interrupt(int irq, void *bus_id) { struct adapter_reply_queue *reply_q = bus_id; union reply_descriptor rd; u32 completed_cmds; u8 request_desript_type; u16 smid; u8 cb_idx; u32 reply; u8 msix_index = reply_q->msix_index; struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; Mpi2ReplyDescriptorsUnion_t *rpf; u8 rc; if (ioc->mask_interrupts) return IRQ_NONE; if (!atomic_add_unless(&reply_q->busy, 1, 1)) return IRQ_NONE; rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; request_desript_type = rpf->Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { atomic_dec(&reply_q->busy); return IRQ_NONE; } completed_cmds = 0; cb_idx = 0xFF; do { rd.word = le64_to_cpu(rpf->Words); if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) goto out; reply = 0; smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); if (request_desript_type == MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || request_desript_type == MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { cb_idx = _base_get_cb_idx(ioc, smid); if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && (likely(mpt_callbacks[cb_idx] != NULL))) { rc = mpt_callbacks[cb_idx](ioc, smid, msix_index, 0); if (rc) mpt3sas_base_free_smid(ioc, smid); } } else if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { reply = le32_to_cpu( rpf->AddressReply.ReplyFrameAddress); if (reply > ioc->reply_dma_max_address || reply < ioc->reply_dma_min_address) reply = 0; if (smid) { cb_idx = _base_get_cb_idx(ioc, smid); if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && (likely(mpt_callbacks[cb_idx] != NULL))) { rc = mpt_callbacks[cb_idx](ioc, smid, msix_index, reply); if (reply) _base_display_reply_info(ioc, smid, msix_index, reply); if (rc) mpt3sas_base_free_smid(ioc, smid); } } else { _base_async_event(ioc, msix_index, reply); } /* reply free queue handling */ if (reply) { ioc->reply_free_host_index = (ioc->reply_free_host_index == (ioc->reply_free_queue_depth - 1)) ? 0 : ioc->reply_free_host_index + 1; ioc->reply_free[ioc->reply_free_host_index] = cpu_to_le32(reply); writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); } } rpf->Words = cpu_to_le64(ULLONG_MAX); reply_q->reply_post_host_index = (reply_q->reply_post_host_index == (ioc->reply_post_queue_depth - 1)) ? 0 : reply_q->reply_post_host_index + 1; request_desript_type = reply_q->reply_post_free[reply_q->reply_post_host_index]. Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; completed_cmds++; /* Update the reply post host index after continuously * processing the threshold number of Reply Descriptors. * So that FW can find enough entries to post the Reply * Descriptors in the reply descriptor post queue. */ if (completed_cmds > ioc->hba_queue_depth/3) { if (ioc->combined_reply_queue) { writel(reply_q->reply_post_host_index | ((msix_index & 7) << MPI2_RPHI_MSIX_INDEX_SHIFT), ioc->replyPostRegisterIndex[msix_index/8]); } else { writel(reply_q->reply_post_host_index | (msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex); } completed_cmds = 1; } if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) goto out; if (!reply_q->reply_post_host_index) rpf = reply_q->reply_post_free; else rpf++; } while (1); out: if (!completed_cmds) { atomic_dec(&reply_q->busy); return IRQ_NONE; } if (ioc->is_warpdrive) { writel(reply_q->reply_post_host_index, ioc->reply_post_host_index[msix_index]); atomic_dec(&reply_q->busy); return IRQ_HANDLED; } /* Update Reply Post Host Index. * For those HBA's which support combined reply queue feature * 1. Get the correct Supplemental Reply Post Host Index Register. * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host * Index Register address bank i.e replyPostRegisterIndex[], * 2. Then update this register with new reply host index value * in ReplyPostIndex field and the MSIxIndex field with * msix_index value reduced to a value between 0 and 7, * using a modulo 8 operation. Since each Supplemental Reply Post * Host Index Register supports 8 MSI-X vectors. * * For other HBA's just update the Reply Post Host Index register with * new reply host index value in ReplyPostIndex Field and msix_index * value in MSIxIndex field. */ if (ioc->combined_reply_queue) writel(reply_q->reply_post_host_index | ((msix_index & 7) << MPI2_RPHI_MSIX_INDEX_SHIFT), ioc->replyPostRegisterIndex[msix_index/8]); else writel(reply_q->reply_post_host_index | (msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex); atomic_dec(&reply_q->busy); return IRQ_HANDLED; } /** * _base_is_controller_msix_enabled - is controller support muli-reply queues * @ioc: per adapter object * */ static inline int _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) { return (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; } /** * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts * @ioc: per adapter object * Context: non ISR conext * * Called when a Task Management request has completed. * * Return nothing. */ void mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) { struct adapter_reply_queue *reply_q; /* If MSIX capability is turned off * then multi-queues are not enabled */ if (!_base_is_controller_msix_enabled(ioc)) return; list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { if (ioc->shost_recovery || ioc->remove_host || ioc->pci_error_recovery) return; /* TMs are on msix_index == 0 */ if (reply_q->msix_index == 0) continue; synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); } } /** * mpt3sas_base_release_callback_handler - clear interrupt callback handler * @cb_idx: callback index * * Return nothing. */ void mpt3sas_base_release_callback_handler(u8 cb_idx) { mpt_callbacks[cb_idx] = NULL; } /** * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler * @cb_func: callback function * * Returns cb_func. */ u8 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) { u8 cb_idx; for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) if (mpt_callbacks[cb_idx] == NULL) break; mpt_callbacks[cb_idx] = cb_func; return cb_idx; } /** * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler * * Return nothing. */ void mpt3sas_base_initialize_callback_handler(void) { u8 cb_idx; for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) mpt3sas_base_release_callback_handler(cb_idx); } /** * _base_build_zero_len_sge - build zero length sg entry * @ioc: per adapter object * @paddr: virtual address for SGE * * Create a zero length scatter gather entry to insure the IOCs hardware has * something to use if the target device goes brain dead and tries * to send data even when none is asked for. * * Return nothing. */ static void _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) { u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << MPI2_SGE_FLAGS_SHIFT); ioc->base_add_sg_single(paddr, flags_length, -1); } /** * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. * @paddr: virtual address for SGE * @flags_length: SGE flags and data transfer length * @dma_addr: Physical address * * Return nothing. */ static void _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) { Mpi2SGESimple32_t *sgel = paddr; flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; sgel->FlagsLength = cpu_to_le32(flags_length); sgel->Address = cpu_to_le32(dma_addr); } /** * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. * @paddr: virtual address for SGE * @flags_length: SGE flags and data transfer length * @dma_addr: Physical address * * Return nothing. */ static void _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) { Mpi2SGESimple64_t *sgel = paddr; flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; sgel->FlagsLength = cpu_to_le32(flags_length); sgel->Address = cpu_to_le64(dma_addr); } /** * _base_get_chain_buffer_tracker - obtain chain tracker * @ioc: per adapter object * @smid: smid associated to an IO request * * Returns chain tracker(from ioc->free_chain_list) */ static struct chain_tracker * _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid) { struct chain_tracker *chain_req; struct scsiio_tracker *st; unsigned long flags; spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); if (list_empty(&ioc->free_chain_list)) { spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); dfailprintk(ioc, pr_warn(MPT3SAS_FMT "chain buffers not available\n", ioc->name)); return NULL; } chain_req = list_entry(ioc->free_chain_list.next, struct chain_tracker, tracker_list); list_del_init(&chain_req->tracker_list); st = mpt3sas_get_st_from_smid(ioc, smid); if (st) list_add_tail(&chain_req->tracker_list, &st->chain_list); spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); return chain_req; } /** * _base_build_sg - build generic sg * @ioc: per adapter object * @psge: virtual address for SGE * @data_out_dma: physical address for WRITES * @data_out_sz: data xfer size for WRITES * @data_in_dma: physical address for READS * @data_in_sz: data xfer size for READS * * Return nothing. */ static void _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, size_t data_in_sz) { u32 sgl_flags; if (!data_out_sz && !data_in_sz) { _base_build_zero_len_sge(ioc, psge); return; } if (data_out_sz && data_in_sz) { /* WRITE sgel first */ sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; ioc->base_add_sg_single(psge, sgl_flags | data_out_sz, data_out_dma); /* incr sgel */ psge += ioc->sge_size; /* READ sgel last */ sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST); sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; ioc->base_add_sg_single(psge, sgl_flags | data_in_sz, data_in_dma); } else if (data_out_sz) /* WRITE */ { sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; ioc->base_add_sg_single(psge, sgl_flags | data_out_sz, data_out_dma); } else if (data_in_sz) /* READ */ { sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST); sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; ioc->base_add_sg_single(psge, sgl_flags | data_in_sz, data_in_dma); } } /* IEEE format sgls */ /** * _base_build_nvme_prp - This function is called for NVMe end devices to build * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP * entry of the NVMe message (PRP1). If the data buffer is small enough to be * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is * used to describe a larger data buffer. If the data buffer is too large to * describe using the two PRP entriess inside the NVMe message, then PRP1 * describes the first data memory segment, and PRP2 contains a pointer to a PRP * list located elsewhere in memory to describe the remaining data memory * segments. The PRP list will be contiguous. * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP * consists of a list of PRP entries to describe a number of noncontigous * physical memory segments as a single memory buffer, just as a SGL does. Note * however, that this function is only used by the IOCTL call, so the memory * given will be guaranteed to be contiguous. There is no need to translate * non-contiguous SGL into a PRP in this case. All PRPs will describe * contiguous space that is one page size each. * * Each NVMe message contains two PRP entries. The first (PRP1) either contains * a PRP list pointer or a PRP element, depending upon the command. PRP2 * contains the second PRP element if the memory being described fits within 2 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. * * A PRP list pointer contains the address of a PRP list, structured as a linear * array of PRP entries. Each PRP entry in this list describes a segment of * physical memory. * * Each 64-bit PRP entry comprises an address and an offset field. The address * always points at the beginning of a 4KB physical memory page, and the offset * describes where within that 4KB page the memory segment begins. Only the * first element in a PRP list may contain a non-zero offest, implying that all * memory segments following the first begin at the start of a 4KB page. * * Each PRP element normally describes 4KB of physical memory, with exceptions * for the first and last elements in the list. If the memory being described * by the list begins at a non-zero offset within the first 4KB page, then the * first PRP element will contain a non-zero offset indicating where the region * begins within the 4KB page. The last memory segment may end before the end * of the 4KB segment, depending upon the overall size of the memory being * described by the PRP list. * * Since PRP entries lack any indication of size, the overall data buffer length * is used to determine where the end of the data memory buffer is located, and * how many PRP entries are required to describe it. * * @ioc: per adapter object * @smid: system request message index for getting asscociated SGL * @nvme_encap_request: the NVMe request msg frame pointer * @data_out_dma: physical address for WRITES * @data_out_sz: data xfer size for WRITES * @data_in_dma: physical address for READS * @data_in_sz: data xfer size for READS * * Returns nothing. */ static void _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, size_t data_in_sz) { int prp_size = NVME_PRP_SIZE; __le64 *prp_entry, *prp1_entry, *prp2_entry; __le64 *prp_page; dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; u32 offset, entry_len; u32 page_mask_result, page_mask; size_t length; /* * Not all commands require a data transfer. If no data, just return * without constructing any PRP. */ if (!data_in_sz && !data_out_sz) return; /* * Set pointers to PRP1 and PRP2, which are in the NVMe command. * PRP1 is located at a 24 byte offset from the start of the NVMe * command. Then set the current PRP entry pointer to PRP1. */ prp1_entry = (__le64 *)(nvme_encap_request->NVMe_Command + NVME_CMD_PRP1_OFFSET); prp2_entry = (__le64 *)(nvme_encap_request->NVMe_Command + NVME_CMD_PRP2_OFFSET); prp_entry = prp1_entry; /* * For the PRP entries, use the specially allocated buffer of * contiguous memory. */ prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); /* * Check if we are within 1 entry of a page boundary we don't * want our first entry to be a PRP List entry. */ page_mask = ioc->page_size - 1; page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; if (!page_mask_result) { /* Bump up to next page boundary. */ prp_page = (__le64 *)((u8 *)prp_page + prp_size); prp_page_dma = prp_page_dma + prp_size; } /* * Set PRP physical pointer, which initially points to the current PRP * DMA memory page. */ prp_entry_dma = prp_page_dma; /* Get physical address and length of the data buffer. */ if (data_in_sz) { dma_addr = data_in_dma; length = data_in_sz; } else { dma_addr = data_out_dma; length = data_out_sz; } /* Loop while the length is not zero. */ while (length) { /* * Check if we need to put a list pointer here if we are at * page boundary - prp_size (8 bytes). */ page_mask_result = (prp_entry_dma + prp_size) & page_mask; if (!page_mask_result) { /* * This is the last entry in a PRP List, so we need to * put a PRP list pointer here. What this does is: * - bump the current memory pointer to the next * address, which will be the next full page. * - set the PRP Entry to point to that page. This * is now the PRP List pointer. * - bump the PRP Entry pointer the start of the * next page. Since all of this PRP memory is * contiguous, no need to get a new page - it's * just the next address. */ prp_entry_dma++; *prp_entry = cpu_to_le64(prp_entry_dma); prp_entry++; } /* Need to handle if entry will be part of a page. */ offset = dma_addr & page_mask; entry_len = ioc->page_size - offset; if (prp_entry == prp1_entry) { /* * Must fill in the first PRP pointer (PRP1) before * moving on. */ *prp1_entry = cpu_to_le64(dma_addr); /* * Now point to the second PRP entry within the * command (PRP2). */ prp_entry = prp2_entry; } else if (prp_entry == prp2_entry) { /* * Should the PRP2 entry be a PRP List pointer or just * a regular PRP pointer? If there is more than one * more page of data, must use a PRP List pointer. */ if (length > ioc->page_size) { /* * PRP2 will contain a PRP List pointer because * more PRP's are needed with this command. The * list will start at the beginning of the * contiguous buffer. */ *prp2_entry = cpu_to_le64(prp_entry_dma); /* * The next PRP Entry will be the start of the * first PRP List. */ prp_entry = prp_page; } else { /* * After this, the PRP Entries are complete. * This command uses 2 PRP's and no PRP list. */ *prp2_entry = cpu_to_le64(dma_addr); } } else { /* * Put entry in list and bump the addresses. * * After PRP1 and PRP2 are filled in, this will fill in * all remaining PRP entries in a PRP List, one per * each time through the loop. */ *prp_entry = cpu_to_le64(dma_addr); prp_entry++; prp_entry_dma++; } /* * Bump the phys address of the command's data buffer by the * entry_len. */ dma_addr += entry_len; /* Decrement length accounting for last partial page. */ if (entry_len > length) length = 0; else length -= entry_len; } } /** * base_make_prp_nvme - * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only * * @ioc: per adapter object * @scmd: SCSI command from the mid-layer * @mpi_request: mpi request * @smid: msg Index * @sge_count: scatter gather element count. * * Returns: true: PRPs are built * false: IEEE SGLs needs to be built */ static void base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, struct scsi_cmnd *scmd, Mpi25SCSIIORequest_t *mpi_request, u16 smid, int sge_count) { int sge_len, num_prp_in_chain = 0; Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; __le64 *curr_buff; dma_addr_t msg_dma, sge_addr, offset; u32 page_mask, page_mask_result; struct scatterlist *sg_scmd; u32 first_prp_len; int data_len = scsi_bufflen(scmd); u32 nvme_pg_size; nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); /* * Nvme has a very convoluted prp format. One prp is required * for each page or partial page. Driver need to split up OS sg_list * entries if it is longer than one page or cross a page * boundary. Driver also have to insert a PRP list pointer entry as * the last entry in each physical page of the PRP list. * * NOTE: The first PRP "entry" is actually placed in the first * SGL entry in the main message as IEEE 64 format. The 2nd * entry in the main message is the chain element, and the rest * of the PRP entries are built in the contiguous pcie buffer. */ page_mask = nvme_pg_size - 1; /* * Native SGL is needed. * Put a chain element in main message frame that points to the first * chain buffer. * * NOTE: The ChainOffset field must be 0 when using a chain pointer to * a native SGL. */ /* Set main message chain element pointer */ main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; /* * For NVMe the chain element needs to be the 2nd SG entry in the main * message. */ main_chain_element = (Mpi25IeeeSgeChain64_t *) ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); /* * For the PRP entries, use the specially allocated buffer of * contiguous memory. Normal chain buffers can't be used * because each chain buffer would need to be the size of an OS * page (4k). */ curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); main_chain_element->Address = cpu_to_le64(msg_dma); main_chain_element->NextChainOffset = 0; main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; /* Build first prp, sge need not to be page aligned*/ ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; sg_scmd = scsi_sglist(scmd); sge_addr = sg_dma_address(sg_scmd); sge_len = sg_dma_len(sg_scmd); offset = sge_addr & page_mask; first_prp_len = nvme_pg_size - offset; ptr_first_sgl->Address = cpu_to_le64(sge_addr); ptr_first_sgl->Length = cpu_to_le32(first_prp_len); data_len -= first_prp_len; if (sge_len > first_prp_len) { sge_addr += first_prp_len; sge_len -= first_prp_len; } else if (data_len && (sge_len == first_prp_len)) { sg_scmd = sg_next(sg_scmd); sge_addr = sg_dma_address(sg_scmd); sge_len = sg_dma_len(sg_scmd); } for (;;) { offset = sge_addr & page_mask; /* Put PRP pointer due to page boundary*/ page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; if (unlikely(!page_mask_result)) { scmd_printk(KERN_NOTICE, scmd, "page boundary curr_buff: 0x%p\n", curr_buff); msg_dma += 8; *curr_buff = cpu_to_le64(msg_dma); curr_buff++; num_prp_in_chain++; } *curr_buff = cpu_to_le64(sge_addr); curr_buff++; msg_dma += 8; num_prp_in_chain++; sge_addr += nvme_pg_size; sge_len -= nvme_pg_size; data_len -= nvme_pg_size; if (data_len <= 0) break; if (sge_len > 0) continue; sg_scmd = sg_next(sg_scmd); sge_addr = sg_dma_address(sg_scmd); sge_len = sg_dma_len(sg_scmd); } main_chain_element->Length = cpu_to_le32(num_prp_in_chain * sizeof(u64)); return; } static bool base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) { u32 data_length = 0; struct scatterlist *sg_scmd; bool build_prp = true; data_length = scsi_bufflen(scmd); sg_scmd = scsi_sglist(scmd); /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 * we built IEEE SGL */ if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) build_prp = false; return build_prp; } /** * _base_check_pcie_native_sgl - This function is called for PCIe end devices to * determine if the driver needs to build a native SGL. If so, that native * SGL is built in the special contiguous buffers allocated especially for * PCIe SGL creation. If the driver will not build a native SGL, return * TRUE and a normal IEEE SGL will be built. Currently this routine * supports NVMe. * @ioc: per adapter object * @mpi_request: mf request pointer * @smid: system request message index * @scmd: scsi command * @pcie_device: points to the PCIe device's info * * Returns 0 if native SGL was built, 1 if no SGL was built */ static int _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, struct _pcie_device *pcie_device) { struct scatterlist *sg_scmd; int sges_left; /* Get the SG list pointer and info. */ sg_scmd = scsi_sglist(scmd); sges_left = scsi_dma_map(scmd); if (sges_left < 0) { sdev_printk(KERN_ERR, scmd->device, "scsi_dma_map failed: request for %d bytes!\n", scsi_bufflen(scmd)); return 1; } /* Check if we need to build a native SG list. */ if (base_is_prp_possible(ioc, pcie_device, scmd, sges_left) == 0) { /* We built a native SG list, just return. */ goto out; } /* * Build native NVMe PRP. */ base_make_prp_nvme(ioc, scmd, mpi_request, smid, sges_left); return 0; out: scsi_dma_unmap(scmd); return 1; } /** * _base_add_sg_single_ieee - add sg element for IEEE format * @paddr: virtual address for SGE * @flags: SGE flags * @chain_offset: number of 128 byte elements from start of segment * @length: data transfer length * @dma_addr: Physical address * * Return nothing. */ static void _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, dma_addr_t dma_addr) { Mpi25IeeeSgeChain64_t *sgel = paddr; sgel->Flags = flags; sgel->NextChainOffset = chain_offset; sgel->Length = cpu_to_le32(length); sgel->Address = cpu_to_le64(dma_addr); } /** * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format * @ioc: per adapter object * @paddr: virtual address for SGE * * Create a zero length scatter gather entry to insure the IOCs hardware has * something to use if the target device goes brain dead and tries * to send data even when none is asked for. * * Return nothing. */ static void _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) { u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | MPI25_IEEE_SGE_FLAGS_END_OF_LIST); _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); } /** * _base_build_sg_scmd - main sg creation routine * pcie_device is unused here! * @ioc: per adapter object * @scmd: scsi command * @smid: system request message index * @unused: unused pcie_device pointer * Context: none. * * The main routine that builds scatter gather table from a given * scsi request sent via the .queuecommand main handler. * * Returns 0 success, anything else error */ static int _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) { Mpi2SCSIIORequest_t *mpi_request; dma_addr_t chain_dma; struct scatterlist *sg_scmd; void *sg_local, *chain; u32 chain_offset; u32 chain_length; u32 chain_flags; int sges_left; u32 sges_in_segment; u32 sgl_flags; u32 sgl_flags_last_element; u32 sgl_flags_end_buffer; struct chain_tracker *chain_req; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); /* init scatter gather flags */ sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; if (scmd->sc_data_direction == DMA_TO_DEVICE) sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) << MPI2_SGE_FLAGS_SHIFT; sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) << MPI2_SGE_FLAGS_SHIFT; sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; sg_scmd = scsi_sglist(scmd); sges_left = scsi_dma_map(scmd); if (sges_left < 0) { sdev_printk(KERN_ERR, scmd->device, "pci_map_sg failed: request for %d bytes!\n", scsi_bufflen(scmd)); return -ENOMEM; } sg_local = &mpi_request->SGL; sges_in_segment = ioc->max_sges_in_main_message; if (sges_left <= sges_in_segment) goto fill_in_last_segment; mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + (sges_in_segment * ioc->sge_size))/4; /* fill in main message segment when there is a chain following */ while (sges_in_segment) { if (sges_in_segment == 1) ioc->base_add_sg_single(sg_local, sgl_flags_last_element | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); else ioc->base_add_sg_single(sg_local, sgl_flags | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size; sges_left--; sges_in_segment--; } /* initializing the chain flags and pointers */ chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; chain_req = _base_get_chain_buffer_tracker(ioc, smid); if (!chain_req) return -1; chain = chain_req->chain_buffer; chain_dma = chain_req->chain_buffer_dma; do { sges_in_segment = (sges_left <= ioc->max_sges_in_chain_message) ? sges_left : ioc->max_sges_in_chain_message; chain_offset = (sges_left == sges_in_segment) ? 0 : (sges_in_segment * ioc->sge_size)/4; chain_length = sges_in_segment * ioc->sge_size; if (chain_offset) { chain_offset = chain_offset << MPI2_SGE_CHAIN_OFFSET_SHIFT; chain_length += ioc->sge_size; } ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | chain_length, chain_dma); sg_local = chain; if (!chain_offset) goto fill_in_last_segment; /* fill in chain segments */ while (sges_in_segment) { if (sges_in_segment == 1) ioc->base_add_sg_single(sg_local, sgl_flags_last_element | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); else ioc->base_add_sg_single(sg_local, sgl_flags | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size; sges_left--; sges_in_segment--; } chain_req = _base_get_chain_buffer_tracker(ioc, smid); if (!chain_req) return -1; chain = chain_req->chain_buffer; chain_dma = chain_req->chain_buffer_dma; } while (1); fill_in_last_segment: /* fill the last segment */ while (sges_left) { if (sges_left == 1) ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); else ioc->base_add_sg_single(sg_local, sgl_flags | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size; sges_left--; } return 0; } /** * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format * @ioc: per adapter object * @scmd: scsi command * @smid: system request message index * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be * constructed on need. * Context: none. * * The main routine that builds scatter gather table from a given * scsi request sent via the .queuecommand main handler. * * Returns 0 success, anything else error */ static int _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) { Mpi25SCSIIORequest_t *mpi_request; dma_addr_t chain_dma; struct scatterlist *sg_scmd; void *sg_local, *chain; u32 chain_offset; u32 chain_length; int sges_left; u32 sges_in_segment; u8 simple_sgl_flags; u8 simple_sgl_flags_last; u8 chain_sgl_flags; struct chain_tracker *chain_req; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); /* init scatter gather flags */ simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; simple_sgl_flags_last = simple_sgl_flags | MPI25_IEEE_SGE_FLAGS_END_OF_LIST; chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; /* Check if we need to build a native SG list. */ if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, smid, scmd, pcie_device) == 0)) { /* We built a native SG list, just return. */ return 0; } sg_scmd = scsi_sglist(scmd); sges_left = scsi_dma_map(scmd); if (sges_left < 0) { sdev_printk(KERN_ERR, scmd->device, "pci_map_sg failed: request for %d bytes!\n", scsi_bufflen(scmd)); return -ENOMEM; } sg_local = &mpi_request->SGL; sges_in_segment = (ioc->request_sz - offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; if (sges_left <= sges_in_segment) goto fill_in_last_segment; mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); /* fill in main message segment when there is a chain following */ while (sges_in_segment > 1) { _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size_ieee; sges_left--; sges_in_segment--; } /* initializing the pointers */ chain_req = _base_get_chain_buffer_tracker(ioc, smid); if (!chain_req) return -1; chain = chain_req->chain_buffer; chain_dma = chain_req->chain_buffer_dma; do { sges_in_segment = (sges_left <= ioc->max_sges_in_chain_message) ? sges_left : ioc->max_sges_in_chain_message; chain_offset = (sges_left == sges_in_segment) ? 0 : sges_in_segment; chain_length = sges_in_segment * ioc->sge_size_ieee; if (chain_offset) chain_length += ioc->sge_size_ieee; _base_add_sg_single_ieee(sg_local, chain_sgl_flags, chain_offset, chain_length, chain_dma); sg_local = chain; if (!chain_offset) goto fill_in_last_segment; /* fill in chain segments */ while (sges_in_segment) { _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size_ieee; sges_left--; sges_in_segment--; } chain_req = _base_get_chain_buffer_tracker(ioc, smid); if (!chain_req) return -1; chain = chain_req->chain_buffer; chain_dma = chain_req->chain_buffer_dma; } while (1); fill_in_last_segment: /* fill the last segment */ while (sges_left > 0) { if (sges_left == 1) _base_add_sg_single_ieee(sg_local, simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); else _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size_ieee; sges_left--; } return 0; } /** * _base_build_sg_ieee - build generic sg for IEEE format * @ioc: per adapter object * @psge: virtual address for SGE * @data_out_dma: physical address for WRITES * @data_out_sz: data xfer size for WRITES * @data_in_dma: physical address for READS * @data_in_sz: data xfer size for READS * * Return nothing. */ static void _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, size_t data_in_sz) { u8 sgl_flags; if (!data_out_sz && !data_in_sz) { _base_build_zero_len_sge_ieee(ioc, psge); return; } if (data_out_sz && data_in_sz) { /* WRITE sgel first */ sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, data_out_dma); /* incr sgel */ psge += ioc->sge_size_ieee; /* READ sgel last */ sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, data_in_dma); } else if (data_out_sz) /* WRITE */ { sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI25_IEEE_SGE_FLAGS_END_OF_LIST | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, data_out_dma); } else if (data_in_sz) /* READ */ { sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI25_IEEE_SGE_FLAGS_END_OF_LIST | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, data_in_dma); } } #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) /** * _base_config_dma_addressing - set dma addressing * @ioc: per adapter object * @pdev: PCI device struct * * Returns 0 for success, non-zero for failure. */ static int _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) { struct sysinfo s; u64 consistent_dma_mask; if (ioc->dma_mask) consistent_dma_mask = DMA_BIT_MASK(64); else consistent_dma_mask = DMA_BIT_MASK(32); if (sizeof(dma_addr_t) > 4) { const uint64_t required_mask = dma_get_required_mask(&pdev->dev); if ((required_mask > DMA_BIT_MASK(32)) && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) && !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) { ioc->base_add_sg_single = &_base_add_sg_single_64; ioc->sge_size = sizeof(Mpi2SGESimple64_t); ioc->dma_mask = 64; goto out; } } if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) { ioc->base_add_sg_single = &_base_add_sg_single_32; ioc->sge_size = sizeof(Mpi2SGESimple32_t); ioc->dma_mask = 32; } else return -ENODEV; out: si_meminfo(&s); pr_info(MPT3SAS_FMT "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", ioc->name, ioc->dma_mask, convert_to_kb(s.totalram)); return 0; } static int _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) { if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) return -ENODEV; } return 0; } /** * _base_check_enable_msix - checks MSIX capabable. * @ioc: per adapter object * * Check to see if card is capable of MSIX, and set number * of available msix vectors */ static int _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) { int base; u16 message_control; /* Check whether controller SAS2008 B0 controller, * if it is SAS2008 B0 controller use IO-APIC instead of MSIX */ if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { return -EINVAL; } base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); if (!base) { dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n", ioc->name)); return -EINVAL; } /* get msix vector count */ /* NUMA_IO not supported for older controllers */ if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) ioc->msix_vector_count = 1; else { pci_read_config_word(ioc->pdev, base + 2, &message_control); ioc->msix_vector_count = (message_control & 0x3FF) + 1; } dinitprintk(ioc, pr_info(MPT3SAS_FMT "msix is supported, vector_count(%d)\n", ioc->name, ioc->msix_vector_count)); return 0; } /** * _base_free_irq - free irq * @ioc: per adapter object * * Freeing respective reply_queue from the list. */ static void _base_free_irq(struct MPT3SAS_ADAPTER *ioc) { struct adapter_reply_queue *reply_q, *next; if (list_empty(&ioc->reply_queue_list)) return; list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { list_del(&reply_q->list); free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), reply_q); kfree(reply_q); } } /** * _base_request_irq - request irq * @ioc: per adapter object * @index: msix index into vector table * * Inserting respective reply_queue into the list. */ static int _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) { struct pci_dev *pdev = ioc->pdev; struct adapter_reply_queue *reply_q; int r; reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); if (!reply_q) { pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n", ioc->name, (int)sizeof(struct adapter_reply_queue)); return -ENOMEM; } reply_q->ioc = ioc; reply_q->msix_index = index; atomic_set(&reply_q->busy, 0); if (ioc->msix_enable) snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", ioc->driver_name, ioc->id, index); else snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", ioc->driver_name, ioc->id); r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, IRQF_SHARED, reply_q->name, reply_q); if (r) { pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n", reply_q->name, pci_irq_vector(pdev, index)); kfree(reply_q); return -EBUSY; } INIT_LIST_HEAD(&reply_q->list); list_add_tail(&reply_q->list, &ioc->reply_queue_list); return 0; } /** * _base_assign_reply_queues - assigning msix index for each cpu * @ioc: per adapter object * * The enduser would need to set the affinity via /proc/irq/#/smp_affinity * * It would nice if we could call irq_set_affinity, however it is not * an exported symbol */ static void _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) { unsigned int cpu, nr_cpus, nr_msix, index = 0; struct adapter_reply_queue *reply_q; if (!_base_is_controller_msix_enabled(ioc)) return; memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); nr_cpus = num_online_cpus(); nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, ioc->facts.MaxMSIxVectors); if (!nr_msix) return; if (smp_affinity_enable) { list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev, reply_q->msix_index); if (!mask) { pr_warn(MPT3SAS_FMT "no affinity for msi %x\n", ioc->name, reply_q->msix_index); continue; } for_each_cpu(cpu, mask) ioc->cpu_msix_table[cpu] = reply_q->msix_index; } return; } cpu = cpumask_first(cpu_online_mask); list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { unsigned int i, group = nr_cpus / nr_msix; if (cpu >= nr_cpus) break; if (index < nr_cpus % nr_msix) group++; for (i = 0 ; i < group ; i++) { ioc->cpu_msix_table[cpu] = reply_q->msix_index; cpu = cpumask_next(cpu, cpu_online_mask); } index++; } } /** * _base_disable_msix - disables msix * @ioc: per adapter object * */ static void _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) { if (!ioc->msix_enable) return; pci_disable_msix(ioc->pdev); ioc->msix_enable = 0; } /** * _base_enable_msix - enables msix, failback to io_apic * @ioc: per adapter object * */ static int _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) { int r; int i, local_max_msix_vectors; u8 try_msix = 0; unsigned int irq_flags = PCI_IRQ_MSIX; if (msix_disable == -1 || msix_disable == 0) try_msix = 1; if (!try_msix) goto try_ioapic; if (_base_check_enable_msix(ioc) != 0) goto try_ioapic; ioc->reply_queue_count = min_t(int, ioc->cpu_count, ioc->msix_vector_count); printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores" ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count, ioc->cpu_count, max_msix_vectors); if (!ioc->rdpq_array_enable && max_msix_vectors == -1) local_max_msix_vectors = (reset_devices) ? 1 : 8; else local_max_msix_vectors = max_msix_vectors; if (local_max_msix_vectors > 0) ioc->reply_queue_count = min_t(int, local_max_msix_vectors, ioc->reply_queue_count); else if (local_max_msix_vectors == 0) goto try_ioapic; if (ioc->msix_vector_count < ioc->cpu_count) smp_affinity_enable = 0; if (smp_affinity_enable) irq_flags |= PCI_IRQ_AFFINITY; r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count, irq_flags); if (r < 0) { dfailprintk(ioc, pr_info(MPT3SAS_FMT "pci_alloc_irq_vectors failed (r=%d) !!!\n", ioc->name, r)); goto try_ioapic; } ioc->msix_enable = 1; ioc->reply_queue_count = r; for (i = 0; i < ioc->reply_queue_count; i++) { r = _base_request_irq(ioc, i); if (r) { _base_free_irq(ioc); _base_disable_msix(ioc); goto try_ioapic; } } return 0; /* failback to io_apic interrupt routing */ try_ioapic: ioc->reply_queue_count = 1; r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); if (r < 0) { dfailprintk(ioc, pr_info(MPT3SAS_FMT "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", ioc->name, r)); } else r = _base_request_irq(ioc, 0); return r; } /** * mpt3sas_base_unmap_resources - free controller resources * @ioc: per adapter object */ static void mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) { struct pci_dev *pdev = ioc->pdev; dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name, __func__)); _base_free_irq(ioc); _base_disable_msix(ioc); if (ioc->combined_reply_queue) { kfree(ioc->replyPostRegisterIndex); ioc->replyPostRegisterIndex = NULL; } if (ioc->chip_phys) { iounmap(ioc->chip); ioc->chip_phys = 0; } if (pci_is_enabled(pdev)) { pci_release_selected_regions(ioc->pdev, ioc->bars); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } } /** * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ int mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) { struct pci_dev *pdev = ioc->pdev; u32 memap_sz; u32 pio_sz; int i, r = 0; u64 pio_chip = 0; u64 chip_phys = 0; struct adapter_reply_queue *reply_q; dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); if (pci_enable_device_mem(pdev)) { pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n", ioc->name); ioc->bars = 0; return -ENODEV; } if (pci_request_selected_regions(pdev, ioc->bars, ioc->driver_name)) { pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n", ioc->name); ioc->bars = 0; r = -ENODEV; goto out_fail; } /* AER (Advanced Error Reporting) hooks */ pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); if (_base_config_dma_addressing(ioc, pdev) != 0) { pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n", ioc->name, pci_name(pdev)); r = -ENODEV; goto out_fail; } for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && (!memap_sz || !pio_sz); i++) { if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { if (pio_sz) continue; pio_chip = (u64)pci_resource_start(pdev, i); pio_sz = pci_resource_len(pdev, i); } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { if (memap_sz) continue; ioc->chip_phys = pci_resource_start(pdev, i); chip_phys = (u64)ioc->chip_phys; memap_sz = pci_resource_len(pdev, i); ioc->chip = ioremap(ioc->chip_phys, memap_sz); } } if (ioc->chip == NULL) { pr_err(MPT3SAS_FMT "unable to map adapter memory! " " or resource not found\n", ioc->name); r = -EINVAL; goto out_fail; } _base_mask_interrupts(ioc); r = _base_get_ioc_facts(ioc); if (r) goto out_fail; if (!ioc->rdpq_array_enable_assigned) { ioc->rdpq_array_enable = ioc->rdpq_array_capable; ioc->rdpq_array_enable_assigned = 1; } r = _base_enable_msix(ioc); if (r) goto out_fail; /* Use the Combined reply queue feature only for SAS3 C0 & higher * revision HBAs and also only when reply queue count is greater than 8 */ if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) { /* Determine the Supplemental Reply Post Host Index Registers * Addresse. Supplemental Reply Post Host Index Registers * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and * each register is at offset bytes of * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. */ ioc->replyPostRegisterIndex = kcalloc( ioc->combined_reply_index_count, sizeof(resource_size_t *), GFP_KERNEL); if (!ioc->replyPostRegisterIndex) { dfailprintk(ioc, printk(MPT3SAS_FMT "allocation for reply Post Register Index failed!!!\n", ioc->name)); r = -ENOMEM; goto out_fail; } for (i = 0; i < ioc->combined_reply_index_count; i++) { ioc->replyPostRegisterIndex[i] = (resource_size_t *) ((u8 *)&ioc->chip->Doorbell + MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); } } else ioc->combined_reply_queue = 0; if (ioc->is_warpdrive) { ioc->reply_post_host_index[0] = (resource_size_t __iomem *) &ioc->chip->ReplyPostHostIndex; for (i = 1; i < ioc->cpu_msix_table_sz; i++) ioc->reply_post_host_index[i] = (resource_size_t __iomem *) ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) * 4))); } list_for_each_entry(reply_q, &ioc->reply_queue_list, list) pr_info(MPT3SAS_FMT "%s: IRQ %d\n", reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" : "IO-APIC enabled"), pci_irq_vector(ioc->pdev, reply_q->msix_index)); pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n", ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz); pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n", ioc->name, (unsigned long long)pio_chip, pio_sz); /* Save PCI configuration state for recovery from PCI AER/EEH errors */ pci_save_state(pdev); return 0; out_fail: mpt3sas_base_unmap_resources(ioc); return r; } /** * mpt3sas_base_get_msg_frame - obtain request mf pointer * @ioc: per adapter object * @smid: system request message index(smid zero is invalid) * * Returns virt pointer to message frame. */ void * mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) { return (void *)(ioc->request + (smid * ioc->request_sz)); } /** * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr * @ioc: per adapter object * @smid: system request message index * * Returns virt pointer to sense buffer. */ void * mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) { return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); } /** * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr * @ioc: per adapter object * @smid: system request message index * * Returns phys pointer to the low 32bit address of the sense buffer. */ __le32 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) { return cpu_to_le32(ioc->sense_dma + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); } /** * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr * @ioc: per adapter object * @smid: system request message index * * Returns virt pointer to a PCIe SGL. */ void * mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) { return (void *)(ioc->scsi_lookup[smid - 1].pcie_sg_list.pcie_sgl); } /** * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr * @ioc: per adapter object * @smid: system request message index * * Returns phys pointer to the address of the PCIe buffer. */ dma_addr_t mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) { return ioc->scsi_lookup[smid - 1].pcie_sg_list.pcie_sgl_dma; } /** * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address * @ioc: per adapter object * @phys_addr: lower 32 physical addr of the reply * * Converts 32bit lower physical addr into a virt address. */ void * mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) { if (!phys_addr) return NULL; return ioc->reply + (phys_addr - (u32)ioc->reply_dma); } static inline u8 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc) { return ioc->cpu_msix_table[raw_smp_processor_id()]; } /** * mpt3sas_base_get_smid - obtain a free smid from internal queue * @ioc: per adapter object * @cb_idx: callback index * * Returns smid (zero is invalid) */ u16 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) { unsigned long flags; struct request_tracker *request; u16 smid; spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); if (list_empty(&ioc->internal_free_list)) { spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); pr_err(MPT3SAS_FMT "%s: smid not available\n", ioc->name, __func__); return 0; } request = list_entry(ioc->internal_free_list.next, struct request_tracker, tracker_list); request->cb_idx = cb_idx; smid = request->smid; list_del(&request->tracker_list); spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); return smid; } /** * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue * @ioc: per adapter object * @cb_idx: callback index * @scmd: pointer to scsi command object * * Returns smid (zero is invalid) */ u16 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, struct scsi_cmnd *scmd) { unsigned long flags; struct scsiio_tracker *request; u16 smid; spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); if (list_empty(&ioc->free_list)) { spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); pr_err(MPT3SAS_FMT "%s: smid not available\n", ioc->name, __func__); return 0; } request = list_entry(ioc->free_list.next, struct scsiio_tracker, tracker_list); request->scmd = scmd; request->cb_idx = cb_idx; smid = request->smid; request->msix_io = _base_get_msix_index(ioc); list_del(&request->tracker_list); spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); return smid; } /** * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue * @ioc: per adapter object * @cb_idx: callback index * * Returns smid (zero is invalid) */ u16 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) { unsigned long flags; struct request_tracker *request; u16 smid; spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); if (list_empty(&ioc->hpr_free_list)) { spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); return 0; } request = list_entry(ioc->hpr_free_list.next, struct request_tracker, tracker_list); request->cb_idx = cb_idx; smid = request->smid; list_del(&request->tracker_list); spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); return smid; } static void _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) { /* * See _wait_for_commands_to_complete() call with regards to this code. */ if (ioc->shost_recovery && ioc->pending_io_count) { if (ioc->pending_io_count == 1) wake_up(&ioc->reset_wq); ioc->pending_io_count--; } } /** * mpt3sas_base_free_smid - put smid back on free_list * @ioc: per adapter object * @smid: system request message index * * Return nothing. */ void mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) { unsigned long flags; int i; spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); if (smid < ioc->hi_priority_smid) { /* scsiio queue */ i = smid - 1; list_splice_init(&ioc->scsi_lookup[i].chain_list, &ioc->free_chain_list); ioc->scsi_lookup[i].cb_idx = 0xFF; ioc->scsi_lookup[i].scmd = NULL; ioc->scsi_lookup[i].direct_io = 0; if (i < ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT) list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list); spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); _base_recovery_check(ioc); return; } else if (smid < ioc->internal_smid) { /* hi-priority */ i = smid - ioc->hi_priority_smid; ioc->hpr_lookup[i].cb_idx = 0xFF; list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); } else if (smid <= ioc->hba_queue_depth) { /* internal queue */ i = smid - ioc->internal_smid; ioc->internal_lookup[i].cb_idx = 0xFF; list_add(&ioc->internal_lookup[i].tracker_list, &ioc->internal_free_list); } spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); } /** * _base_writeq - 64 bit write to MMIO * @ioc: per adapter object * @b: data payload * @addr: address in MMIO space * @writeq_lock: spin lock * * Glue for handling an atomic 64 bit word to MMIO. This special handling takes * care of 32 bit environment where its not quarenteed to send the entire word * in one transfer. */ #if defined(writeq) && defined(CONFIG_64BIT) static inline void _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) { writeq(cpu_to_le64(b), addr); } #else static inline void _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) { unsigned long flags; __u64 data_out = cpu_to_le64(b); spin_lock_irqsave(writeq_lock, flags); writel((u32)(data_out), addr); writel((u32)(data_out >> 32), (addr + 4)); spin_unlock_irqrestore(writeq_lock, flags); } #endif /** * _base_put_smid_scsi_io - send SCSI_IO request to firmware * @ioc: per adapter object * @smid: system request message index * @handle: device handle * * Return nothing. */ static void _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); descriptor.SCSIIO.SMID = cpu_to_le16(smid); descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); descriptor.SCSIIO.LMID = 0; _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * _base_put_smid_fast_path - send fast path request to firmware * @ioc: per adapter object * @smid: system request message index * @handle: device handle * * Return nothing. */ static void _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.SCSIIO.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); descriptor.SCSIIO.SMID = cpu_to_le16(smid); descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); descriptor.SCSIIO.LMID = 0; _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * _base_put_smid_hi_priority - send Task Management request to firmware * @ioc: per adapter object * @smid: system request message index * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. * Return nothing. */ static void _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 msix_task) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; descriptor.HighPriority.MSIxIndex = msix_task; descriptor.HighPriority.SMID = cpu_to_le16(smid); descriptor.HighPriority.LMID = 0; descriptor.HighPriority.Reserved1 = 0; _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * _base_put_smid_nvme_encap - send NVMe encapsulated request to * firmware * @ioc: per adapter object * @smid: system request message index * * Return nothing. */ static void _base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.Default.RequestFlags = MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; descriptor.Default.MSIxIndex = _base_get_msix_index(ioc); descriptor.Default.SMID = cpu_to_le16(smid); descriptor.Default.LMID = 0; descriptor.Default.DescriptorTypeDependent = 0; _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * _base_put_smid_default - Default, primarily used for config pages * @ioc: per adapter object * @smid: system request message index * * Return nothing. */ static void _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; descriptor.Default.MSIxIndex = _base_get_msix_index(ioc); descriptor.Default.SMID = cpu_to_le16(smid); descriptor.Default.LMID = 0; descriptor.Default.DescriptorTypeDependent = 0; _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using * Atomic Request Descriptor * @ioc: per adapter object * @smid: system request message index * @handle: device handle, unused in this function, for function type match * * Return nothing. */ static void _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) { Mpi26AtomicRequestDescriptor_t descriptor; u32 *request = (u32 *)&descriptor; descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; descriptor.MSIxIndex = _base_get_msix_index(ioc); descriptor.SMID = cpu_to_le16(smid); writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); } /** * _base_put_smid_fast_path_atomic - send fast path request to firmware * using Atomic Request Descriptor * @ioc: per adapter object * @smid: system request message index * @handle: device handle, unused in this function, for function type match * Return nothing */ static void _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) { Mpi26AtomicRequestDescriptor_t descriptor; u32 *request = (u32 *)&descriptor; descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; descriptor.MSIxIndex = _base_get_msix_index(ioc); descriptor.SMID = cpu_to_le16(smid); writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); } /** * _base_put_smid_hi_priority_atomic - send Task Management request to * firmware using Atomic Request Descriptor * @ioc: per adapter object * @smid: system request message index * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 * * Return nothing. */ static void _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 msix_task) { Mpi26AtomicRequestDescriptor_t descriptor; u32 *request = (u32 *)&descriptor; descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; descriptor.MSIxIndex = msix_task; descriptor.SMID = cpu_to_le16(smid); writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); } /** * _base_put_smid_nvme_encap_atomic - send NVMe encapsulated request to * firmware using Atomic Request Descriptor * @ioc: per adapter object * @smid: system request message index * * Return nothing. */ static void _base_put_smid_nvme_encap_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) { Mpi26AtomicRequestDescriptor_t descriptor; u32 *request = (u32 *)&descriptor; descriptor.RequestFlags = MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; descriptor.MSIxIndex = _base_get_msix_index(ioc); descriptor.SMID = cpu_to_le16(smid); writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); } /** * _base_put_smid_default - Default, primarily used for config pages * use Atomic Request Descriptor * @ioc: per adapter object * @smid: system request message index * * Return nothing. */ static void _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) { Mpi26AtomicRequestDescriptor_t descriptor; u32 *request = (u32 *)&descriptor; descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; descriptor.MSIxIndex = _base_get_msix_index(ioc); descriptor.SMID = cpu_to_le16(smid); writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); } /** * _base_display_OEMs_branding - Display branding string * @ioc: per adapter object * * Return nothing. */ static void _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) { if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) return; switch (ioc->pdev->subsystem_vendor) { case PCI_VENDOR_ID_INTEL: switch (ioc->pdev->device) { case MPI2_MFGPAGE_DEVID_SAS2008: switch (ioc->pdev->subsystem_device) { case MPT2SAS_INTEL_RMS2LL080_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_INTEL_RMS2LL080_BRANDING); break; case MPT2SAS_INTEL_RMS2LL040_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_INTEL_RMS2LL040_BRANDING); break; case MPT2SAS_INTEL_SSD910_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_INTEL_SSD910_BRANDING); break; default: pr_info(MPT3SAS_FMT "Intel(R) Controller: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } case MPI2_MFGPAGE_DEVID_SAS2308_2: switch (ioc->pdev->subsystem_device) { case MPT2SAS_INTEL_RS25GB008_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_INTEL_RS25GB008_BRANDING); break; case MPT2SAS_INTEL_RMS25JB080_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_INTEL_RMS25JB080_BRANDING); break; case MPT2SAS_INTEL_RMS25JB040_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_INTEL_RMS25JB040_BRANDING); break; case MPT2SAS_INTEL_RMS25KB080_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_INTEL_RMS25KB080_BRANDING); break; case MPT2SAS_INTEL_RMS25KB040_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_INTEL_RMS25KB040_BRANDING); break; case MPT2SAS_INTEL_RMS25LB040_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_INTEL_RMS25LB040_BRANDING); break; case MPT2SAS_INTEL_RMS25LB080_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_INTEL_RMS25LB080_BRANDING); break; default: pr_info(MPT3SAS_FMT "Intel(R) Controller: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } case MPI25_MFGPAGE_DEVID_SAS3008: switch (ioc->pdev->subsystem_device) { case MPT3SAS_INTEL_RMS3JC080_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT3SAS_INTEL_RMS3JC080_BRANDING); break; case MPT3SAS_INTEL_RS3GC008_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT3SAS_INTEL_RS3GC008_BRANDING); break; case MPT3SAS_INTEL_RS3FC044_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT3SAS_INTEL_RS3FC044_BRANDING); break; case MPT3SAS_INTEL_RS3UC080_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT3SAS_INTEL_RS3UC080_BRANDING); break; default: pr_info(MPT3SAS_FMT "Intel(R) Controller: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } break; default: pr_info(MPT3SAS_FMT "Intel(R) Controller: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } break; case PCI_VENDOR_ID_DELL: switch (ioc->pdev->device) { case MPI2_MFGPAGE_DEVID_SAS2008: switch (ioc->pdev->subsystem_device) { case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); break; case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); break; case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); break; case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); break; case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); break; case MPT2SAS_DELL_PERC_H200_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_DELL_PERC_H200_BRANDING); break; case MPT2SAS_DELL_6GBPS_SAS_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_DELL_6GBPS_SAS_BRANDING); break; default: pr_info(MPT3SAS_FMT "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } break; case MPI25_MFGPAGE_DEVID_SAS3008: switch (ioc->pdev->subsystem_device) { case MPT3SAS_DELL_12G_HBA_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT3SAS_DELL_12G_HBA_BRANDING); break; default: pr_info(MPT3SAS_FMT "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } break; default: pr_info(MPT3SAS_FMT "Dell HBA: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } break; case PCI_VENDOR_ID_CISCO: switch (ioc->pdev->device) { case MPI25_MFGPAGE_DEVID_SAS3008: switch (ioc->pdev->subsystem_device) { case MPT3SAS_CISCO_12G_8E_HBA_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT3SAS_CISCO_12G_8E_HBA_BRANDING); break; case MPT3SAS_CISCO_12G_8I_HBA_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT3SAS_CISCO_12G_8I_HBA_BRANDING); break; case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); break; default: pr_info(MPT3SAS_FMT "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } break; case MPI25_MFGPAGE_DEVID_SAS3108_1: switch (ioc->pdev->subsystem_device) { case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); break; case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING ); break; default: pr_info(MPT3SAS_FMT "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } break; default: pr_info(MPT3SAS_FMT "Cisco SAS HBA: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } break; case MPT2SAS_HP_3PAR_SSVID: switch (ioc->pdev->device) { case MPI2_MFGPAGE_DEVID_SAS2004: switch (ioc->pdev->subsystem_device) { case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); break; default: pr_info(MPT3SAS_FMT "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } case MPI2_MFGPAGE_DEVID_SAS2308_2: switch (ioc->pdev->subsystem_device) { case MPT2SAS_HP_2_4_INTERNAL_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_HP_2_4_INTERNAL_BRANDING); break; case MPT2SAS_HP_2_4_EXTERNAL_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_HP_2_4_EXTERNAL_BRANDING); break; case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); break; case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: pr_info(MPT3SAS_FMT "%s\n", ioc->name, MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); break; default: pr_info(MPT3SAS_FMT "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } default: pr_info(MPT3SAS_FMT "HP SAS HBA: Subsystem ID: 0x%X\n", ioc->name, ioc->pdev->subsystem_device); break; } default: break; } } /** * _base_display_ioc_capabilities - Disply IOC's capabilities. * @ioc: per adapter object * * Return nothing. */ static void _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) { int i = 0; char desc[16]; u32 iounit_pg1_flags; u32 bios_version; bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); strncpy(desc, ioc->manu_pg0.ChipName, 16); pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\ "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", ioc->name, desc, (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, ioc->facts.FWVersion.Word & 0x000000FF, ioc->pdev->revision, (bios_version & 0xFF000000) >> 24, (bios_version & 0x00FF0000) >> 16, (bios_version & 0x0000FF00) >> 8, bios_version & 0x000000FF); _base_display_OEMs_branding(ioc); if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { pr_info("%sNVMe", i ? "," : ""); i++; } pr_info(MPT3SAS_FMT "Protocol=(", ioc->name); if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { pr_info("Initiator"); i++; } if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { pr_info("%sTarget", i ? "," : ""); i++; } i = 0; pr_info("), "); pr_info("Capabilities=("); if (!ioc->hide_ir_msg) { if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { pr_info("Raid"); i++; } } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { pr_info("%sTLR", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { pr_info("%sMulticast", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { pr_info("%sBIDI Target", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { pr_info("%sEEDP", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { pr_info("%sSnapshot Buffer", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { pr_info("%sDiag Trace Buffer", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { pr_info("%sDiag Extended Buffer", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { pr_info("%sTask Set Full", i ? "," : ""); i++; } iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { pr_info("%sNCQ", i ? "," : ""); i++; } pr_info(")\n"); } /** * mpt3sas_base_update_missing_delay - change the missing delay timers * @ioc: per adapter object * @device_missing_delay: amount of time till device is reported missing * @io_missing_delay: interval IO is returned when there is a missing device * * Return nothing. * * Passed on the command line, this function will modify the device missing * delay, as well as the io missing delay. This should be called at driver * load time. */ void mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, u16 device_missing_delay, u8 io_missing_delay) { u16 dmd, dmd_new, dmd_orignal; u8 io_missing_delay_original; u16 sz; Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; Mpi2ConfigReply_t mpi_reply; u8 num_phys = 0; u16 ioc_status; mpt3sas_config_get_number_hba_phys(ioc, &num_phys); if (!num_phys) return; sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * sizeof(Mpi2SasIOUnit1PhyData_t)); sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); if (!sas_iounit_pg1) { pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n", ioc->name, __FILE__, __LINE__, __func__); goto out; } if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, sz))) { pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n", ioc->name, __FILE__, __LINE__, __func__); goto out; } ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n", ioc->name, __FILE__, __LINE__, __func__); goto out; } /* device missing delay */ dmd = sas_iounit_pg1->ReportDeviceMissingDelay; if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; else dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; dmd_orignal = dmd; if (device_missing_delay > 0x7F) { dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : device_missing_delay; dmd = dmd / 16; dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; } else dmd = device_missing_delay; sas_iounit_pg1->ReportDeviceMissingDelay = dmd; /* io missing delay */ io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, sz)) { if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) dmd_new = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; else dmd_new = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n", ioc->name, dmd_orignal, dmd_new); pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n", ioc->name, io_missing_delay_original, io_missing_delay); ioc->device_missing_delay = dmd_new; ioc->io_missing_delay = io_missing_delay; } out: kfree(sas_iounit_pg1); } /** * _base_static_config_pages - static start of day config pages * @ioc: per adapter object * * Return nothing. */ static void _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) { Mpi2ConfigReply_t mpi_reply; u32 iounit_pg1_flags; mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); if (ioc->ir_firmware) mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, &ioc->manu_pg10); /* * Ensure correct T10 PI operation if vendor left EEDPTagMode * flag unset in NVDATA. */ mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); if (ioc->manu_pg11.EEDPTagMode == 0) { pr_err("%s: overriding NVDATA EEDPTagMode setting\n", ioc->name); ioc->manu_pg11.EEDPTagMode &= ~0x3; ioc->manu_pg11.EEDPTagMode |= 0x1; mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); } mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); _base_display_ioc_capabilities(ioc); /* * Enable task_set_full handling in iounit_pg1 when the * facts capabilities indicate that its supported. */ iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); if ((ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) iounit_pg1_flags &= ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; else iounit_pg1_flags |= MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); if (ioc->iounit_pg8.NumSensors) ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; } /** * _base_release_memory_pools - release memory * @ioc: per adapter object * * Free memory allocated from _base_allocate_memory_pools. * * Return nothing. */ static void _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) { int i = 0; struct reply_post_struct *rps; dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); if (ioc->request) { pci_free_consistent(ioc->pdev, ioc->request_dma_sz, ioc->request, ioc->request_dma); dexitprintk(ioc, pr_info(MPT3SAS_FMT "request_pool(0x%p): free\n", ioc->name, ioc->request)); ioc->request = NULL; } if (ioc->sense) { dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); dma_pool_destroy(ioc->sense_dma_pool); dexitprintk(ioc, pr_info(MPT3SAS_FMT "sense_pool(0x%p): free\n", ioc->name, ioc->sense)); ioc->sense = NULL; } if (ioc->reply) { dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); dma_pool_destroy(ioc->reply_dma_pool); dexitprintk(ioc, pr_info(MPT3SAS_FMT "reply_pool(0x%p): free\n", ioc->name, ioc->reply)); ioc->reply = NULL; } if (ioc->reply_free) { dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, ioc->reply_free_dma); dma_pool_destroy(ioc->reply_free_dma_pool); dexitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free_pool(0x%p): free\n", ioc->name, ioc->reply_free)); ioc->reply_free = NULL; } if (ioc->reply_post) { do { rps = &ioc->reply_post[i]; if (rps->reply_post_free) { dma_pool_free( ioc->reply_post_free_dma_pool, rps->reply_post_free, rps->reply_post_free_dma); dexitprintk(ioc, pr_info(MPT3SAS_FMT "reply_post_free_pool(0x%p): free\n", ioc->name, rps->reply_post_free)); rps->reply_post_free = NULL; } } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count)); dma_pool_destroy(ioc->reply_post_free_dma_pool); kfree(ioc->reply_post); } if (ioc->pcie_sgl_dma_pool) { for (i = 0; i < ioc->scsiio_depth; i++) { if (ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl) dma_pool_free(ioc->pcie_sgl_dma_pool, ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl, ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl_dma); } if (ioc->pcie_sgl_dma_pool) dma_pool_destroy(ioc->pcie_sgl_dma_pool); } if (ioc->config_page) { dexitprintk(ioc, pr_info(MPT3SAS_FMT "config_page(0x%p): free\n", ioc->name, ioc->config_page)); pci_free_consistent(ioc->pdev, ioc->config_page_sz, ioc->config_page, ioc->config_page_dma); } if (ioc->scsi_lookup) { free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages); ioc->scsi_lookup = NULL; } kfree(ioc->hpr_lookup); kfree(ioc->internal_lookup); if (ioc->chain_lookup) { for (i = 0; i < ioc->chain_depth; i++) { if (ioc->chain_lookup[i].chain_buffer) dma_pool_free(ioc->chain_dma_pool, ioc->chain_lookup[i].chain_buffer, ioc->chain_lookup[i].chain_buffer_dma); } dma_pool_destroy(ioc->chain_dma_pool); free_pages((ulong)ioc->chain_lookup, ioc->chain_pages); ioc->chain_lookup = NULL; } } /** * _base_allocate_memory_pools - allocate start of day memory pools * @ioc: per adapter object * * Returns 0 success, anything else error */ static int _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) { struct mpt3sas_facts *facts; u16 max_sge_elements; u16 chains_needed_per_io; u32 sz, total_sz, reply_post_free_sz; u32 retry_sz; u16 max_request_credit, nvme_blocks_needed; unsigned short sg_tablesize; u16 sge_size; int i; dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); retry_sz = 0; facts = &ioc->facts; /* command line tunables for max sgl entries */ if (max_sgl_entries != -1) sg_tablesize = max_sgl_entries; else { if (ioc->hba_mpi_version_belonged == MPI2_VERSION) sg_tablesize = MPT2SAS_SG_DEPTH; else sg_tablesize = MPT3SAS_SG_DEPTH; } /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ if (reset_devices) sg_tablesize = min_t(unsigned short, sg_tablesize, MPT_KDUMP_MIN_PHYS_SEGMENTS); if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) sg_tablesize = MPT_MIN_PHYS_SEGMENTS; else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { sg_tablesize = min_t(unsigned short, sg_tablesize, SG_MAX_SEGMENTS); pr_warn(MPT3SAS_FMT "sg_tablesize(%u) is bigger than kernel" " defined SG_CHUNK_SIZE(%u)\n", ioc->name, sg_tablesize, MPT_MAX_PHYS_SEGMENTS); } ioc->shost->sg_tablesize = sg_tablesize; ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), (facts->RequestCredit / 4)); if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + INTERNAL_SCSIIO_CMDS_COUNT)) { pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \ Credits, it has just %d number of credits\n", ioc->name, facts->RequestCredit); return -ENOMEM; } ioc->internal_depth = 10; } ioc->hi_priority_depth = ioc->internal_depth - (5); /* command line tunables for max controller queue depth */ if (max_queue_depth != -1 && max_queue_depth != 0) { max_request_credit = min_t(u16, max_queue_depth + ioc->internal_depth, facts->RequestCredit); if (max_request_credit > MAX_HBA_QUEUE_DEPTH) max_request_credit = MAX_HBA_QUEUE_DEPTH; } else if (reset_devices) max_request_credit = min_t(u16, facts->RequestCredit, (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); else max_request_credit = min_t(u16, facts->RequestCredit, MAX_HBA_QUEUE_DEPTH); /* Firmware maintains additional facts->HighPriorityCredit number of * credits for HiPriprity Request messages, so hba queue depth will be * sum of max_request_credit and high priority queue depth. */ ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; /* request frame size */ ioc->request_sz = facts->IOCRequestFrameSize * 4; /* reply frame size */ ioc->reply_sz = facts->ReplyFrameSize * 4; /* chain segment size */ if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { if (facts->IOCMaxChainSegmentSize) ioc->chain_segment_sz = facts->IOCMaxChainSegmentSize * MAX_CHAIN_ELEMT_SZ; else /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * MAX_CHAIN_ELEMT_SZ; } else ioc->chain_segment_sz = ioc->request_sz; /* calculate the max scatter element size */ sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); retry_allocation: total_sz = 0; /* calculate number of sg elements left over in the 1st frame */ max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - sizeof(Mpi2SGEIOUnion_t)) + sge_size); ioc->max_sges_in_main_message = max_sge_elements/sge_size; /* now do the same for a chain buffer */ max_sge_elements = ioc->chain_segment_sz - sge_size; ioc->max_sges_in_chain_message = max_sge_elements/sge_size; /* * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE */ chains_needed_per_io = ((ioc->shost->sg_tablesize - ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) + 1; if (chains_needed_per_io > facts->MaxChainDepth) { chains_needed_per_io = facts->MaxChainDepth; ioc->shost->sg_tablesize = min_t(u16, ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message * chains_needed_per_io), ioc->shost->sg_tablesize); } ioc->chains_needed_per_io = chains_needed_per_io; /* reply free queue sizing - taking into account for 64 FW events */ ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; /* calculate reply descriptor post queue depth */ ioc->reply_post_queue_depth = ioc->hba_queue_depth + ioc->reply_free_queue_depth + 1 ; /* align the reply post queue on the next 16 count boundary */ if (ioc->reply_post_queue_depth % 16) ioc->reply_post_queue_depth += 16 - (ioc->reply_post_queue_depth % 16); if (ioc->reply_post_queue_depth > facts->MaxReplyDescriptorPostQueueDepth) { ioc->reply_post_queue_depth = facts->MaxReplyDescriptorPostQueueDepth - (facts->MaxReplyDescriptorPostQueueDepth % 16); ioc->hba_queue_depth = ((ioc->reply_post_queue_depth - 64) / 2) - 1; ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; } dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \ "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), " "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message, ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize, ioc->chains_needed_per_io)); /* reply post queue, 16 byte align */ reply_post_free_sz = ioc->reply_post_queue_depth * sizeof(Mpi2DefaultReplyDescriptor_t); sz = reply_post_free_sz; if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) sz *= ioc->reply_queue_count; ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ? (ioc->reply_queue_count):1, sizeof(struct reply_post_struct), GFP_KERNEL); if (!ioc->reply_post) { pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n", ioc->name); goto out; } ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool", &ioc->pdev->dev, sz, 16, 0); if (!ioc->reply_post_free_dma_pool) { pr_err(MPT3SAS_FMT "reply_post_free pool: dma_pool_create failed\n", ioc->name); goto out; } i = 0; do { ioc->reply_post[i].reply_post_free = dma_pool_alloc(ioc->reply_post_free_dma_pool, GFP_KERNEL, &ioc->reply_post[i].reply_post_free_dma); if (!ioc->reply_post[i].reply_post_free) { pr_err(MPT3SAS_FMT "reply_post_free pool: dma_pool_alloc failed\n", ioc->name); goto out; } memset(ioc->reply_post[i].reply_post_free, 0, sz); dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply post free pool (0x%p): depth(%d)," "element_size(%d), pool_size(%d kB)\n", ioc->name, ioc->reply_post[i].reply_post_free, ioc->reply_post_queue_depth, 8, sz/1024)); dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_post_free_dma = (0x%llx)\n", ioc->name, (unsigned long long) ioc->reply_post[i].reply_post_free_dma)); total_sz += sz; } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count)); if (ioc->dma_mask == 64) { if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) { pr_warn(MPT3SAS_FMT "no suitable consistent DMA mask for %s\n", ioc->name, pci_name(ioc->pdev)); goto out; } } ioc->scsiio_depth = ioc->hba_queue_depth - ioc->hi_priority_depth - ioc->internal_depth; /* set the scsi host can_queue depth * with some internal commands that could be outstanding */ ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsi host: can_queue depth (%d)\n", ioc->name, ioc->shost->can_queue)); /* contiguous pool for request and chains, 16 byte align, one extra " * "frame for smid=0 */ ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); /* hi-priority queue */ sz += (ioc->hi_priority_depth * ioc->request_sz); /* internal queue */ sz += (ioc->internal_depth * ioc->request_sz); ioc->request_dma_sz = sz; ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma); if (!ioc->request) { pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \ "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), " "total(%d kB)\n", ioc->name, ioc->hba_queue_depth, ioc->chains_needed_per_io, ioc->request_sz, sz/1024); if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) goto out; retry_sz = 64; ioc->hba_queue_depth -= retry_sz; _base_release_memory_pools(ioc); goto retry_allocation; } if (retry_sz) pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \ "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), " "total(%d kb)\n", ioc->name, ioc->hba_queue_depth, ioc->chains_needed_per_io, ioc->request_sz, sz/1024); /* hi-priority queue */ ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * ioc->request_sz); ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * ioc->request_sz); /* internal queue */ ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * ioc->request_sz); ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * ioc->request_sz); dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz, (ioc->hba_queue_depth * ioc->request_sz)/1024)); dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n", ioc->name, (unsigned long long) ioc->request_dma)); total_sz += sz; sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker); ioc->scsi_lookup_pages = get_order(sz); ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages( GFP_KERNEL, ioc->scsi_lookup_pages); if (!ioc->scsi_lookup) { pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n", ioc->name, (int)sz); goto out; } dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n", ioc->name, ioc->request, ioc->scsiio_depth)); ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); sz = ioc->chain_depth * sizeof(struct chain_tracker); ioc->chain_pages = get_order(sz); ioc->chain_lookup = (struct chain_tracker *)__get_free_pages( GFP_KERNEL, ioc->chain_pages); if (!ioc->chain_lookup) { pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n", ioc->name); goto out; } ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, ioc->chain_segment_sz, 16, 0); if (!ioc->chain_dma_pool) { pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n", ioc->name); goto out; } for (i = 0; i < ioc->chain_depth; i++) { ioc->chain_lookup[i].chain_buffer = dma_pool_alloc( ioc->chain_dma_pool , GFP_KERNEL, &ioc->chain_lookup[i].chain_buffer_dma); if (!ioc->chain_lookup[i].chain_buffer) { ioc->chain_depth = i; goto chain_done; } total_sz += ioc->chain_segment_sz; } chain_done: dinitprintk(ioc, pr_info(MPT3SAS_FMT "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name, ioc->chain_depth, ioc->chain_segment_sz, ((ioc->chain_depth * ioc->chain_segment_sz))/1024)); /* initialize hi-priority queue smid's */ ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, sizeof(struct request_tracker), GFP_KERNEL); if (!ioc->hpr_lookup) { pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n", ioc->name); goto out; } ioc->hi_priority_smid = ioc->scsiio_depth + 1; dinitprintk(ioc, pr_info(MPT3SAS_FMT "hi_priority(0x%p): depth(%d), start smid(%d)\n", ioc->name, ioc->hi_priority, ioc->hi_priority_depth, ioc->hi_priority_smid)); /* initialize internal queue smid's */ ioc->internal_lookup = kcalloc(ioc->internal_depth, sizeof(struct request_tracker), GFP_KERNEL); if (!ioc->internal_lookup) { pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n", ioc->name); goto out; } ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; dinitprintk(ioc, pr_info(MPT3SAS_FMT "internal(0x%p): depth(%d), start smid(%d)\n", ioc->name, ioc->internal, ioc->internal_depth, ioc->internal_smid)); /* * The number of NVMe page sized blocks needed is: * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry * that is placed in the main message frame. 8 is the size of each PRP * entry or PRP list pointer entry. 8 is subtracted from page_size * because of the PRP list pointer entry at the end of a page, so this * is not counted as a PRP entry. The 1 added page is a round up. * * To avoid allocation failures due to the amount of memory that could * be required for NVMe PRP's, only each set of NVMe blocks will be * contiguous, so a new set is allocated for each possible I/O. */ if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { nvme_blocks_needed = (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); nvme_blocks_needed++; sz = nvme_blocks_needed * ioc->page_size; ioc->pcie_sgl_dma_pool = dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); if (!ioc->pcie_sgl_dma_pool) { pr_info(MPT3SAS_FMT "PCIe SGL pool: dma_pool_create failed\n", ioc->name); goto out; } for (i = 0; i < ioc->scsiio_depth; i++) { ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl = dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL, &ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl_dma); if (!ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl) { pr_info(MPT3SAS_FMT "PCIe SGL pool: dma_pool_alloc failed\n", ioc->name); goto out; } } dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), " "element_size(%d), pool_size(%d kB)\n", ioc->name, ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024)); total_sz += sz * ioc->scsiio_depth; } /* sense buffers, 4 byte align */ sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0); if (!ioc->sense_dma_pool) { pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n", ioc->name); goto out; } ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, &ioc->sense_dma); if (!ioc->sense) { pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n", ioc->name); goto out; } dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense pool(0x%p): depth(%d), element_size(%d), pool_size" "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024)); dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n", ioc->name, (unsigned long long)ioc->sense_dma)); total_sz += sz; /* reply pool, 4 byte align */ sz = ioc->reply_free_queue_depth * ioc->reply_sz; ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 4, 0); if (!ioc->reply_dma_pool) { pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n", ioc->name); goto out; } ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, &ioc->reply_dma); if (!ioc->reply) { pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n", ioc->name); goto out; } ioc->reply_dma_min_address = (u32)(ioc->reply_dma); ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name, ioc->reply, ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024)); dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n", ioc->name, (unsigned long long)ioc->reply_dma)); total_sz += sz; /* reply free queue, 16 byte align */ sz = ioc->reply_free_queue_depth * 4; ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", &ioc->pdev->dev, sz, 16, 0); if (!ioc->reply_free_dma_pool) { pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n", ioc->name); goto out; } ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL, &ioc->reply_free_dma); if (!ioc->reply_free) { pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n", ioc->name); goto out; } memset(ioc->reply_free, 0, sz); dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \ "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name, ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024)); dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free_dma (0x%llx)\n", ioc->name, (unsigned long long)ioc->reply_free_dma)); total_sz += sz; ioc->config_page_sz = 512; ioc->config_page = pci_alloc_consistent(ioc->pdev, ioc->config_page_sz, &ioc->config_page_dma); if (!ioc->config_page) { pr_err(MPT3SAS_FMT "config page: dma_pool_alloc failed\n", ioc->name); goto out; } dinitprintk(ioc, pr_info(MPT3SAS_FMT "config page(0x%p): size(%d)\n", ioc->name, ioc->config_page, ioc->config_page_sz)); dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n", ioc->name, (unsigned long long)ioc->config_page_dma)); total_sz += ioc->config_page_sz; pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n", ioc->name, total_sz/1024); pr_info(MPT3SAS_FMT "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", ioc->name, ioc->shost->can_queue, facts->RequestCredit); pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n", ioc->name, ioc->shost->sg_tablesize); return 0; out: return -ENOMEM; } /** * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. * @ioc: Pointer to MPT_ADAPTER structure * @cooked: Request raw or cooked IOC state * * Returns all IOC Doorbell register bits if cooked==0, else just the * Doorbell bits in MPI_IOC_STATE_MASK. */ u32 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) { u32 s, sc; s = readl(&ioc->chip->Doorbell); sc = s & MPI2_IOC_STATE_MASK; return cooked ? sc : s; } /** * _base_wait_on_iocstate - waiting on a particular ioc state * @ioc_state: controller state { READY, OPERATIONAL, or RESET } * @timeout: timeout in second * * Returns 0 for success, non-zero for failure. */ static int _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) { u32 count, cntdn; u32 current_state; count = 0; cntdn = 1000 * timeout; do { current_state = mpt3sas_base_get_iocstate(ioc, 1); if (current_state == ioc_state) return 0; if (count && current_state == MPI2_IOC_STATE_FAULT) break; usleep_range(1000, 1500); count++; } while (--cntdn); return current_state; } /** * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by * a write to the doorbell) * @ioc: per adapter object * @timeout: timeout in second * * Returns 0 for success, non-zero for failure. * * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. */ static int _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); static int _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) { u32 cntdn, count; u32 int_status; count = 0; cntdn = 1000 * timeout; do { int_status = readl(&ioc->chip->HostInterruptStatus); if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: successful count(%d), timeout(%d)\n", ioc->name, __func__, count, timeout)); return 0; } usleep_range(1000, 1500); count++; } while (--cntdn); pr_err(MPT3SAS_FMT "%s: failed due to timeout count(%d), int_status(%x)!\n", ioc->name, __func__, count, int_status); return -EFAULT; } static int _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) { u32 cntdn, count; u32 int_status; count = 0; cntdn = 2000 * timeout; do { int_status = readl(&ioc->chip->HostInterruptStatus); if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: successful count(%d), timeout(%d)\n", ioc->name, __func__, count, timeout)); return 0; } udelay(500); count++; } while (--cntdn); pr_err(MPT3SAS_FMT "%s: failed due to timeout count(%d), int_status(%x)!\n", ioc->name, __func__, count, int_status); return -EFAULT; } /** * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. * @ioc: per adapter object * @timeout: timeout in second * * Returns 0 for success, non-zero for failure. * * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to * doorbell. */ static int _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) { u32 cntdn, count; u32 int_status; u32 doorbell; count = 0; cntdn = 1000 * timeout; do { int_status = readl(&ioc->chip->HostInterruptStatus); if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: successful count(%d), timeout(%d)\n", ioc->name, __func__, count, timeout)); return 0; } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { doorbell = readl(&ioc->chip->Doorbell); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpt3sas_base_fault_info(ioc , doorbell); return -EFAULT; } } else if (int_status == 0xFFFFFFFF) goto out; usleep_range(1000, 1500); count++; } while (--cntdn); out: pr_err(MPT3SAS_FMT "%s: failed due to timeout count(%d), int_status(%x)!\n", ioc->name, __func__, count, int_status); return -EFAULT; } /** * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use * @ioc: per adapter object * @timeout: timeout in second * * Returns 0 for success, non-zero for failure. * */ static int _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) { u32 cntdn, count; u32 doorbell_reg; count = 0; cntdn = 1000 * timeout; do { doorbell_reg = readl(&ioc->chip->Doorbell); if (!(doorbell_reg & MPI2_DOORBELL_USED)) { dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: successful count(%d), timeout(%d)\n", ioc->name, __func__, count, timeout)); return 0; } usleep_range(1000, 1500); count++; } while (--cntdn); pr_err(MPT3SAS_FMT "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", ioc->name, __func__, count, doorbell_reg); return -EFAULT; } /** * _base_send_ioc_reset - send doorbell reset * @ioc: per adapter object * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET * @timeout: timeout in second * * Returns 0 for success, non-zero for failure. */ static int _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) { u32 ioc_state; int r = 0; if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { pr_err(MPT3SAS_FMT "%s: unknown reset_type\n", ioc->name, __func__); return -EFAULT; } if (!(ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) return -EFAULT; pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name); writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, &ioc->chip->Doorbell); if ((_base_wait_for_doorbell_ack(ioc, 15))) { r = -EFAULT; goto out; } ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); if (ioc_state) { pr_err(MPT3SAS_FMT "%s: failed going to ready state (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state); r = -EFAULT; goto out; } out: pr_info(MPT3SAS_FMT "message unit reset: %s\n", ioc->name, ((r == 0) ? "SUCCESS" : "FAILED")); return r; } /** * _base_handshake_req_reply_wait - send request thru doorbell interface * @ioc: per adapter object * @request_bytes: request length * @request: pointer having request payload * @reply_bytes: reply length * @reply: pointer to reply payload * @timeout: timeout in second * * Returns 0 for success, non-zero for failure. */ static int _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, u32 *request, int reply_bytes, u16 *reply, int timeout) { MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; int i; u8 failed; __le32 *mfp; /* make sure doorbell is not in use */ if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { pr_err(MPT3SAS_FMT "doorbell is in use (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } /* clear pending doorbell interrupts from previous state changes */ if (readl(&ioc->chip->HostInterruptStatus) & MPI2_HIS_IOC2SYS_DB_STATUS) writel(0, &ioc->chip->HostInterruptStatus); /* send message to ioc */ writel(((MPI2_FUNCTION_HANDSHAKE<chip->Doorbell); if ((_base_spin_on_doorbell_int(ioc, 5))) { pr_err(MPT3SAS_FMT "doorbell handshake int failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } writel(0, &ioc->chip->HostInterruptStatus); if ((_base_wait_for_doorbell_ack(ioc, 5))) { pr_err(MPT3SAS_FMT "doorbell handshake ack failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } /* send message 32-bits at a time */ for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); if ((_base_wait_for_doorbell_ack(ioc, 5))) failed = 1; } if (failed) { pr_err(MPT3SAS_FMT "doorbell handshake sending request failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } /* now wait for the reply */ if ((_base_wait_for_doorbell_int(ioc, timeout))) { pr_err(MPT3SAS_FMT "doorbell handshake int failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } /* read the first two 16-bits, it gives the total length of the reply */ reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_DATA_MASK); writel(0, &ioc->chip->HostInterruptStatus); if ((_base_wait_for_doorbell_int(ioc, 5))) { pr_err(MPT3SAS_FMT "doorbell handshake int failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_DATA_MASK); writel(0, &ioc->chip->HostInterruptStatus); for (i = 2; i < default_reply->MsgLength * 2; i++) { if ((_base_wait_for_doorbell_int(ioc, 5))) { pr_err(MPT3SAS_FMT "doorbell handshake int failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } if (i >= reply_bytes/2) /* overflow case */ readl(&ioc->chip->Doorbell); else reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_DATA_MASK); writel(0, &ioc->chip->HostInterruptStatus); } _base_wait_for_doorbell_int(ioc, 5); if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { dhsprintk(ioc, pr_info(MPT3SAS_FMT "doorbell is in use (line=%d)\n", ioc->name, __LINE__)); } writel(0, &ioc->chip->HostInterruptStatus); if (ioc->logging_level & MPT_DEBUG_INIT) { mfp = (__le32 *)reply; pr_info("\toffset:data\n"); for (i = 0; i < reply_bytes/4; i++) pr_info("\t[0x%02x]:%08x\n", i*4, le32_to_cpu(mfp[i])); } return 0; } /** * mpt3sas_base_sas_iounit_control - send sas iounit control to FW * @ioc: per adapter object * @mpi_reply: the reply payload from FW * @mpi_request: the request payload sent to FW * * The SAS IO Unit Control Request message allows the host to perform low-level * operations, such as resets on the PHYs of the IO Unit, also allows the host * to obtain the IOC assigned device handles for a device if it has other * identifying information about the device, in addition allows the host to * remove IOC resources associated with the device. * * Returns 0 for success, non-zero for failure. */ int mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, Mpi2SasIoUnitControlReply_t *mpi_reply, Mpi2SasIoUnitControlRequest_t *mpi_request) { u16 smid; u32 ioc_state; bool issue_reset = false; int rc; void *request; u16 wait_state_count; dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); mutex_lock(&ioc->base_cmds.mutex); if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { pr_err(MPT3SAS_FMT "%s: base_cmd in use\n", ioc->name, __func__); rc = -EAGAIN; goto out; } wait_state_count = 0; ioc_state = mpt3sas_base_get_iocstate(ioc, 1); while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { if (wait_state_count++ == 10) { pr_err(MPT3SAS_FMT "%s: failed due to ioc not operational\n", ioc->name, __func__); rc = -EFAULT; goto out; } ssleep(1); ioc_state = mpt3sas_base_get_iocstate(ioc, 1); pr_info(MPT3SAS_FMT "%s: waiting for operational state(count=%d)\n", ioc->name, __func__, wait_state_count); } smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n", ioc->name, __func__); rc = -EAGAIN; goto out; } rc = 0; ioc->base_cmds.status = MPT3_CMD_PENDING; request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->base_cmds.smid = smid; memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) ioc->ioc_link_reset_in_progress = 1; init_completion(&ioc->base_cmds.done); ioc->put_smid_default(ioc, smid); wait_for_completion_timeout(&ioc->base_cmds.done, msecs_to_jiffies(10000)); if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && ioc->ioc_link_reset_in_progress) ioc->ioc_link_reset_in_progress = 0; if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { pr_err(MPT3SAS_FMT "%s: timeout\n", ioc->name, __func__); _debug_dump_mf(mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4); if (!(ioc->base_cmds.status & MPT3_CMD_RESET)) issue_reset = true; goto issue_host_reset; } if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) memcpy(mpi_reply, ioc->base_cmds.reply, sizeof(Mpi2SasIoUnitControlReply_t)); else memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); ioc->base_cmds.status = MPT3_CMD_NOT_USED; goto out; issue_host_reset: if (issue_reset) mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); ioc->base_cmds.status = MPT3_CMD_NOT_USED; rc = -EFAULT; out: mutex_unlock(&ioc->base_cmds.mutex); return rc; } /** * mpt3sas_base_scsi_enclosure_processor - sending request to sep device * @ioc: per adapter object * @mpi_reply: the reply payload from FW * @mpi_request: the request payload sent to FW * * The SCSI Enclosure Processor request message causes the IOC to * communicate with SES devices to control LED status signals. * * Returns 0 for success, non-zero for failure. */ int mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) { u16 smid; u32 ioc_state; bool issue_reset = false; int rc; void *request; u16 wait_state_count; dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); mutex_lock(&ioc->base_cmds.mutex); if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { pr_err(MPT3SAS_FMT "%s: base_cmd in use\n", ioc->name, __func__); rc = -EAGAIN; goto out; } wait_state_count = 0; ioc_state = mpt3sas_base_get_iocstate(ioc, 1); while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { if (wait_state_count++ == 10) { pr_err(MPT3SAS_FMT "%s: failed due to ioc not operational\n", ioc->name, __func__); rc = -EFAULT; goto out; } ssleep(1); ioc_state = mpt3sas_base_get_iocstate(ioc, 1); pr_info(MPT3SAS_FMT "%s: waiting for operational state(count=%d)\n", ioc->name, __func__, wait_state_count); } smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n", ioc->name, __func__); rc = -EAGAIN; goto out; } rc = 0; ioc->base_cmds.status = MPT3_CMD_PENDING; request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->base_cmds.smid = smid; memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); init_completion(&ioc->base_cmds.done); ioc->put_smid_default(ioc, smid); wait_for_completion_timeout(&ioc->base_cmds.done, msecs_to_jiffies(10000)); if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { pr_err(MPT3SAS_FMT "%s: timeout\n", ioc->name, __func__); _debug_dump_mf(mpi_request, sizeof(Mpi2SepRequest_t)/4); if (!(ioc->base_cmds.status & MPT3_CMD_RESET)) issue_reset = false; goto issue_host_reset; } if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) memcpy(mpi_reply, ioc->base_cmds.reply, sizeof(Mpi2SepReply_t)); else memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); ioc->base_cmds.status = MPT3_CMD_NOT_USED; goto out; issue_host_reset: if (issue_reset) mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); ioc->base_cmds.status = MPT3_CMD_NOT_USED; rc = -EFAULT; out: mutex_unlock(&ioc->base_cmds.mutex); return rc; } /** * _base_get_port_facts - obtain port facts reply and save in ioc * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ static int _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) { Mpi2PortFactsRequest_t mpi_request; Mpi2PortFactsReply_t mpi_reply; struct mpt3sas_port_facts *pfacts; int mpi_reply_sz, mpi_request_sz, r; dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); memset(&mpi_request, 0, mpi_request_sz); mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; mpi_request.PortNumber = port; r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); if (r != 0) { pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n", ioc->name, __func__, r); return r; } pfacts = &ioc->pfacts[port]; memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); pfacts->PortNumber = mpi_reply.PortNumber; pfacts->VP_ID = mpi_reply.VP_ID; pfacts->VF_ID = mpi_reply.VF_ID; pfacts->MaxPostedCmdBuffers = le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); return 0; } /** * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL * @ioc: per adapter object * @timeout: * * Returns 0 for success, non-zero for failure. */ static int _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) { u32 ioc_state; int rc; dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name, __func__)); if (ioc->pci_error_recovery) { dfailprintk(ioc, printk(MPT3SAS_FMT "%s: host in pci error recovery\n", ioc->name, __func__)); return -EFAULT; } ioc_state = mpt3sas_base_get_iocstate(ioc, 0); dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n", ioc->name, __func__, ioc_state)); if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) return 0; if (ioc_state & MPI2_DOORBELL_USED) { dhsprintk(ioc, printk(MPT3SAS_FMT "unexpected doorbell active!\n", ioc->name)); goto issue_diag_reset; } if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpt3sas_base_fault_info(ioc, ioc_state & MPI2_DOORBELL_DATA_MASK); goto issue_diag_reset; } ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); if (ioc_state) { dfailprintk(ioc, printk(MPT3SAS_FMT "%s: failed going to ready state (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state)); return -EFAULT; } issue_diag_reset: rc = _base_diag_reset(ioc); return rc; } /** * _base_get_ioc_facts - obtain ioc facts reply and save in ioc * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ static int _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) { Mpi2IOCFactsRequest_t mpi_request; Mpi2IOCFactsReply_t mpi_reply; struct mpt3sas_facts *facts; int mpi_reply_sz, mpi_request_sz, r; dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); r = _base_wait_for_iocstate(ioc, 10); if (r) { dfailprintk(ioc, printk(MPT3SAS_FMT "%s: failed getting to correct state\n", ioc->name, __func__)); return r; } mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); memset(&mpi_request, 0, mpi_request_sz); mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); if (r != 0) { pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n", ioc->name, __func__, r); return r; } facts = &ioc->facts; memset(facts, 0, sizeof(struct mpt3sas_facts)); facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); facts->VP_ID = mpi_reply.VP_ID; facts->VF_ID = mpi_reply.VF_ID; facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); facts->MaxChainDepth = mpi_reply.MaxChainDepth; facts->WhoInit = mpi_reply.WhoInit; facts->NumberOfPorts = mpi_reply.NumberOfPorts; facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); facts->MaxReplyDescriptorPostQueueDepth = le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); facts->ProductID = le16_to_cpu(mpi_reply.ProductID); facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) ioc->ir_firmware = 1; if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) ioc->rdpq_array_capable = 1; if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) ioc->atomic_desc_capable = 1; facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); facts->IOCRequestFrameSize = le16_to_cpu(mpi_reply.IOCRequestFrameSize); if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { facts->IOCMaxChainSegmentSize = le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); } facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); ioc->shost->max_id = -1; facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); facts->HighPriorityCredit = le16_to_cpu(mpi_reply.HighPriorityCredit); facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; /* * Get the Page Size from IOC Facts. If it's 0, default to 4k. */ ioc->page_size = 1 << facts->CurrentHostPageSize; if (ioc->page_size == 1) { pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting " "default host page size to 4k\n", ioc->name); ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; } dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n", ioc->name, facts->CurrentHostPageSize)); dinitprintk(ioc, pr_info(MPT3SAS_FMT "hba queue depth(%d), max chains per io(%d)\n", ioc->name, facts->RequestCredit, facts->MaxChainDepth)); dinitprintk(ioc, pr_info(MPT3SAS_FMT "request frame size(%d), reply frame size(%d)\n", ioc->name, facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4)); return 0; } /** * _base_send_ioc_init - send ioc_init to firmware * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ static int _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) { Mpi2IOCInitRequest_t mpi_request; Mpi2IOCInitReply_t mpi_reply; int i, r = 0; ktime_t current_time; u16 ioc_status; u32 reply_post_free_array_sz = 0; Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL; dma_addr_t reply_post_free_array_dma; dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); mpi_request.Function = MPI2_FUNCTION_IOC_INIT; mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; mpi_request.VF_ID = 0; /* TODO */ mpi_request.VP_ID = 0; mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; if (_base_is_controller_msix_enabled(ioc)) mpi_request.HostMSIxVectors = ioc->reply_queue_count; mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); mpi_request.ReplyDescriptorPostQueueDepth = cpu_to_le16(ioc->reply_post_queue_depth); mpi_request.ReplyFreeQueueDepth = cpu_to_le16(ioc->reply_free_queue_depth); mpi_request.SenseBufferAddressHigh = cpu_to_le32((u64)ioc->sense_dma >> 32); mpi_request.SystemReplyAddressHigh = cpu_to_le32((u64)ioc->reply_dma >> 32); mpi_request.SystemRequestFrameBaseAddress = cpu_to_le64((u64)ioc->request_dma); mpi_request.ReplyFreeQueueAddress = cpu_to_le64((u64)ioc->reply_free_dma); if (ioc->rdpq_array_enable) { reply_post_free_array_sz = ioc->reply_queue_count * sizeof(Mpi2IOCInitRDPQArrayEntry); reply_post_free_array = pci_alloc_consistent(ioc->pdev, reply_post_free_array_sz, &reply_post_free_array_dma); if (!reply_post_free_array) { pr_err(MPT3SAS_FMT "reply_post_free_array: pci_alloc_consistent failed\n", ioc->name); r = -ENOMEM; goto out; } memset(reply_post_free_array, 0, reply_post_free_array_sz); for (i = 0; i < ioc->reply_queue_count; i++) reply_post_free_array[i].RDPQBaseAddress = cpu_to_le64( (u64)ioc->reply_post[i].reply_post_free_dma); mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; mpi_request.ReplyDescriptorPostQueueAddress = cpu_to_le64((u64)reply_post_free_array_dma); } else { mpi_request.ReplyDescriptorPostQueueAddress = cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); } /* This time stamp specifies number of milliseconds * since epoch ~ midnight January 1, 1970. */ current_time = ktime_get_real(); mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); if (ioc->logging_level & MPT_DEBUG_INIT) { __le32 *mfp; int i; mfp = (__le32 *)&mpi_request; pr_info("\toffset:data\n"); for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) pr_info("\t[0x%02x]:%08x\n", i*4, le32_to_cpu(mfp[i])); } r = _base_handshake_req_reply_wait(ioc, sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); if (r != 0) { pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n", ioc->name, __func__, r); goto out; } ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status != MPI2_IOCSTATUS_SUCCESS || mpi_reply.IOCLogInfo) { pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__); r = -EIO; } out: if (reply_post_free_array) pci_free_consistent(ioc->pdev, reply_post_free_array_sz, reply_post_free_array, reply_post_free_array_dma); return r; } /** * mpt3sas_port_enable_done - command completion routine for port enable * @ioc: per adapter object * @smid: system request message index * @msix_index: MSIX table index supplied by the OS * @reply: reply message frame(lower 32bit addr) * * Return 1 meaning mf should be freed from _base_interrupt * 0 means the mf is freed from this function. */ u8 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, u32 reply) { MPI2DefaultReply_t *mpi_reply; u16 ioc_status; if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) return 1; mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); if (!mpi_reply) return 1; if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) return 1; ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status != MPI2_IOCSTATUS_SUCCESS) ioc->port_enable_failed = 1; if (ioc->is_driver_loading) { if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { mpt3sas_port_enable_complete(ioc); return 1; } else { ioc->start_scan_failed = ioc_status; ioc->start_scan = 0; return 1; } } complete(&ioc->port_enable_cmds.done); return 1; } /** * _base_send_port_enable - send port_enable(discovery stuff) to firmware * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ static int _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) { Mpi2PortEnableRequest_t *mpi_request; Mpi2PortEnableReply_t *mpi_reply; int r = 0; u16 smid; u16 ioc_status; pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name); if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { pr_err(MPT3SAS_FMT "%s: internal command already in use\n", ioc->name, __func__); return -EAGAIN; } smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); if (!smid) { pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n", ioc->name, __func__); return -EAGAIN; } ioc->port_enable_cmds.status = MPT3_CMD_PENDING; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->port_enable_cmds.smid = smid; memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; init_completion(&ioc->port_enable_cmds.done); ioc->put_smid_default(ioc, smid); wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { pr_err(MPT3SAS_FMT "%s: timeout\n", ioc->name, __func__); _debug_dump_mf(mpi_request, sizeof(Mpi2PortEnableRequest_t)/4); if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) r = -EFAULT; else r = -ETIME; goto out; } mpi_reply = ioc->port_enable_cmds.reply; ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n", ioc->name, __func__, ioc_status); r = -EFAULT; goto out; } out: ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ? "SUCCESS" : "FAILED")); return r; } /** * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ int mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) { Mpi2PortEnableRequest_t *mpi_request; u16 smid; pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name); if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { pr_err(MPT3SAS_FMT "%s: internal command already in use\n", ioc->name, __func__); return -EAGAIN; } smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); if (!smid) { pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n", ioc->name, __func__); return -EAGAIN; } ioc->port_enable_cmds.status = MPT3_CMD_PENDING; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->port_enable_cmds.smid = smid; memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; ioc->put_smid_default(ioc, smid); return 0; } /** * _base_determine_wait_on_discovery - desposition * @ioc: per adapter object * * Decide whether to wait on discovery to complete. Used to either * locate boot device, or report volumes ahead of physical devices. * * Returns 1 for wait, 0 for don't wait */ static int _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) { /* We wait for discovery to complete if IR firmware is loaded. * The sas topology events arrive before PD events, so we need time to * turn on the bit in ioc->pd_handles to indicate PD * Also, it maybe required to report Volumes ahead of physical * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. */ if (ioc->ir_firmware) return 1; /* if no Bios, then we don't need to wait */ if (!ioc->bios_pg3.BiosVersion) return 0; /* Bios is present, then we drop down here. * * If there any entries in the Bios Page 2, then we wait * for discovery to complete. */ /* Current Boot Device */ if ((ioc->bios_pg2.CurrentBootDeviceForm & MPI2_BIOSPAGE2_FORM_MASK) == MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && /* Request Boot Device */ (ioc->bios_pg2.ReqBootDeviceForm & MPI2_BIOSPAGE2_FORM_MASK) == MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && /* Alternate Request Boot Device */ (ioc->bios_pg2.ReqAltBootDeviceForm & MPI2_BIOSPAGE2_FORM_MASK) == MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) return 0; return 1; } /** * _base_unmask_events - turn on notification for this event * @ioc: per adapter object * @event: firmware event * * The mask is stored in ioc->event_masks. */ static void _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) { u32 desired_event; if (event >= 128) return; desired_event = (1 << (event % 32)); if (event < 32) ioc->event_masks[0] &= ~desired_event; else if (event < 64) ioc->event_masks[1] &= ~desired_event; else if (event < 96) ioc->event_masks[2] &= ~desired_event; else if (event < 128) ioc->event_masks[3] &= ~desired_event; } /** * _base_event_notification - send event notification * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ static int _base_event_notification(struct MPT3SAS_ADAPTER *ioc) { Mpi2EventNotificationRequest_t *mpi_request; u16 smid; int r = 0; int i; dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); if (ioc->base_cmds.status & MPT3_CMD_PENDING) { pr_err(MPT3SAS_FMT "%s: internal command already in use\n", ioc->name, __func__); return -EAGAIN; } smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n", ioc->name, __func__); return -EAGAIN; } ioc->base_cmds.status = MPT3_CMD_PENDING; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->base_cmds.smid = smid; memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; mpi_request->VF_ID = 0; /* TODO */ mpi_request->VP_ID = 0; for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) mpi_request->EventMasks[i] = cpu_to_le32(ioc->event_masks[i]); init_completion(&ioc->base_cmds.done); ioc->put_smid_default(ioc, smid); wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { pr_err(MPT3SAS_FMT "%s: timeout\n", ioc->name, __func__); _debug_dump_mf(mpi_request, sizeof(Mpi2EventNotificationRequest_t)/4); if (ioc->base_cmds.status & MPT3_CMD_RESET) r = -EFAULT; else r = -ETIME; } else dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n", ioc->name, __func__)); ioc->base_cmds.status = MPT3_CMD_NOT_USED; return r; } /** * mpt3sas_base_validate_event_type - validating event types * @ioc: per adapter object * @event: firmware event * * This will turn on firmware event notification when application * ask for that event. We don't mask events that are already enabled. */ void mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) { int i, j; u32 event_mask, desired_event; u8 send_update_to_fw; for (i = 0, send_update_to_fw = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { event_mask = ~event_type[i]; desired_event = 1; for (j = 0; j < 32; j++) { if (!(event_mask & desired_event) && (ioc->event_masks[i] & desired_event)) { ioc->event_masks[i] &= ~desired_event; send_update_to_fw = 1; } desired_event = (desired_event << 1); } } if (!send_update_to_fw) return; mutex_lock(&ioc->base_cmds.mutex); _base_event_notification(ioc); mutex_unlock(&ioc->base_cmds.mutex); } /** * _base_diag_reset - the "big hammer" start of day reset * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ static int _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) { u32 host_diagnostic; u32 ioc_state; u32 count; u32 hcb_size; pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name); drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n", ioc->name)); count = 0; do { /* Write magic sequence to WriteSequence register * Loop until in diagnostic mode */ drsprintk(ioc, pr_info(MPT3SAS_FMT "write magic sequence\n", ioc->name)); writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); /* wait 100 msec */ msleep(100); if (count++ > 20) goto out; host_diagnostic = readl(&ioc->chip->HostDiagnostic); drsprintk(ioc, pr_info(MPT3SAS_FMT "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", ioc->name, count, host_diagnostic)); } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); hcb_size = readl(&ioc->chip->HCBSize); drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n", ioc->name)); writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, &ioc->chip->HostDiagnostic); /*This delay allows the chip PCIe hardware time to finish reset tasks*/ msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); /* Approximately 300 second max wait */ for (count = 0; count < (300000000 / MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { host_diagnostic = readl(&ioc->chip->HostDiagnostic); if (host_diagnostic == 0xFFFFFFFF) goto out; if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) break; msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); } if (host_diagnostic & MPI2_DIAG_HCB_MODE) { drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter assuming the HCB Address points to good F/W\n", ioc->name)); host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; writel(host_diagnostic, &ioc->chip->HostDiagnostic); drsprintk(ioc, pr_info(MPT3SAS_FMT "re-enable the HCDW\n", ioc->name)); writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, &ioc->chip->HCBSize); } drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n", ioc->name)); writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, &ioc->chip->HostDiagnostic); drsprintk(ioc, pr_info(MPT3SAS_FMT "disable writes to the diagnostic register\n", ioc->name)); writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); drsprintk(ioc, pr_info(MPT3SAS_FMT "Wait for FW to go to the READY state\n", ioc->name)); ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); if (ioc_state) { pr_err(MPT3SAS_FMT "%s: failed going to ready state (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state); goto out; } pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name); return 0; out: pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name); return -EFAULT; } /** * _base_make_ioc_ready - put controller in READY state * @ioc: per adapter object * @type: FORCE_BIG_HAMMER or SOFT_RESET * * Returns 0 for success, non-zero for failure. */ static int _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) { u32 ioc_state; int rc; int count; dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); if (ioc->pci_error_recovery) return 0; ioc_state = mpt3sas_base_get_iocstate(ioc, 0); dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n", ioc->name, __func__, ioc_state)); /* if in RESET state, it should move to READY state shortly */ count = 0; if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { while ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_READY) { if (count++ == 10) { pr_err(MPT3SAS_FMT "%s: failed going to ready state (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state); return -EFAULT; } ssleep(1); ioc_state = mpt3sas_base_get_iocstate(ioc, 0); } } if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) return 0; if (ioc_state & MPI2_DOORBELL_USED) { dhsprintk(ioc, pr_info(MPT3SAS_FMT "unexpected doorbell active!\n", ioc->name)); goto issue_diag_reset; } if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpt3sas_base_fault_info(ioc, ioc_state & MPI2_DOORBELL_DATA_MASK); goto issue_diag_reset; } if (type == FORCE_BIG_HAMMER) goto issue_diag_reset; if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) if (!(_base_send_ioc_reset(ioc, MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { return 0; } issue_diag_reset: rc = _base_diag_reset(ioc); return rc; } /** * _base_make_ioc_operational - put controller in OPERATIONAL state * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ static int _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) { int r, i, index; unsigned long flags; u32 reply_address; u16 smid; struct _tr_list *delayed_tr, *delayed_tr_next; struct _sc_list *delayed_sc, *delayed_sc_next; struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; u8 hide_flag; struct adapter_reply_queue *reply_q; Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); /* clean the delayed target reset list */ list_for_each_entry_safe(delayed_tr, delayed_tr_next, &ioc->delayed_tr_list, list) { list_del(&delayed_tr->list); kfree(delayed_tr); } list_for_each_entry_safe(delayed_tr, delayed_tr_next, &ioc->delayed_tr_volume_list, list) { list_del(&delayed_tr->list); kfree(delayed_tr); } list_for_each_entry_safe(delayed_sc, delayed_sc_next, &ioc->delayed_sc_list, list) { list_del(&delayed_sc->list); kfree(delayed_sc); } list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, &ioc->delayed_event_ack_list, list) { list_del(&delayed_event_ack->list); kfree(delayed_event_ack); } /* initialize the scsi lookup free list */ spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); INIT_LIST_HEAD(&ioc->free_list); smid = 1; for (i = 0; i < ioc->scsiio_depth; i++, smid++) { INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list); ioc->scsi_lookup[i].cb_idx = 0xFF; ioc->scsi_lookup[i].smid = smid; ioc->scsi_lookup[i].scmd = NULL; ioc->scsi_lookup[i].direct_io = 0; if (i < ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT) list_add_tail(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list); } /* hi-priority queue */ INIT_LIST_HEAD(&ioc->hpr_free_list); smid = ioc->hi_priority_smid; for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { ioc->hpr_lookup[i].cb_idx = 0xFF; ioc->hpr_lookup[i].smid = smid; list_add_tail(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); } /* internal queue */ INIT_LIST_HEAD(&ioc->internal_free_list); smid = ioc->internal_smid; for (i = 0; i < ioc->internal_depth; i++, smid++) { ioc->internal_lookup[i].cb_idx = 0xFF; ioc->internal_lookup[i].smid = smid; list_add_tail(&ioc->internal_lookup[i].tracker_list, &ioc->internal_free_list); } /* chain pool */ INIT_LIST_HEAD(&ioc->free_chain_list); for (i = 0; i < ioc->chain_depth; i++) list_add_tail(&ioc->chain_lookup[i].tracker_list, &ioc->free_chain_list); spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); /* initialize Reply Free Queue */ for (i = 0, reply_address = (u32)ioc->reply_dma ; i < ioc->reply_free_queue_depth ; i++, reply_address += ioc->reply_sz) ioc->reply_free[i] = cpu_to_le32(reply_address); /* initialize reply queues */ if (ioc->is_driver_loading) _base_assign_reply_queues(ioc); /* initialize Reply Post Free Queue */ index = 0; reply_post_free_contig = ioc->reply_post[0].reply_post_free; list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { /* * If RDPQ is enabled, switch to the next allocation. * Otherwise advance within the contiguous region. */ if (ioc->rdpq_array_enable) { reply_q->reply_post_free = ioc->reply_post[index++].reply_post_free; } else { reply_q->reply_post_free = reply_post_free_contig; reply_post_free_contig += ioc->reply_post_queue_depth; } reply_q->reply_post_host_index = 0; for (i = 0; i < ioc->reply_post_queue_depth; i++) reply_q->reply_post_free[i].Words = cpu_to_le64(ULLONG_MAX); if (!_base_is_controller_msix_enabled(ioc)) goto skip_init_reply_post_free_queue; } skip_init_reply_post_free_queue: r = _base_send_ioc_init(ioc); if (r) return r; /* initialize reply free host index */ ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); /* initialize reply post host index */ list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { if (ioc->combined_reply_queue) writel((reply_q->msix_index & 7)<< MPI2_RPHI_MSIX_INDEX_SHIFT, ioc->replyPostRegisterIndex[reply_q->msix_index/8]); else writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT, &ioc->chip->ReplyPostHostIndex); if (!_base_is_controller_msix_enabled(ioc)) goto skip_init_reply_post_host_index; } skip_init_reply_post_host_index: _base_unmask_interrupts(ioc); r = _base_event_notification(ioc); if (r) return r; _base_static_config_pages(ioc); if (ioc->is_driver_loading) { if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier == 0x80) { hide_flag = (u8) ( le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & MFG_PAGE10_HIDE_SSDS_MASK); if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) ioc->mfg_pg10_hide_flag = hide_flag; } ioc->wait_for_discovery_to_complete = _base_determine_wait_on_discovery(ioc); return r; /* scan_start and scan_finished support */ } r = _base_send_port_enable(ioc); if (r) return r; return r; } /** * mpt3sas_base_free_resources - free resources controller resources * @ioc: per adapter object * * Return nothing. */ void mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) { dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); /* synchronizing freeing resource with pci_access_mutex lock */ mutex_lock(&ioc->pci_access_mutex); if (ioc->chip_phys && ioc->chip) { _base_mask_interrupts(ioc); ioc->shost_recovery = 1; _base_make_ioc_ready(ioc, SOFT_RESET); ioc->shost_recovery = 0; } mpt3sas_base_unmap_resources(ioc); mutex_unlock(&ioc->pci_access_mutex); return; } /** * mpt3sas_base_attach - attach controller instance * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ int mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) { int r, i; int cpu_id, last_cpu_id = 0; dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); /* setup cpu_msix_table */ ioc->cpu_count = num_online_cpus(); for_each_online_cpu(cpu_id) last_cpu_id = cpu_id; ioc->cpu_msix_table_sz = last_cpu_id + 1; ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); ioc->reply_queue_count = 1; if (!ioc->cpu_msix_table) { dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation for cpu_msix_table failed!!!\n", ioc->name)); r = -ENOMEM; goto out_free_resources; } if (ioc->is_warpdrive) { ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, sizeof(resource_size_t *), GFP_KERNEL); if (!ioc->reply_post_host_index) { dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation " "for reply_post_host_index failed!!!\n", ioc->name)); r = -ENOMEM; goto out_free_resources; } } ioc->rdpq_array_enable_assigned = 0; ioc->dma_mask = 0; r = mpt3sas_base_map_resources(ioc); if (r) goto out_free_resources; pci_set_drvdata(ioc->pdev, ioc->shost); r = _base_get_ioc_facts(ioc); if (r) goto out_free_resources; switch (ioc->hba_mpi_version_belonged) { case MPI2_VERSION: ioc->build_sg_scmd = &_base_build_sg_scmd; ioc->build_sg = &_base_build_sg; ioc->build_zero_len_sge = &_base_build_zero_len_sge; break; case MPI25_VERSION: case MPI26_VERSION: /* * In SAS3.0, * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and * Target Status - all require the IEEE formated scatter gather * elements. */ ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; ioc->build_sg = &_base_build_sg_ieee; ioc->build_nvme_prp = &_base_build_nvme_prp; ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); break; } if (ioc->atomic_desc_capable) { ioc->put_smid_default = &_base_put_smid_default_atomic; ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic; ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic; ioc->put_smid_nvme_encap = &_base_put_smid_nvme_encap_atomic; } else { ioc->put_smid_default = &_base_put_smid_default; ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; ioc->put_smid_fast_path = &_base_put_smid_fast_path; ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; ioc->put_smid_nvme_encap = &_base_put_smid_nvme_encap; } /* * These function pointers for other requests that don't * the require IEEE scatter gather elements. * * For example Configuration Pages and SAS IOUNIT Control don't. */ ioc->build_sg_mpi = &_base_build_sg; ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; r = _base_make_ioc_ready(ioc, SOFT_RESET); if (r) goto out_free_resources; ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, sizeof(struct mpt3sas_port_facts), GFP_KERNEL); if (!ioc->pfacts) { r = -ENOMEM; goto out_free_resources; } for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { r = _base_get_port_facts(ioc, i); if (r) goto out_free_resources; } r = _base_allocate_memory_pools(ioc); if (r) goto out_free_resources; init_waitqueue_head(&ioc->reset_wq); /* allocate memory pd handle bitmask list */ ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); if (ioc->facts.MaxDevHandle % 8) ioc->pd_handles_sz++; ioc->pd_handles = kzalloc(ioc->pd_handles_sz, GFP_KERNEL); if (!ioc->pd_handles) { r = -ENOMEM; goto out_free_resources; } ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, GFP_KERNEL); if (!ioc->blocking_handles) { r = -ENOMEM; goto out_free_resources; } /* allocate memory for pending OS device add list */ ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); if (ioc->facts.MaxDevHandle % 8) ioc->pend_os_device_add_sz++; ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, GFP_KERNEL); if (!ioc->pend_os_device_add) goto out_free_resources; ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; ioc->device_remove_in_progress = kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); if (!ioc->device_remove_in_progress) goto out_free_resources; ioc->fwfault_debug = mpt3sas_fwfault_debug; /* base internal command bits */ mutex_init(&ioc->base_cmds.mutex); ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->base_cmds.status = MPT3_CMD_NOT_USED; /* port_enable command bits */ ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; /* transport internal command bits */ ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->transport_cmds.status = MPT3_CMD_NOT_USED; mutex_init(&ioc->transport_cmds.mutex); /* scsih internal command bits */ ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; mutex_init(&ioc->scsih_cmds.mutex); /* task management internal command bits */ ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->tm_cmds.status = MPT3_CMD_NOT_USED; mutex_init(&ioc->tm_cmds.mutex); /* config page internal command bits */ ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->config_cmds.status = MPT3_CMD_NOT_USED; mutex_init(&ioc->config_cmds.mutex); /* ctl module internal command bits */ ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; mutex_init(&ioc->ctl_cmds.mutex); if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply || !ioc->config_cmds.reply || !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { r = -ENOMEM; goto out_free_resources; } for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) ioc->event_masks[i] = -1; /* here we enable the events we care about */ _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { if (ioc->is_gen35_ioc) { _base_unmask_events(ioc, MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); _base_unmask_events(ioc, MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); } } r = _base_make_ioc_operational(ioc); if (r) goto out_free_resources; ioc->non_operational_loop = 0; ioc->got_task_abort_from_ioctl = 0; return 0; out_free_resources: ioc->remove_host = 1; mpt3sas_base_free_resources(ioc); _base_release_memory_pools(ioc); pci_set_drvdata(ioc->pdev, NULL); kfree(ioc->cpu_msix_table); if (ioc->is_warpdrive) kfree(ioc->reply_post_host_index); kfree(ioc->pd_handles); kfree(ioc->blocking_handles); kfree(ioc->device_remove_in_progress); kfree(ioc->pend_os_device_add); kfree(ioc->tm_cmds.reply); kfree(ioc->transport_cmds.reply); kfree(ioc->scsih_cmds.reply); kfree(ioc->config_cmds.reply); kfree(ioc->base_cmds.reply); kfree(ioc->port_enable_cmds.reply); kfree(ioc->ctl_cmds.reply); kfree(ioc->ctl_cmds.sense); kfree(ioc->pfacts); ioc->ctl_cmds.reply = NULL; ioc->base_cmds.reply = NULL; ioc->tm_cmds.reply = NULL; ioc->scsih_cmds.reply = NULL; ioc->transport_cmds.reply = NULL; ioc->config_cmds.reply = NULL; ioc->pfacts = NULL; return r; } /** * mpt3sas_base_detach - remove controller instance * @ioc: per adapter object * * Return nothing. */ void mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) { dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, __func__)); mpt3sas_base_stop_watchdog(ioc); mpt3sas_base_free_resources(ioc); _base_release_memory_pools(ioc); pci_set_drvdata(ioc->pdev, NULL); kfree(ioc->cpu_msix_table); if (ioc->is_warpdrive) kfree(ioc->reply_post_host_index); kfree(ioc->pd_handles); kfree(ioc->blocking_handles); kfree(ioc->device_remove_in_progress); kfree(ioc->pend_os_device_add); kfree(ioc->pfacts); kfree(ioc->ctl_cmds.reply); kfree(ioc->ctl_cmds.sense); kfree(ioc->base_cmds.reply); kfree(ioc->port_enable_cmds.reply); kfree(ioc->tm_cmds.reply); kfree(ioc->transport_cmds.reply); kfree(ioc->scsih_cmds.reply); kfree(ioc->config_cmds.reply); } /** * _base_reset_handler - reset callback handler (for base) * @ioc: per adapter object * @reset_phase: phase * * The handler for doing any required cleanup or initialization. * * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET, * MPT3_IOC_DONE_RESET * * Return nothing. */ static void _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase) { mpt3sas_scsih_reset_handler(ioc, reset_phase); mpt3sas_ctl_reset_handler(ioc, reset_phase); switch (reset_phase) { case MPT3_IOC_PRE_RESET: dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__)); break; case MPT3_IOC_AFTER_RESET: dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__)); if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { ioc->transport_cmds.status |= MPT3_CMD_RESET; mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); complete(&ioc->transport_cmds.done); } if (ioc->base_cmds.status & MPT3_CMD_PENDING) { ioc->base_cmds.status |= MPT3_CMD_RESET; mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); complete(&ioc->base_cmds.done); } if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { ioc->port_enable_failed = 1; ioc->port_enable_cmds.status |= MPT3_CMD_RESET; mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); if (ioc->is_driver_loading) { ioc->start_scan_failed = MPI2_IOCSTATUS_INTERNAL_ERROR; ioc->start_scan = 0; ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; } else complete(&ioc->port_enable_cmds.done); } if (ioc->config_cmds.status & MPT3_CMD_PENDING) { ioc->config_cmds.status |= MPT3_CMD_RESET; mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); ioc->config_cmds.smid = USHRT_MAX; complete(&ioc->config_cmds.done); } break; case MPT3_IOC_DONE_RESET: dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__)); break; } } /** * _wait_for_commands_to_complete - reset controller * @ioc: Pointer to MPT_ADAPTER structure * * This function waiting(3s) for all pending commands to complete * prior to putting controller in reset. */ static void _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) { u32 ioc_state; unsigned long flags; u16 i; ioc->pending_io_count = 0; ioc_state = mpt3sas_base_get_iocstate(ioc, 0); if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) return; /* pending command count */ spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); for (i = 0; i < ioc->scsiio_depth; i++) if (ioc->scsi_lookup[i].cb_idx != 0xFF) ioc->pending_io_count++; spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); if (!ioc->pending_io_count) return; /* wait for pending commands to complete */ wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); } /** * mpt3sas_base_hard_reset_handler - reset controller * @ioc: Pointer to MPT_ADAPTER structure * @type: FORCE_BIG_HAMMER or SOFT_RESET * * Returns 0 for success, non-zero for failure. */ int mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) { int r; unsigned long flags; u32 ioc_state; u8 is_fault = 0, is_trigger = 0; dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name, __func__)); if (ioc->pci_error_recovery) { pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n", ioc->name, __func__); r = 0; goto out_unlocked; } if (mpt3sas_fwfault_debug) mpt3sas_halt_firmware(ioc); /* wait for an active reset in progress to complete */ if (!mutex_trylock(&ioc->reset_in_progress_mutex)) { do { ssleep(1); } while (ioc->shost_recovery == 1); dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name, __func__)); return ioc->ioc_reset_in_progress_status; } spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); ioc->shost_recovery = 1; spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_REGISTERED) && (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_RELEASED))) { is_trigger = 1; ioc_state = mpt3sas_base_get_iocstate(ioc, 0); if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) is_fault = 1; } _base_reset_handler(ioc, MPT3_IOC_PRE_RESET); _wait_for_commands_to_complete(ioc); _base_mask_interrupts(ioc); r = _base_make_ioc_ready(ioc, type); if (r) goto out; _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET); /* If this hard reset is called while port enable is active, then * there is no reason to call make_ioc_operational */ if (ioc->is_driver_loading && ioc->port_enable_failed) { ioc->remove_host = 1; r = -EFAULT; goto out; } r = _base_get_ioc_facts(ioc); if (r) goto out; if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) panic("%s: Issue occurred with flashing controller firmware." "Please reboot the system and ensure that the correct" " firmware version is running\n", ioc->name); r = _base_make_ioc_operational(ioc); if (!r) _base_reset_handler(ioc, MPT3_IOC_DONE_RESET); out: dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n", ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED"))); spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); ioc->ioc_reset_in_progress_status = r; ioc->shost_recovery = 0; spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); ioc->ioc_reset_count++; mutex_unlock(&ioc->reset_in_progress_mutex); out_unlocked: if ((r == 0) && is_trigger) { if (is_fault) mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); else mpt3sas_trigger_master(ioc, MASTER_TRIGGER_ADAPTER_RESET); } dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name, __func__)); return r; }