// SPDX-License-Identifier: GPL-2.0-or-later /* * Support for the Tundra TSI148 VME-PCI Bridge Chip * * Author: Martyn Welch * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc. * * Based on work by Tom Armistead and Ajit Prem * Copyright 2004 Motorola Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vme.h" #include "vme_bridge.h" #include "vme_tsi148.h" static int tsi148_probe(struct pci_dev *, const struct pci_device_id *); static void tsi148_remove(struct pci_dev *); /* Module parameter */ static bool err_chk; static u32 geoid; static const char driver_name[] = "vme_tsi148"; static const struct pci_device_id tsi148_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_TUNDRA, PCI_DEVICE_ID_TUNDRA_TSI148) }, { }, }; MODULE_DEVICE_TABLE(pci, tsi148_ids); static struct pci_driver tsi148_driver = { .name = driver_name, .id_table = tsi148_ids, .probe = tsi148_probe, .remove = tsi148_remove, }; static void reg_join(unsigned int high, unsigned int low, unsigned long long *variable) { *variable = (unsigned long long)high << 32; *variable |= (unsigned long long)low; } static void reg_split(unsigned long long variable, unsigned int *high, unsigned int *low) { *low = (unsigned int)variable & 0xFFFFFFFF; *high = (unsigned int)(variable >> 32); } /* * Wakes up DMA queue. */ static u32 tsi148_DMA_irqhandler(struct tsi148_driver *bridge, int channel_mask) { u32 serviced = 0; if (channel_mask & TSI148_LCSR_INTS_DMA0S) { wake_up(&bridge->dma_queue[0]); serviced |= TSI148_LCSR_INTC_DMA0C; } if (channel_mask & TSI148_LCSR_INTS_DMA1S) { wake_up(&bridge->dma_queue[1]); serviced |= TSI148_LCSR_INTC_DMA1C; } return serviced; } /* * Wake up location monitor queue */ static u32 tsi148_LM_irqhandler(struct tsi148_driver *bridge, u32 stat) { int i; u32 serviced = 0; for (i = 0; i < 4; i++) { if (stat & TSI148_LCSR_INTS_LMS[i]) { /* We only enable interrupts if the callback is set */ bridge->lm_callback[i](bridge->lm_data[i]); serviced |= TSI148_LCSR_INTC_LMC[i]; } } return serviced; } /* * Wake up mail box queue. * * XXX This functionality is not exposed up though API. */ static u32 tsi148_MB_irqhandler(struct vme_bridge *tsi148_bridge, u32 stat) { int i; u32 val; u32 serviced = 0; struct tsi148_driver *bridge; bridge = tsi148_bridge->driver_priv; for (i = 0; i < 4; i++) { if (stat & TSI148_LCSR_INTS_MBS[i]) { val = ioread32be(bridge->base + TSI148_GCSR_MBOX[i]); dev_err(tsi148_bridge->parent, "VME Mailbox %d received: 0x%x\n", i, val); serviced |= TSI148_LCSR_INTC_MBC[i]; } } return serviced; } /* * Display error & status message when PERR (PCI) exception interrupt occurs. */ static u32 tsi148_PERR_irqhandler(struct vme_bridge *tsi148_bridge) { struct tsi148_driver *bridge; bridge = tsi148_bridge->driver_priv; dev_err(tsi148_bridge->parent, "PCI Exception at address: 0x%08x:%08x, attributes: %08x\n", ioread32be(bridge->base + TSI148_LCSR_EDPAU), ioread32be(bridge->base + TSI148_LCSR_EDPAL), ioread32be(bridge->base + TSI148_LCSR_EDPAT)); dev_err(tsi148_bridge->parent, "PCI-X attribute reg: %08x, PCI-X split completion reg: %08x\n", ioread32be(bridge->base + TSI148_LCSR_EDPXA), ioread32be(bridge->base + TSI148_LCSR_EDPXS)); iowrite32be(TSI148_LCSR_EDPAT_EDPCL, bridge->base + TSI148_LCSR_EDPAT); return TSI148_LCSR_INTC_PERRC; } /* * Save address and status when VME error interrupt occurs. */ static u32 tsi148_VERR_irqhandler(struct vme_bridge *tsi148_bridge) { unsigned int error_addr_high, error_addr_low; unsigned long long error_addr; u32 error_attrib; int error_am; struct tsi148_driver *bridge; bridge = tsi148_bridge->driver_priv; error_addr_high = ioread32be(bridge->base + TSI148_LCSR_VEAU); error_addr_low = ioread32be(bridge->base + TSI148_LCSR_VEAL); error_attrib = ioread32be(bridge->base + TSI148_LCSR_VEAT); error_am = (error_attrib & TSI148_LCSR_VEAT_AM_M) >> 8; reg_join(error_addr_high, error_addr_low, &error_addr); /* Check for exception register overflow (we have lost error data) */ if (error_attrib & TSI148_LCSR_VEAT_VEOF) dev_err(tsi148_bridge->parent, "VME Bus Exception Overflow Occurred\n"); if (err_chk) vme_bus_error_handler(tsi148_bridge, error_addr, error_am); else dev_err(tsi148_bridge->parent, "VME Bus Error at address: 0x%llx, attributes: %08x\n", error_addr, error_attrib); /* Clear Status */ iowrite32be(TSI148_LCSR_VEAT_VESCL, bridge->base + TSI148_LCSR_VEAT); return TSI148_LCSR_INTC_VERRC; } /* * Wake up IACK queue. */ static u32 tsi148_IACK_irqhandler(struct tsi148_driver *bridge) { wake_up(&bridge->iack_queue); return TSI148_LCSR_INTC_IACKC; } /* * Calling VME bus interrupt callback if provided. */ static u32 tsi148_VIRQ_irqhandler(struct vme_bridge *tsi148_bridge, u32 stat) { int vec, i, serviced = 0; struct tsi148_driver *bridge; bridge = tsi148_bridge->driver_priv; for (i = 7; i > 0; i--) { if (stat & (1 << i)) { /* * Note: Even though the registers are defined as * 32-bits in the spec, we only want to issue 8-bit * IACK cycles on the bus, read from offset 3. */ vec = ioread8(bridge->base + TSI148_LCSR_VIACK[i] + 3); vme_irq_handler(tsi148_bridge, i, vec); serviced |= (1 << i); } } return serviced; } /* * Top level interrupt handler. Clears appropriate interrupt status bits and * then calls appropriate sub handler(s). */ static irqreturn_t tsi148_irqhandler(int irq, void *ptr) { u32 stat, enable, serviced = 0; struct vme_bridge *tsi148_bridge; struct tsi148_driver *bridge; tsi148_bridge = ptr; bridge = tsi148_bridge->driver_priv; /* Determine which interrupts are unmasked and set */ enable = ioread32be(bridge->base + TSI148_LCSR_INTEO); stat = ioread32be(bridge->base + TSI148_LCSR_INTS); /* Only look at unmasked interrupts */ stat &= enable; if (unlikely(!stat)) return IRQ_NONE; /* Call subhandlers as appropriate */ /* DMA irqs */ if (stat & (TSI148_LCSR_INTS_DMA1S | TSI148_LCSR_INTS_DMA0S)) serviced |= tsi148_DMA_irqhandler(bridge, stat); /* Location monitor irqs */ if (stat & (TSI148_LCSR_INTS_LM3S | TSI148_LCSR_INTS_LM2S | TSI148_LCSR_INTS_LM1S | TSI148_LCSR_INTS_LM0S)) serviced |= tsi148_LM_irqhandler(bridge, stat); /* Mail box irqs */ if (stat & (TSI148_LCSR_INTS_MB3S | TSI148_LCSR_INTS_MB2S | TSI148_LCSR_INTS_MB1S | TSI148_LCSR_INTS_MB0S)) serviced |= tsi148_MB_irqhandler(tsi148_bridge, stat); /* PCI bus error */ if (stat & TSI148_LCSR_INTS_PERRS) serviced |= tsi148_PERR_irqhandler(tsi148_bridge); /* VME bus error */ if (stat & TSI148_LCSR_INTS_VERRS) serviced |= tsi148_VERR_irqhandler(tsi148_bridge); /* IACK irq */ if (stat & TSI148_LCSR_INTS_IACKS) serviced |= tsi148_IACK_irqhandler(bridge); /* VME bus irqs */ if (stat & (TSI148_LCSR_INTS_IRQ7S | TSI148_LCSR_INTS_IRQ6S | TSI148_LCSR_INTS_IRQ5S | TSI148_LCSR_INTS_IRQ4S | TSI148_LCSR_INTS_IRQ3S | TSI148_LCSR_INTS_IRQ2S | TSI148_LCSR_INTS_IRQ1S)) serviced |= tsi148_VIRQ_irqhandler(tsi148_bridge, stat); /* Clear serviced interrupts */ iowrite32be(serviced, bridge->base + TSI148_LCSR_INTC); return IRQ_HANDLED; } static int tsi148_irq_init(struct vme_bridge *tsi148_bridge) { int result; unsigned int tmp; struct pci_dev *pdev; struct tsi148_driver *bridge; pdev = to_pci_dev(tsi148_bridge->parent); bridge = tsi148_bridge->driver_priv; result = request_irq(pdev->irq, tsi148_irqhandler, IRQF_SHARED, driver_name, tsi148_bridge); if (result) { dev_err(tsi148_bridge->parent, "Can't get assigned pci irq vector %02X\n", pdev->irq); return result; } /* Enable and unmask interrupts */ tmp = TSI148_LCSR_INTEO_DMA1EO | TSI148_LCSR_INTEO_DMA0EO | TSI148_LCSR_INTEO_MB3EO | TSI148_LCSR_INTEO_MB2EO | TSI148_LCSR_INTEO_MB1EO | TSI148_LCSR_INTEO_MB0EO | TSI148_LCSR_INTEO_PERREO | TSI148_LCSR_INTEO_VERREO | TSI148_LCSR_INTEO_IACKEO; /* This leaves the following interrupts masked. * TSI148_LCSR_INTEO_VIEEO * TSI148_LCSR_INTEO_SYSFLEO * TSI148_LCSR_INTEO_ACFLEO */ /* Don't enable Location Monitor interrupts here - they will be * enabled when the location monitors are properly configured and * a callback has been attached. * TSI148_LCSR_INTEO_LM0EO * TSI148_LCSR_INTEO_LM1EO * TSI148_LCSR_INTEO_LM2EO * TSI148_LCSR_INTEO_LM3EO */ /* Don't enable VME interrupts until we add a handler, else the board * will respond to it and we don't want that unless it knows how to * properly deal with it. * TSI148_LCSR_INTEO_IRQ7EO * TSI148_LCSR_INTEO_IRQ6EO * TSI148_LCSR_INTEO_IRQ5EO * TSI148_LCSR_INTEO_IRQ4EO * TSI148_LCSR_INTEO_IRQ3EO * TSI148_LCSR_INTEO_IRQ2EO * TSI148_LCSR_INTEO_IRQ1EO */ iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEO); iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEN); return 0; } static void tsi148_irq_exit(struct vme_bridge *tsi148_bridge, struct pci_dev *pdev) { struct tsi148_driver *bridge = tsi148_bridge->driver_priv; /* Turn off interrupts */ iowrite32be(0x0, bridge->base + TSI148_LCSR_INTEO); iowrite32be(0x0, bridge->base + TSI148_LCSR_INTEN); /* Clear all interrupts */ iowrite32be(0xFFFFFFFF, bridge->base + TSI148_LCSR_INTC); /* Detach interrupt handler */ free_irq(pdev->irq, tsi148_bridge); } /* * Check to see if an IACk has been received, return true (1) or false (0). */ static int tsi148_iack_received(struct tsi148_driver *bridge) { u32 tmp; tmp = ioread32be(bridge->base + TSI148_LCSR_VICR); if (tmp & TSI148_LCSR_VICR_IRQS) return 0; else return 1; } /* * Configure VME interrupt */ static void tsi148_irq_set(struct vme_bridge *tsi148_bridge, int level, int state, int sync) { struct pci_dev *pdev; u32 tmp; struct tsi148_driver *bridge; bridge = tsi148_bridge->driver_priv; /* We need to do the ordering differently for enabling and disabling */ if (state == 0) { tmp = ioread32be(bridge->base + TSI148_LCSR_INTEN); tmp &= ~TSI148_LCSR_INTEN_IRQEN[level - 1]; iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEN); tmp = ioread32be(bridge->base + TSI148_LCSR_INTEO); tmp &= ~TSI148_LCSR_INTEO_IRQEO[level - 1]; iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEO); if (sync != 0) { pdev = to_pci_dev(tsi148_bridge->parent); synchronize_irq(pdev->irq); } } else { tmp = ioread32be(bridge->base + TSI148_LCSR_INTEO); tmp |= TSI148_LCSR_INTEO_IRQEO[level - 1]; iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEO); tmp = ioread32be(bridge->base + TSI148_LCSR_INTEN); tmp |= TSI148_LCSR_INTEN_IRQEN[level - 1]; iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEN); } } /* * Generate a VME bus interrupt at the requested level & vector. Wait for * interrupt to be acked. */ static int tsi148_irq_generate(struct vme_bridge *tsi148_bridge, int level, int statid) { u32 tmp; struct tsi148_driver *bridge; bridge = tsi148_bridge->driver_priv; mutex_lock(&bridge->vme_int); /* Read VICR register */ tmp = ioread32be(bridge->base + TSI148_LCSR_VICR); /* Set Status/ID */ tmp = (tmp & ~TSI148_LCSR_VICR_STID_M) | (statid & TSI148_LCSR_VICR_STID_M); iowrite32be(tmp, bridge->base + TSI148_LCSR_VICR); /* Assert VMEbus IRQ */ tmp = tmp | TSI148_LCSR_VICR_IRQL[level]; iowrite32be(tmp, bridge->base + TSI148_LCSR_VICR); /* XXX Consider implementing a timeout? */ wait_event_interruptible(bridge->iack_queue, tsi148_iack_received(bridge)); mutex_unlock(&bridge->vme_int); return 0; } /* * Initialize a slave window with the requested attributes. */ static int tsi148_slave_set(struct vme_slave_resource *image, int enabled, unsigned long long vme_base, unsigned long long size, dma_addr_t pci_base, u32 aspace, u32 cycle) { unsigned int i, addr = 0, granularity = 0; unsigned int temp_ctl = 0; unsigned int vme_base_low, vme_base_high; unsigned int vme_bound_low, vme_bound_high; unsigned int pci_offset_low, pci_offset_high; unsigned long long vme_bound, pci_offset; struct vme_bridge *tsi148_bridge; struct tsi148_driver *bridge; tsi148_bridge = image->parent; bridge = tsi148_bridge->driver_priv; i = image->number; switch (aspace) { case VME_A16: granularity = 0x10; addr |= TSI148_LCSR_ITAT_AS_A16; break; case VME_A24: granularity = 0x1000; addr |= TSI148_LCSR_ITAT_AS_A24; break; case VME_A32: granularity = 0x10000; addr |= TSI148_LCSR_ITAT_AS_A32; break; case VME_A64: granularity = 0x10000; addr |= TSI148_LCSR_ITAT_AS_A64; break; default: dev_err(tsi148_bridge->parent, "Invalid address space\n"); return -EINVAL; } /* Convert 64-bit variables to 2x 32-bit variables */ reg_split(vme_base, &vme_base_high, &vme_base_low); /* * Bound address is a valid address for the window, adjust * accordingly */ vme_bound = vme_base + size - granularity; reg_split(vme_bound, &vme_bound_high, &vme_bound_low); pci_offset = (unsigned long long)pci_base - vme_base; reg_split(pci_offset, &pci_offset_high, &pci_offset_low); if (vme_base_low & (granularity - 1)) { dev_err(tsi148_bridge->parent, "Invalid VME base alignment\n"); return -EINVAL; } if (vme_bound_low & (granularity - 1)) { dev_err(tsi148_bridge->parent, "Invalid VME bound alignment\n"); return -EINVAL; } if (pci_offset_low & (granularity - 1)) { dev_err(tsi148_bridge->parent, "Invalid PCI Offset alignment\n"); return -EINVAL; } /* Disable while we are mucking around */ temp_ctl = ioread32be(bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITAT); temp_ctl &= ~TSI148_LCSR_ITAT_EN; iowrite32be(temp_ctl, bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITAT); /* Setup mapping */ iowrite32be(vme_base_high, bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITSAU); iowrite32be(vme_base_low, bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITSAL); iowrite32be(vme_bound_high, bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITEAU); iowrite32be(vme_bound_low, bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITEAL); iowrite32be(pci_offset_high, bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITOFU); iowrite32be(pci_offset_low, bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITOFL); /* Setup 2eSST speeds */ temp_ctl &= ~TSI148_LCSR_ITAT_2eSSTM_M; switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) { case VME_2eSST160: temp_ctl |= TSI148_LCSR_ITAT_2eSSTM_160; break; case VME_2eSST267: temp_ctl |= TSI148_LCSR_ITAT_2eSSTM_267; break; case VME_2eSST320: temp_ctl |= TSI148_LCSR_ITAT_2eSSTM_320; break; } /* Setup cycle types */ temp_ctl &= ~(0x1F << 7); if (cycle & VME_BLT) temp_ctl |= TSI148_LCSR_ITAT_BLT; if (cycle & VME_MBLT) temp_ctl |= TSI148_LCSR_ITAT_MBLT; if (cycle & VME_2eVME) temp_ctl |= TSI148_LCSR_ITAT_2eVME; if (cycle & VME_2eSST) temp_ctl |= TSI148_LCSR_ITAT_2eSST; if (cycle & VME_2eSSTB) temp_ctl |= TSI148_LCSR_ITAT_2eSSTB; /* Setup address space */ temp_ctl &= ~TSI148_LCSR_ITAT_AS_M; temp_ctl |= addr; temp_ctl &= ~0xF; if (cycle & VME_SUPER) temp_ctl |= TSI148_LCSR_ITAT_SUPR; if (cycle & VME_USER) temp_ctl |= TSI148_LCSR_ITAT_NPRIV; if (cycle & VME_PROG) temp_ctl |= TSI148_LCSR_ITAT_PGM; if (cycle & VME_DATA) temp_ctl |= TSI148_LCSR_ITAT_DATA; /* Write ctl reg without enable */ iowrite32be(temp_ctl, bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITAT); if (enabled) temp_ctl |= TSI148_LCSR_ITAT_EN; iowrite32be(temp_ctl, bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITAT); return 0; } /* * Get slave window configuration. */ static int tsi148_slave_get(struct vme_slave_resource *image, int *enabled, unsigned long long *vme_base, unsigned long long *size, dma_addr_t *pci_base, u32 *aspace, u32 *cycle) { unsigned int i, granularity = 0, ctl = 0; unsigned int vme_base_low, vme_base_high; unsigned int vme_bound_low, vme_bound_high; unsigned int pci_offset_low, pci_offset_high; unsigned long long vme_bound, pci_offset; struct tsi148_driver *bridge; bridge = image->parent->driver_priv; i = image->number; /* Read registers */ ctl = ioread32be(bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITAT); vme_base_high = ioread32be(bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITSAU); vme_base_low = ioread32be(bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITSAL); vme_bound_high = ioread32be(bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITEAU); vme_bound_low = ioread32be(bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITEAL); pci_offset_high = ioread32be(bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITOFU); pci_offset_low = ioread32be(bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITOFL); /* Convert 64-bit variables to 2x 32-bit variables */ reg_join(vme_base_high, vme_base_low, vme_base); reg_join(vme_bound_high, vme_bound_low, &vme_bound); reg_join(pci_offset_high, pci_offset_low, &pci_offset); *pci_base = (dma_addr_t)(*vme_base + pci_offset); *enabled = 0; *aspace = 0; *cycle = 0; if (ctl & TSI148_LCSR_ITAT_EN) *enabled = 1; if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A16) { granularity = 0x10; *aspace |= VME_A16; } if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A24) { granularity = 0x1000; *aspace |= VME_A24; } if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A32) { granularity = 0x10000; *aspace |= VME_A32; } if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A64) { granularity = 0x10000; *aspace |= VME_A64; } /* Need granularity before we set the size */ *size = (unsigned long long)((vme_bound - *vme_base) + granularity); if ((ctl & TSI148_LCSR_ITAT_2eSSTM_M) == TSI148_LCSR_ITAT_2eSSTM_160) *cycle |= VME_2eSST160; if ((ctl & TSI148_LCSR_ITAT_2eSSTM_M) == TSI148_LCSR_ITAT_2eSSTM_267) *cycle |= VME_2eSST267; if ((ctl & TSI148_LCSR_ITAT_2eSSTM_M) == TSI148_LCSR_ITAT_2eSSTM_320) *cycle |= VME_2eSST320; if (ctl & TSI148_LCSR_ITAT_BLT) *cycle |= VME_BLT; if (ctl & TSI148_LCSR_ITAT_MBLT) *cycle |= VME_MBLT; if (ctl & TSI148_LCSR_ITAT_2eVME) *cycle |= VME_2eVME; if (ctl & TSI148_LCSR_ITAT_2eSST) *cycle |= VME_2eSST; if (ctl & TSI148_LCSR_ITAT_2eSSTB) *cycle |= VME_2eSSTB; if (ctl & TSI148_LCSR_ITAT_SUPR) *cycle |= VME_SUPER; if (ctl & TSI148_LCSR_ITAT_NPRIV) *cycle |= VME_USER; if (ctl & TSI148_LCSR_ITAT_PGM) *cycle |= VME_PROG; if (ctl & TSI148_LCSR_ITAT_DATA) *cycle |= VME_DATA; return 0; } /* * Allocate and map PCI Resource */ static int tsi148_alloc_resource(struct vme_master_resource *image, unsigned long long size) { unsigned long long existing_size; int retval = 0; struct pci_dev *pdev; struct vme_bridge *tsi148_bridge; tsi148_bridge = image->parent; pdev = to_pci_dev(tsi148_bridge->parent); existing_size = (unsigned long long)(image->bus_resource.end - image->bus_resource.start); /* If the existing size is OK, return */ if ((size != 0) && (existing_size == (size - 1))) return 0; if (existing_size != 0) { iounmap(image->kern_base); image->kern_base = NULL; kfree(image->bus_resource.name); release_resource(&image->bus_resource); memset(&image->bus_resource, 0, sizeof(image->bus_resource)); } /* Exit here if size is zero */ if (size == 0) return 0; if (!image->bus_resource.name) { image->bus_resource.name = kmalloc(VMENAMSIZ + 3, GFP_ATOMIC); if (!image->bus_resource.name) { retval = -ENOMEM; goto err_name; } } sprintf((char *)image->bus_resource.name, "%s.%d", tsi148_bridge->name, image->number); image->bus_resource.start = 0; image->bus_resource.end = (unsigned long)size; image->bus_resource.flags = IORESOURCE_MEM; retval = pci_bus_alloc_resource(pdev->bus, &image->bus_resource, size, 0x10000, PCIBIOS_MIN_MEM, 0, NULL, NULL); if (retval) { dev_err(tsi148_bridge->parent, "Failed to allocate mem resource for window %d size 0x%lx start 0x%lx\n", image->number, (unsigned long)size, (unsigned long)image->bus_resource.start); goto err_resource; } image->kern_base = ioremap( image->bus_resource.start, size); if (!image->kern_base) { dev_err(tsi148_bridge->parent, "Failed to remap resource\n"); retval = -ENOMEM; goto err_remap; } return 0; err_remap: release_resource(&image->bus_resource); err_resource: kfree(image->bus_resource.name); memset(&image->bus_resource, 0, sizeof(image->bus_resource)); err_name: return retval; } /* * Free and unmap PCI Resource */ static void tsi148_free_resource(struct vme_master_resource *image) { iounmap(image->kern_base); image->kern_base = NULL; release_resource(&image->bus_resource); kfree(image->bus_resource.name); memset(&image->bus_resource, 0, sizeof(image->bus_resource)); } /* * Set the attributes of an outbound window. */ static int tsi148_master_set(struct vme_master_resource *image, int enabled, unsigned long long vme_base, unsigned long long size, u32 aspace, u32 cycle, u32 dwidth) { int retval = 0; unsigned int i; unsigned int temp_ctl = 0; unsigned int pci_base_low, pci_base_high; unsigned int pci_bound_low, pci_bound_high; unsigned int vme_offset_low, vme_offset_high; unsigned long long pci_bound, vme_offset, pci_base; struct vme_bridge *tsi148_bridge; struct tsi148_driver *bridge; struct pci_bus_region region; struct pci_dev *pdev; tsi148_bridge = image->parent; bridge = tsi148_bridge->driver_priv; pdev = to_pci_dev(tsi148_bridge->parent); /* Verify input data */ if (vme_base & 0xFFFF) { dev_err(tsi148_bridge->parent, "Invalid VME Window alignment\n"); retval = -EINVAL; goto err_window; } if ((size == 0) && (enabled != 0)) { dev_err(tsi148_bridge->parent, "Size must be non-zero for enabled windows\n"); retval = -EINVAL; goto err_window; } spin_lock(&image->lock); /* Let's allocate the resource here rather than further up the stack as * it avoids pushing loads of bus dependent stuff up the stack. If size * is zero, any existing resource will be freed. */ retval = tsi148_alloc_resource(image, size); if (retval) { spin_unlock(&image->lock); dev_err(tsi148_bridge->parent, "Unable to allocate memory for resource\n"); goto err_res; } if (size == 0) { pci_base = 0; pci_bound = 0; vme_offset = 0; } else { pcibios_resource_to_bus(pdev->bus, ®ion, &image->bus_resource); pci_base = region.start; /* * Bound address is a valid address for the window, adjust * according to window granularity. */ pci_bound = pci_base + (size - 0x10000); vme_offset = vme_base - pci_base; } /* Convert 64-bit variables to 2x 32-bit variables */ reg_split(pci_base, &pci_base_high, &pci_base_low); reg_split(pci_bound, &pci_bound_high, &pci_bound_low); reg_split(vme_offset, &vme_offset_high, &vme_offset_low); if (pci_base_low & 0xFFFF) { spin_unlock(&image->lock); dev_err(tsi148_bridge->parent, "Invalid PCI base alignment\n"); retval = -EINVAL; goto err_gran; } if (pci_bound_low & 0xFFFF) { spin_unlock(&image->lock); dev_err(tsi148_bridge->parent, "Invalid PCI bound alignment\n"); retval = -EINVAL; goto err_gran; } if (vme_offset_low & 0xFFFF) { spin_unlock(&image->lock); dev_err(tsi148_bridge->parent, "Invalid VME Offset alignment\n"); retval = -EINVAL; goto err_gran; } i = image->number; /* Disable while we are mucking around */ temp_ctl = ioread32be(bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTAT); temp_ctl &= ~TSI148_LCSR_OTAT_EN; iowrite32be(temp_ctl, bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTAT); /* Setup 2eSST speeds */ temp_ctl &= ~TSI148_LCSR_OTAT_2eSSTM_M; switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) { case VME_2eSST160: temp_ctl |= TSI148_LCSR_OTAT_2eSSTM_160; break; case VME_2eSST267: temp_ctl |= TSI148_LCSR_OTAT_2eSSTM_267; break; case VME_2eSST320: temp_ctl |= TSI148_LCSR_OTAT_2eSSTM_320; break; } /* Setup cycle types */ if (cycle & VME_BLT) { temp_ctl &= ~TSI148_LCSR_OTAT_TM_M; temp_ctl |= TSI148_LCSR_OTAT_TM_BLT; } if (cycle & VME_MBLT) { temp_ctl &= ~TSI148_LCSR_OTAT_TM_M; temp_ctl |= TSI148_LCSR_OTAT_TM_MBLT; } if (cycle & VME_2eVME) { temp_ctl &= ~TSI148_LCSR_OTAT_TM_M; temp_ctl |= TSI148_LCSR_OTAT_TM_2eVME; } if (cycle & VME_2eSST) { temp_ctl &= ~TSI148_LCSR_OTAT_TM_M; temp_ctl |= TSI148_LCSR_OTAT_TM_2eSST; } if (cycle & VME_2eSSTB) { dev_warn(tsi148_bridge->parent, "Currently not setting Broadcast Select Registers\n"); temp_ctl &= ~TSI148_LCSR_OTAT_TM_M; temp_ctl |= TSI148_LCSR_OTAT_TM_2eSSTB; } /* Setup data width */ temp_ctl &= ~TSI148_LCSR_OTAT_DBW_M; switch (dwidth) { case VME_D16: temp_ctl |= TSI148_LCSR_OTAT_DBW_16; break; case VME_D32: temp_ctl |= TSI148_LCSR_OTAT_DBW_32; break; default: spin_unlock(&image->lock); dev_err(tsi148_bridge->parent, "Invalid data width\n"); retval = -EINVAL; goto err_dwidth; } /* Setup address space */ temp_ctl &= ~TSI148_LCSR_OTAT_AMODE_M; switch (aspace) { case VME_A16: temp_ctl |= TSI148_LCSR_OTAT_AMODE_A16; break; case VME_A24: temp_ctl |= TSI148_LCSR_OTAT_AMODE_A24; break; case VME_A32: temp_ctl |= TSI148_LCSR_OTAT_AMODE_A32; break; case VME_A64: temp_ctl |= TSI148_LCSR_OTAT_AMODE_A64; break; case VME_CRCSR: temp_ctl |= TSI148_LCSR_OTAT_AMODE_CRCSR; break; case VME_USER1: temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER1; break; case VME_USER2: temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER2; break; case VME_USER3: temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER3; break; case VME_USER4: temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER4; break; default: spin_unlock(&image->lock); dev_err(tsi148_bridge->parent, "Invalid address space\n"); retval = -EINVAL; goto err_aspace; } temp_ctl &= ~(3 << 4); if (cycle & VME_SUPER) temp_ctl |= TSI148_LCSR_OTAT_SUP; if (cycle & VME_PROG) temp_ctl |= TSI148_LCSR_OTAT_PGM; /* Setup mapping */ iowrite32be(pci_base_high, bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTSAU); iowrite32be(pci_base_low, bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTSAL); iowrite32be(pci_bound_high, bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTEAU); iowrite32be(pci_bound_low, bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTEAL); iowrite32be(vme_offset_high, bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTOFU); iowrite32be(vme_offset_low, bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTOFL); /* Write ctl reg without enable */ iowrite32be(temp_ctl, bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTAT); if (enabled) temp_ctl |= TSI148_LCSR_OTAT_EN; iowrite32be(temp_ctl, bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTAT); spin_unlock(&image->lock); return 0; err_aspace: err_dwidth: err_gran: tsi148_free_resource(image); err_res: err_window: return retval; } /* * Set the attributes of an outbound window. * * XXX Not parsing prefetch information. */ static int __tsi148_master_get(struct vme_master_resource *image, int *enabled, unsigned long long *vme_base, unsigned long long *size, u32 *aspace, u32 *cycle, u32 *dwidth) { unsigned int i, ctl; unsigned int pci_base_low, pci_base_high; unsigned int pci_bound_low, pci_bound_high; unsigned int vme_offset_low, vme_offset_high; unsigned long long pci_base, pci_bound, vme_offset; struct tsi148_driver *bridge; bridge = image->parent->driver_priv; i = image->number; ctl = ioread32be(bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTAT); pci_base_high = ioread32be(bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTSAU); pci_base_low = ioread32be(bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTSAL); pci_bound_high = ioread32be(bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTEAU); pci_bound_low = ioread32be(bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTEAL); vme_offset_high = ioread32be(bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTOFU); vme_offset_low = ioread32be(bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTOFL); /* Convert 64-bit variables to 2x 32-bit variables */ reg_join(pci_base_high, pci_base_low, &pci_base); reg_join(pci_bound_high, pci_bound_low, &pci_bound); reg_join(vme_offset_high, vme_offset_low, &vme_offset); *vme_base = pci_base + vme_offset; *size = (unsigned long long)(pci_bound - pci_base) + 0x10000; *enabled = 0; *aspace = 0; *cycle = 0; *dwidth = 0; if (ctl & TSI148_LCSR_OTAT_EN) *enabled = 1; /* Setup address space */ if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A16) *aspace |= VME_A16; if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A24) *aspace |= VME_A24; if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A32) *aspace |= VME_A32; if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A64) *aspace |= VME_A64; if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_CRCSR) *aspace |= VME_CRCSR; if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER1) *aspace |= VME_USER1; if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER2) *aspace |= VME_USER2; if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER3) *aspace |= VME_USER3; if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER4) *aspace |= VME_USER4; /* Setup 2eSST speeds */ if ((ctl & TSI148_LCSR_OTAT_2eSSTM_M) == TSI148_LCSR_OTAT_2eSSTM_160) *cycle |= VME_2eSST160; if ((ctl & TSI148_LCSR_OTAT_2eSSTM_M) == TSI148_LCSR_OTAT_2eSSTM_267) *cycle |= VME_2eSST267; if ((ctl & TSI148_LCSR_OTAT_2eSSTM_M) == TSI148_LCSR_OTAT_2eSSTM_320) *cycle |= VME_2eSST320; /* Setup cycle types */ if ((ctl & TSI148_LCSR_OTAT_TM_M) == TSI148_LCSR_OTAT_TM_SCT) *cycle |= VME_SCT; if ((ctl & TSI148_LCSR_OTAT_TM_M) == TSI148_LCSR_OTAT_TM_BLT) *cycle |= VME_BLT; if ((ctl & TSI148_LCSR_OTAT_TM_M) == TSI148_LCSR_OTAT_TM_MBLT) *cycle |= VME_MBLT; if ((ctl & TSI148_LCSR_OTAT_TM_M) == TSI148_LCSR_OTAT_TM_2eVME) *cycle |= VME_2eVME; if ((ctl & TSI148_LCSR_OTAT_TM_M) == TSI148_LCSR_OTAT_TM_2eSST) *cycle |= VME_2eSST; if ((ctl & TSI148_LCSR_OTAT_TM_M) == TSI148_LCSR_OTAT_TM_2eSSTB) *cycle |= VME_2eSSTB; if (ctl & TSI148_LCSR_OTAT_SUP) *cycle |= VME_SUPER; else *cycle |= VME_USER; if (ctl & TSI148_LCSR_OTAT_PGM) *cycle |= VME_PROG; else *cycle |= VME_DATA; /* Setup data width */ if ((ctl & TSI148_LCSR_OTAT_DBW_M) == TSI148_LCSR_OTAT_DBW_16) *dwidth = VME_D16; if ((ctl & TSI148_LCSR_OTAT_DBW_M) == TSI148_LCSR_OTAT_DBW_32) *dwidth = VME_D32; return 0; } static int tsi148_master_get(struct vme_master_resource *image, int *enabled, unsigned long long *vme_base, unsigned long long *size, u32 *aspace, u32 *cycle, u32 *dwidth) { int retval; spin_lock(&image->lock); retval = __tsi148_master_get(image, enabled, vme_base, size, aspace, cycle, dwidth); spin_unlock(&image->lock); return retval; } static ssize_t tsi148_master_read(struct vme_master_resource *image, void *buf, size_t count, loff_t offset) { int retval, enabled; unsigned long long vme_base, size; u32 aspace, cycle, dwidth; struct vme_error_handler *handler = NULL; struct vme_bridge *tsi148_bridge; void __iomem *addr = image->kern_base + offset; unsigned int done = 0; unsigned int count32; tsi148_bridge = image->parent; spin_lock(&image->lock); if (err_chk) { __tsi148_master_get(image, &enabled, &vme_base, &size, &aspace, &cycle, &dwidth); handler = vme_register_error_handler(tsi148_bridge, aspace, vme_base + offset, count); if (!handler) { spin_unlock(&image->lock); return -ENOMEM; } } /* The following code handles VME address alignment. We cannot use * memcpy_xxx here because it may cut data transfers in to 8-bit * cycles when D16 or D32 cycles are required on the VME bus. * On the other hand, the bridge itself assures that the maximum data * cycle configured for the transfer is used and splits it * automatically for non-aligned addresses, so we don't want the * overhead of needlessly forcing small transfers for the entire cycle. */ if ((uintptr_t)addr & 0x1) { *(u8 *)buf = ioread8(addr); done += 1; if (done == count) goto out; } if ((uintptr_t)(addr + done) & 0x2) { if ((count - done) < 2) { *(u8 *)(buf + done) = ioread8(addr + done); done += 1; goto out; } else { *(u16 *)(buf + done) = ioread16(addr + done); done += 2; } } count32 = (count - done) & ~0x3; while (done < count32) { *(u32 *)(buf + done) = ioread32(addr + done); done += 4; } if ((count - done) & 0x2) { *(u16 *)(buf + done) = ioread16(addr + done); done += 2; } if ((count - done) & 0x1) { *(u8 *)(buf + done) = ioread8(addr + done); done += 1; } out: retval = count; if (err_chk) { if (handler->num_errors) { dev_err(image->parent->parent, "First VME read error detected an at address 0x%llx\n", handler->first_error); retval = handler->first_error - (vme_base + offset); } vme_unregister_error_handler(handler); } spin_unlock(&image->lock); return retval; } static ssize_t tsi148_master_write(struct vme_master_resource *image, void *buf, size_t count, loff_t offset) { int retval = 0, enabled; unsigned long long vme_base, size; u32 aspace, cycle, dwidth; void __iomem *addr = image->kern_base + offset; unsigned int done = 0; unsigned int count32; struct vme_error_handler *handler = NULL; struct vme_bridge *tsi148_bridge; struct tsi148_driver *bridge; tsi148_bridge = image->parent; bridge = tsi148_bridge->driver_priv; spin_lock(&image->lock); if (err_chk) { __tsi148_master_get(image, &enabled, &vme_base, &size, &aspace, &cycle, &dwidth); handler = vme_register_error_handler(tsi148_bridge, aspace, vme_base + offset, count); if (!handler) { spin_unlock(&image->lock); return -ENOMEM; } } /* Here we apply for the same strategy we do in master_read * function in order to assure the correct cycles. */ if ((uintptr_t)addr & 0x1) { iowrite8(*(u8 *)buf, addr); done += 1; if (done == count) goto out; } if ((uintptr_t)(addr + done) & 0x2) { if ((count - done) < 2) { iowrite8(*(u8 *)(buf + done), addr + done); done += 1; goto out; } else { iowrite16(*(u16 *)(buf + done), addr + done); done += 2; } } count32 = (count - done) & ~0x3; while (done < count32) { iowrite32(*(u32 *)(buf + done), addr + done); done += 4; } if ((count - done) & 0x2) { iowrite16(*(u16 *)(buf + done), addr + done); done += 2; } if ((count - done) & 0x1) { iowrite8(*(u8 *)(buf + done), addr + done); done += 1; } out: retval = count; /* * Writes are posted. We need to do a read on the VME bus to flush out * all of the writes before we check for errors. We can't guarantee * that reading the data we have just written is safe. It is believed * that there isn't any read, write re-ordering, so we can read any * location in VME space, so lets read the Device ID from the tsi148's * own registers as mapped into CR/CSR space. * * We check for saved errors in the written address range/space. */ if (err_chk) { ioread16(bridge->flush_image->kern_base + 0x7F000); if (handler->num_errors) { dev_warn(tsi148_bridge->parent, "First VME write error detected an at address 0x%llx\n", handler->first_error); retval = handler->first_error - (vme_base + offset); } vme_unregister_error_handler(handler); } spin_unlock(&image->lock); return retval; } /* * Perform an RMW cycle on the VME bus. * * Requires a previously configured master window, returns final value. */ static unsigned int tsi148_master_rmw(struct vme_master_resource *image, unsigned int mask, unsigned int compare, unsigned int swap, loff_t offset) { unsigned long long pci_addr; unsigned int pci_addr_high, pci_addr_low; u32 tmp, result; int i; struct tsi148_driver *bridge; bridge = image->parent->driver_priv; /* Find the PCI address that maps to the desired VME address */ i = image->number; /* Locking as we can only do one of these at a time */ mutex_lock(&bridge->vme_rmw); /* Lock image */ spin_lock(&image->lock); pci_addr_high = ioread32be(bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTSAU); pci_addr_low = ioread32be(bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTSAL); reg_join(pci_addr_high, pci_addr_low, &pci_addr); reg_split(pci_addr + offset, &pci_addr_high, &pci_addr_low); /* Configure registers */ iowrite32be(mask, bridge->base + TSI148_LCSR_RMWEN); iowrite32be(compare, bridge->base + TSI148_LCSR_RMWC); iowrite32be(swap, bridge->base + TSI148_LCSR_RMWS); iowrite32be(pci_addr_high, bridge->base + TSI148_LCSR_RMWAU); iowrite32be(pci_addr_low, bridge->base + TSI148_LCSR_RMWAL); /* Enable RMW */ tmp = ioread32be(bridge->base + TSI148_LCSR_VMCTRL); tmp |= TSI148_LCSR_VMCTRL_RMWEN; iowrite32be(tmp, bridge->base + TSI148_LCSR_VMCTRL); /* Kick process off with a read to the required address. */ result = ioread32be(image->kern_base + offset); /* Disable RMW */ tmp = ioread32be(bridge->base + TSI148_LCSR_VMCTRL); tmp &= ~TSI148_LCSR_VMCTRL_RMWEN; iowrite32be(tmp, bridge->base + TSI148_LCSR_VMCTRL); spin_unlock(&image->lock); mutex_unlock(&bridge->vme_rmw); return result; } static int tsi148_dma_set_vme_src_attributes(struct device *dev, __be32 *attr, u32 aspace, u32 cycle, u32 dwidth) { u32 val; val = be32_to_cpu(*attr); /* Setup 2eSST speeds */ switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) { case VME_2eSST160: val |= TSI148_LCSR_DSAT_2eSSTM_160; break; case VME_2eSST267: val |= TSI148_LCSR_DSAT_2eSSTM_267; break; case VME_2eSST320: val |= TSI148_LCSR_DSAT_2eSSTM_320; break; } /* Setup cycle types */ if (cycle & VME_SCT) val |= TSI148_LCSR_DSAT_TM_SCT; if (cycle & VME_BLT) val |= TSI148_LCSR_DSAT_TM_BLT; if (cycle & VME_MBLT) val |= TSI148_LCSR_DSAT_TM_MBLT; if (cycle & VME_2eVME) val |= TSI148_LCSR_DSAT_TM_2eVME; if (cycle & VME_2eSST) val |= TSI148_LCSR_DSAT_TM_2eSST; if (cycle & VME_2eSSTB) { dev_err(dev, "Currently not setting Broadcast Select Registers\n"); val |= TSI148_LCSR_DSAT_TM_2eSSTB; } /* Setup data width */ switch (dwidth) { case VME_D16: val |= TSI148_LCSR_DSAT_DBW_16; break; case VME_D32: val |= TSI148_LCSR_DSAT_DBW_32; break; default: dev_err(dev, "Invalid data width\n"); return -EINVAL; } /* Setup address space */ switch (aspace) { case VME_A16: val |= TSI148_LCSR_DSAT_AMODE_A16; break; case VME_A24: val |= TSI148_LCSR_DSAT_AMODE_A24; break; case VME_A32: val |= TSI148_LCSR_DSAT_AMODE_A32; break; case VME_A64: val |= TSI148_LCSR_DSAT_AMODE_A64; break; case VME_CRCSR: val |= TSI148_LCSR_DSAT_AMODE_CRCSR; break; case VME_USER1: val |= TSI148_LCSR_DSAT_AMODE_USER1; break; case VME_USER2: val |= TSI148_LCSR_DSAT_AMODE_USER2; break; case VME_USER3: val |= TSI148_LCSR_DSAT_AMODE_USER3; break; case VME_USER4: val |= TSI148_LCSR_DSAT_AMODE_USER4; break; default: dev_err(dev, "Invalid address space\n"); return -EINVAL; } if (cycle & VME_SUPER) val |= TSI148_LCSR_DSAT_SUP; if (cycle & VME_PROG) val |= TSI148_LCSR_DSAT_PGM; *attr = cpu_to_be32(val); return 0; } static int tsi148_dma_set_vme_dest_attributes(struct device *dev, __be32 *attr, u32 aspace, u32 cycle, u32 dwidth) { u32 val; val = be32_to_cpu(*attr); /* Setup 2eSST speeds */ switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) { case VME_2eSST160: val |= TSI148_LCSR_DDAT_2eSSTM_160; break; case VME_2eSST267: val |= TSI148_LCSR_DDAT_2eSSTM_267; break; case VME_2eSST320: val |= TSI148_LCSR_DDAT_2eSSTM_320; break; } /* Setup cycle types */ if (cycle & VME_SCT) val |= TSI148_LCSR_DDAT_TM_SCT; if (cycle & VME_BLT) val |= TSI148_LCSR_DDAT_TM_BLT; if (cycle & VME_MBLT) val |= TSI148_LCSR_DDAT_TM_MBLT; if (cycle & VME_2eVME) val |= TSI148_LCSR_DDAT_TM_2eVME; if (cycle & VME_2eSST) val |= TSI148_LCSR_DDAT_TM_2eSST; if (cycle & VME_2eSSTB) { dev_err(dev, "Currently not setting Broadcast Select Registers\n"); val |= TSI148_LCSR_DDAT_TM_2eSSTB; } /* Setup data width */ switch (dwidth) { case VME_D16: val |= TSI148_LCSR_DDAT_DBW_16; break; case VME_D32: val |= TSI148_LCSR_DDAT_DBW_32; break; default: dev_err(dev, "Invalid data width\n"); return -EINVAL; } /* Setup address space */ switch (aspace) { case VME_A16: val |= TSI148_LCSR_DDAT_AMODE_A16; break; case VME_A24: val |= TSI148_LCSR_DDAT_AMODE_A24; break; case VME_A32: val |= TSI148_LCSR_DDAT_AMODE_A32; break; case VME_A64: val |= TSI148_LCSR_DDAT_AMODE_A64; break; case VME_CRCSR: val |= TSI148_LCSR_DDAT_AMODE_CRCSR; break; case VME_USER1: val |= TSI148_LCSR_DDAT_AMODE_USER1; break; case VME_USER2: val |= TSI148_LCSR_DDAT_AMODE_USER2; break; case VME_USER3: val |= TSI148_LCSR_DDAT_AMODE_USER3; break; case VME_USER4: val |= TSI148_LCSR_DDAT_AMODE_USER4; break; default: dev_err(dev, "Invalid address space\n"); return -EINVAL; } if (cycle & VME_SUPER) val |= TSI148_LCSR_DDAT_SUP; if (cycle & VME_PROG) val |= TSI148_LCSR_DDAT_PGM; *attr = cpu_to_be32(val); return 0; } /* * Add a link list descriptor to the list * * Note: DMA engine expects the DMA descriptor to be big endian. */ static int tsi148_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src, struct vme_dma_attr *dest, size_t count) { struct tsi148_dma_entry *entry, *prev; u32 address_high, address_low, val; struct vme_dma_pattern *pattern_attr; struct vme_dma_pci *pci_attr; struct vme_dma_vme *vme_attr; int retval = 0; struct vme_bridge *tsi148_bridge; tsi148_bridge = list->parent->parent; /* Descriptor must be aligned on 64-bit boundaries */ entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { retval = -ENOMEM; goto err_mem; } /* Test descriptor alignment */ if ((unsigned long)&entry->descriptor & 0x7) { dev_err(tsi148_bridge->parent, "Descriptor not aligned to 8 byte boundary as required: %p\n", &entry->descriptor); retval = -EINVAL; goto err_align; } /* Given we are going to fill out the structure, we probably don't * need to zero it, but better safe than sorry for now. */ memset(&entry->descriptor, 0, sizeof(entry->descriptor)); /* Fill out source part */ switch (src->type) { case VME_DMA_PATTERN: pattern_attr = src->private; entry->descriptor.dsal = cpu_to_be32(pattern_attr->pattern); val = TSI148_LCSR_DSAT_TYP_PAT; /* Default behaviour is 32 bit pattern */ if (pattern_attr->type & VME_DMA_PATTERN_BYTE) val |= TSI148_LCSR_DSAT_PSZ; /* It seems that the default behaviour is to increment */ if ((pattern_attr->type & VME_DMA_PATTERN_INCREMENT) == 0) val |= TSI148_LCSR_DSAT_NIN; entry->descriptor.dsat = cpu_to_be32(val); break; case VME_DMA_PCI: pci_attr = src->private; reg_split((unsigned long long)pci_attr->address, &address_high, &address_low); entry->descriptor.dsau = cpu_to_be32(address_high); entry->descriptor.dsal = cpu_to_be32(address_low); entry->descriptor.dsat = cpu_to_be32(TSI148_LCSR_DSAT_TYP_PCI); break; case VME_DMA_VME: vme_attr = src->private; reg_split((unsigned long long)vme_attr->address, &address_high, &address_low); entry->descriptor.dsau = cpu_to_be32(address_high); entry->descriptor.dsal = cpu_to_be32(address_low); entry->descriptor.dsat = cpu_to_be32(TSI148_LCSR_DSAT_TYP_VME); retval = tsi148_dma_set_vme_src_attributes(tsi148_bridge->parent, &entry->descriptor.dsat, vme_attr->aspace, vme_attr->cycle, vme_attr->dwidth); if (retval < 0) goto err_source; break; default: dev_err(tsi148_bridge->parent, "Invalid source type\n"); retval = -EINVAL; goto err_source; } /* Assume last link - this will be over-written by adding another */ entry->descriptor.dnlau = cpu_to_be32(0); entry->descriptor.dnlal = cpu_to_be32(TSI148_LCSR_DNLAL_LLA); /* Fill out destination part */ switch (dest->type) { case VME_DMA_PCI: pci_attr = dest->private; reg_split((unsigned long long)pci_attr->address, &address_high, &address_low); entry->descriptor.ddau = cpu_to_be32(address_high); entry->descriptor.ddal = cpu_to_be32(address_low); entry->descriptor.ddat = cpu_to_be32(TSI148_LCSR_DDAT_TYP_PCI); break; case VME_DMA_VME: vme_attr = dest->private; reg_split((unsigned long long)vme_attr->address, &address_high, &address_low); entry->descriptor.ddau = cpu_to_be32(address_high); entry->descriptor.ddal = cpu_to_be32(address_low); entry->descriptor.ddat = cpu_to_be32(TSI148_LCSR_DDAT_TYP_VME); retval = tsi148_dma_set_vme_dest_attributes(tsi148_bridge->parent, &entry->descriptor.ddat, vme_attr->aspace, vme_attr->cycle, vme_attr->dwidth); if (retval < 0) goto err_dest; break; default: dev_err(tsi148_bridge->parent, "Invalid destination type\n"); retval = -EINVAL; goto err_dest; } /* Fill out count */ entry->descriptor.dcnt = cpu_to_be32((u32)count); /* Add to list */ list_add_tail(&entry->list, &list->entries); entry->dma_handle = dma_map_single(tsi148_bridge->parent, &entry->descriptor, sizeof(entry->descriptor), DMA_TO_DEVICE); if (dma_mapping_error(tsi148_bridge->parent, entry->dma_handle)) { dev_err(tsi148_bridge->parent, "DMA mapping error\n"); retval = -EINVAL; goto err_dma; } /* Fill out previous descriptors "Next Address" */ if (entry->list.prev != &list->entries) { reg_split((unsigned long long)entry->dma_handle, &address_high, &address_low); prev = list_entry(entry->list.prev, struct tsi148_dma_entry, list); prev->descriptor.dnlau = cpu_to_be32(address_high); prev->descriptor.dnlal = cpu_to_be32(address_low); } return 0; err_dma: list_del(&entry->list); err_dest: err_source: err_align: kfree(entry); err_mem: return retval; } /* * Check to see if the provided DMA channel is busy. */ static int tsi148_dma_busy(struct vme_bridge *tsi148_bridge, int channel) { u32 tmp; struct tsi148_driver *bridge; bridge = tsi148_bridge->driver_priv; tmp = ioread32be(bridge->base + TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DSTA); if (tmp & TSI148_LCSR_DSTA_BSY) return 0; else return 1; } /* * Execute a previously generated link list * * XXX Need to provide control register configuration. */ static int tsi148_dma_list_exec(struct vme_dma_list *list) { struct vme_dma_resource *ctrlr; int channel, retval; struct tsi148_dma_entry *entry; u32 bus_addr_high, bus_addr_low; u32 val, dctlreg = 0; struct vme_bridge *tsi148_bridge; struct tsi148_driver *bridge; ctrlr = list->parent; tsi148_bridge = ctrlr->parent; bridge = tsi148_bridge->driver_priv; mutex_lock(&ctrlr->mtx); channel = ctrlr->number; if (!list_empty(&ctrlr->running)) { /* * XXX We have an active DMA transfer and currently haven't * sorted out the mechanism for "pending" DMA transfers. * Return busy. */ /* Need to add to pending here */ mutex_unlock(&ctrlr->mtx); return -EBUSY; } list_add(&list->list, &ctrlr->running); /* Get first bus address and write into registers */ entry = list_first_entry(&list->entries, struct tsi148_dma_entry, list); mutex_unlock(&ctrlr->mtx); reg_split(entry->dma_handle, &bus_addr_high, &bus_addr_low); iowrite32be(bus_addr_high, bridge->base + TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DNLAU); iowrite32be(bus_addr_low, bridge->base + TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DNLAL); dctlreg = ioread32be(bridge->base + TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DCTL); /* Start the operation */ iowrite32be(dctlreg | TSI148_LCSR_DCTL_DGO, bridge->base + TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DCTL); retval = wait_event_interruptible(bridge->dma_queue[channel], tsi148_dma_busy(ctrlr->parent, channel)); if (retval) { iowrite32be(dctlreg | TSI148_LCSR_DCTL_ABT, bridge->base + TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DCTL); /* Wait for the operation to abort */ wait_event(bridge->dma_queue[channel], tsi148_dma_busy(ctrlr->parent, channel)); retval = -EINTR; goto exit; } /* * Read status register, this register is valid until we kick off a * new transfer. */ val = ioread32be(bridge->base + TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DSTA); if (val & TSI148_LCSR_DSTA_VBE) { dev_err(tsi148_bridge->parent, "DMA Error. DSTA=%08X\n", val); retval = -EIO; } exit: /* Remove list from running list */ mutex_lock(&ctrlr->mtx); list_del(&list->list); mutex_unlock(&ctrlr->mtx); return retval; } /* * Clean up a previously generated link list * * We have a separate function, don't assume that the chain can't be reused. */ static int tsi148_dma_list_empty(struct vme_dma_list *list) { struct list_head *pos, *temp; struct tsi148_dma_entry *entry; struct vme_bridge *tsi148_bridge = list->parent->parent; /* detach and free each entry */ list_for_each_safe(pos, temp, &list->entries) { list_del(pos); entry = list_entry(pos, struct tsi148_dma_entry, list); dma_unmap_single(tsi148_bridge->parent, entry->dma_handle, sizeof(struct tsi148_dma_descriptor), DMA_TO_DEVICE); kfree(entry); } return 0; } /* * All 4 location monitors reside at the same base - this is therefore a * system wide configuration. * * This does not enable the LM monitor - that should be done when the first * callback is attached and disabled when the last callback is removed. */ static int tsi148_lm_set(struct vme_lm_resource *lm, unsigned long long lm_base, u32 aspace, u32 cycle) { u32 lm_base_high, lm_base_low, lm_ctl = 0; int i; struct vme_bridge *tsi148_bridge; struct tsi148_driver *bridge; tsi148_bridge = lm->parent; bridge = tsi148_bridge->driver_priv; mutex_lock(&lm->mtx); /* If we already have a callback attached, we can't move it! */ for (i = 0; i < lm->monitors; i++) { if (bridge->lm_callback[i]) { mutex_unlock(&lm->mtx); dev_err(tsi148_bridge->parent, "Location monitor callback attached, can't reset\n"); return -EBUSY; } } switch (aspace) { case VME_A16: lm_ctl |= TSI148_LCSR_LMAT_AS_A16; break; case VME_A24: lm_ctl |= TSI148_LCSR_LMAT_AS_A24; break; case VME_A32: lm_ctl |= TSI148_LCSR_LMAT_AS_A32; break; case VME_A64: lm_ctl |= TSI148_LCSR_LMAT_AS_A64; break; default: mutex_unlock(&lm->mtx); dev_err(tsi148_bridge->parent, "Invalid address space\n"); return -EINVAL; } if (cycle & VME_SUPER) lm_ctl |= TSI148_LCSR_LMAT_SUPR; if (cycle & VME_USER) lm_ctl |= TSI148_LCSR_LMAT_NPRIV; if (cycle & VME_PROG) lm_ctl |= TSI148_LCSR_LMAT_PGM; if (cycle & VME_DATA) lm_ctl |= TSI148_LCSR_LMAT_DATA; reg_split(lm_base, &lm_base_high, &lm_base_low); iowrite32be(lm_base_high, bridge->base + TSI148_LCSR_LMBAU); iowrite32be(lm_base_low, bridge->base + TSI148_LCSR_LMBAL); iowrite32be(lm_ctl, bridge->base + TSI148_LCSR_LMAT); mutex_unlock(&lm->mtx); return 0; } /* Get configuration of the callback monitor and return whether it is enabled * or disabled. */ static int tsi148_lm_get(struct vme_lm_resource *lm, unsigned long long *lm_base, u32 *aspace, u32 *cycle) { u32 lm_base_high, lm_base_low, lm_ctl, enabled = 0; struct tsi148_driver *bridge; bridge = lm->parent->driver_priv; mutex_lock(&lm->mtx); lm_base_high = ioread32be(bridge->base + TSI148_LCSR_LMBAU); lm_base_low = ioread32be(bridge->base + TSI148_LCSR_LMBAL); lm_ctl = ioread32be(bridge->base + TSI148_LCSR_LMAT); reg_join(lm_base_high, lm_base_low, lm_base); if (lm_ctl & TSI148_LCSR_LMAT_EN) enabled = 1; if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A16) *aspace |= VME_A16; if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A24) *aspace |= VME_A24; if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A32) *aspace |= VME_A32; if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A64) *aspace |= VME_A64; if (lm_ctl & TSI148_LCSR_LMAT_SUPR) *cycle |= VME_SUPER; if (lm_ctl & TSI148_LCSR_LMAT_NPRIV) *cycle |= VME_USER; if (lm_ctl & TSI148_LCSR_LMAT_PGM) *cycle |= VME_PROG; if (lm_ctl & TSI148_LCSR_LMAT_DATA) *cycle |= VME_DATA; mutex_unlock(&lm->mtx); return enabled; } /* * Attach a callback to a specific location monitor. * * Callback will be passed the monitor triggered. */ static int tsi148_lm_attach(struct vme_lm_resource *lm, int monitor, void (*callback)(void *), void *data) { u32 lm_ctl, tmp; struct vme_bridge *tsi148_bridge; struct tsi148_driver *bridge; tsi148_bridge = lm->parent; bridge = tsi148_bridge->driver_priv; mutex_lock(&lm->mtx); /* Ensure that the location monitor is configured - need PGM or DATA */ lm_ctl = ioread32be(bridge->base + TSI148_LCSR_LMAT); if ((lm_ctl & (TSI148_LCSR_LMAT_PGM | TSI148_LCSR_LMAT_DATA)) == 0) { mutex_unlock(&lm->mtx); dev_err(tsi148_bridge->parent, "Location monitor not properly configured\n"); return -EINVAL; } /* Check that a callback isn't already attached */ if (bridge->lm_callback[monitor]) { mutex_unlock(&lm->mtx); dev_err(tsi148_bridge->parent, "Existing callback attached\n"); return -EBUSY; } /* Attach callback */ bridge->lm_callback[monitor] = callback; bridge->lm_data[monitor] = data; /* Enable Location Monitor interrupt */ tmp = ioread32be(bridge->base + TSI148_LCSR_INTEN); tmp |= TSI148_LCSR_INTEN_LMEN[monitor]; iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEN); tmp = ioread32be(bridge->base + TSI148_LCSR_INTEO); tmp |= TSI148_LCSR_INTEO_LMEO[monitor]; iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEO); /* Ensure that global Location Monitor Enable set */ if ((lm_ctl & TSI148_LCSR_LMAT_EN) == 0) { lm_ctl |= TSI148_LCSR_LMAT_EN; iowrite32be(lm_ctl, bridge->base + TSI148_LCSR_LMAT); } mutex_unlock(&lm->mtx); return 0; } /* * Detach a callback function forn a specific location monitor. */ static int tsi148_lm_detach(struct vme_lm_resource *lm, int monitor) { u32 lm_en, tmp; struct tsi148_driver *bridge; bridge = lm->parent->driver_priv; mutex_lock(&lm->mtx); /* Disable Location Monitor and ensure previous interrupts are clear */ lm_en = ioread32be(bridge->base + TSI148_LCSR_INTEN); lm_en &= ~TSI148_LCSR_INTEN_LMEN[monitor]; iowrite32be(lm_en, bridge->base + TSI148_LCSR_INTEN); tmp = ioread32be(bridge->base + TSI148_LCSR_INTEO); tmp &= ~TSI148_LCSR_INTEO_LMEO[monitor]; iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEO); iowrite32be(TSI148_LCSR_INTC_LMC[monitor], bridge->base + TSI148_LCSR_INTC); /* Detach callback */ bridge->lm_callback[monitor] = NULL; bridge->lm_data[monitor] = NULL; /* If all location monitors disabled, disable global Location Monitor */ if ((lm_en & (TSI148_LCSR_INTS_LM0S | TSI148_LCSR_INTS_LM1S | TSI148_LCSR_INTS_LM2S | TSI148_LCSR_INTS_LM3S)) == 0) { tmp = ioread32be(bridge->base + TSI148_LCSR_LMAT); tmp &= ~TSI148_LCSR_LMAT_EN; iowrite32be(tmp, bridge->base + TSI148_LCSR_LMAT); } mutex_unlock(&lm->mtx); return 0; } /* * Determine Geographical Addressing */ static int tsi148_slot_get(struct vme_bridge *tsi148_bridge) { u32 slot = 0; struct tsi148_driver *bridge; bridge = tsi148_bridge->driver_priv; if (!geoid) { slot = ioread32be(bridge->base + TSI148_LCSR_VSTAT); slot = slot & TSI148_LCSR_VSTAT_GA_M; } else { slot = geoid; } return (int)slot; } static void *tsi148_alloc_consistent(struct device *parent, size_t size, dma_addr_t *dma) { struct pci_dev *pdev; /* Find pci_dev container of dev */ pdev = to_pci_dev(parent); return dma_alloc_coherent(&pdev->dev, size, dma, GFP_KERNEL); } static void tsi148_free_consistent(struct device *parent, size_t size, void *vaddr, dma_addr_t dma) { struct pci_dev *pdev; /* Find pci_dev container of dev */ pdev = to_pci_dev(parent); dma_free_coherent(&pdev->dev, size, vaddr, dma); } /* * Configure CR/CSR space * * Access to the CR/CSR can be configured at power-up. The location of the * CR/CSR registers in the CR/CSR address space is determined by the boards * Auto-ID or Geographic address. This function ensures that the window is * enabled at an offset consistent with the boards geopgraphic address. * * Each board has a 512kB window, with the highest 4kB being used for the * boards registers, this means there is a fix length 508kB window which must * be mapped onto PCI memory. */ static int tsi148_crcsr_init(struct vme_bridge *tsi148_bridge, struct pci_dev *pdev) { u32 cbar, crat, vstat; u32 crcsr_bus_high, crcsr_bus_low; int retval; struct tsi148_driver *bridge; bridge = tsi148_bridge->driver_priv; /* Allocate mem for CR/CSR image */ bridge->crcsr_kernel = dma_alloc_coherent(&pdev->dev, VME_CRCSR_BUF_SIZE, &bridge->crcsr_bus, GFP_KERNEL); if (!bridge->crcsr_kernel) { dev_err(tsi148_bridge->parent, "Failed to allocate memory for CR/CSR image\n"); return -ENOMEM; } reg_split(bridge->crcsr_bus, &crcsr_bus_high, &crcsr_bus_low); iowrite32be(crcsr_bus_high, bridge->base + TSI148_LCSR_CROU); iowrite32be(crcsr_bus_low, bridge->base + TSI148_LCSR_CROL); /* Ensure that the CR/CSR is configured at the correct offset */ cbar = ioread32be(bridge->base + TSI148_CBAR); cbar = (cbar & TSI148_CRCSR_CBAR_M) >> 3; vstat = tsi148_slot_get(tsi148_bridge); if (cbar != vstat) { cbar = vstat; dev_info(tsi148_bridge->parent, "Setting CR/CSR offset\n"); iowrite32be(cbar << 3, bridge->base + TSI148_CBAR); } dev_info(tsi148_bridge->parent, "CR/CSR Offset: %d\n", cbar); crat = ioread32be(bridge->base + TSI148_LCSR_CRAT); if (crat & TSI148_LCSR_CRAT_EN) { dev_info(tsi148_bridge->parent, "CR/CSR already enabled\n"); } else { dev_info(tsi148_bridge->parent, "Enabling CR/CSR space\n"); iowrite32be(crat | TSI148_LCSR_CRAT_EN, bridge->base + TSI148_LCSR_CRAT); } /* If we want flushed, error-checked writes, set up a window * over the CR/CSR registers. We read from here to safely flush * through VME writes. */ if (err_chk) { retval = tsi148_master_set(bridge->flush_image, 1, (vstat * 0x80000), 0x80000, VME_CRCSR, VME_SCT, VME_D16); if (retval) dev_err(tsi148_bridge->parent, "Configuring flush image failed\n"); } return 0; } static void tsi148_crcsr_exit(struct vme_bridge *tsi148_bridge, struct pci_dev *pdev) { u32 crat; struct tsi148_driver *bridge; bridge = tsi148_bridge->driver_priv; /* Turn off CR/CSR space */ crat = ioread32be(bridge->base + TSI148_LCSR_CRAT); iowrite32be(crat & ~TSI148_LCSR_CRAT_EN, bridge->base + TSI148_LCSR_CRAT); /* Free image */ iowrite32be(0, bridge->base + TSI148_LCSR_CROU); iowrite32be(0, bridge->base + TSI148_LCSR_CROL); dma_free_coherent(&pdev->dev, VME_CRCSR_BUF_SIZE, bridge->crcsr_kernel, bridge->crcsr_bus); } static int tsi148_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int retval, i, master_num; u32 data; struct list_head *pos = NULL, *n; struct vme_bridge *tsi148_bridge; struct tsi148_driver *tsi148_device; struct vme_master_resource *master_image; struct vme_slave_resource *slave_image; struct vme_dma_resource *dma_ctrlr; struct vme_lm_resource *lm; if (geoid >= VME_MAX_SLOTS) { dev_err(&pdev->dev, "VME geographical address must be between 0 and %d (exclusive), but got %d\n", VME_MAX_SLOTS, geoid); return -EINVAL; } /* If we want to support more than one of each bridge, we need to * dynamically generate this so we get one per device */ tsi148_bridge = kzalloc(sizeof(*tsi148_bridge), GFP_KERNEL); if (!tsi148_bridge) { retval = -ENOMEM; goto err_struct; } vme_init_bridge(tsi148_bridge); tsi148_device = kzalloc(sizeof(*tsi148_device), GFP_KERNEL); if (!tsi148_device) { retval = -ENOMEM; goto err_driver; } tsi148_bridge->driver_priv = tsi148_device; /* Enable the device */ retval = pci_enable_device(pdev); if (retval) { dev_err(&pdev->dev, "Unable to enable device\n"); goto err_enable; } /* Map Registers */ retval = pci_request_regions(pdev, driver_name); if (retval) { dev_err(&pdev->dev, "Unable to reserve resources\n"); goto err_resource; } /* map registers in BAR 0 */ tsi148_device->base = ioremap(pci_resource_start(pdev, 0), 4096); if (!tsi148_device->base) { dev_err(&pdev->dev, "Unable to remap CRG region\n"); retval = -EIO; goto err_remap; } /* Check to see if the mapping worked out */ data = ioread32(tsi148_device->base + TSI148_PCFS_ID) & 0x0000FFFF; if (data != PCI_VENDOR_ID_TUNDRA) { dev_err(&pdev->dev, "CRG region check failed\n"); retval = -EIO; goto err_test; } /* Initialize wait queues & mutual exclusion flags */ init_waitqueue_head(&tsi148_device->dma_queue[0]); init_waitqueue_head(&tsi148_device->dma_queue[1]); init_waitqueue_head(&tsi148_device->iack_queue); mutex_init(&tsi148_device->vme_int); mutex_init(&tsi148_device->vme_rmw); tsi148_bridge->parent = &pdev->dev; strscpy(tsi148_bridge->name, driver_name, VMENAMSIZ); /* Setup IRQ */ retval = tsi148_irq_init(tsi148_bridge); if (retval != 0) { dev_err(&pdev->dev, "Chip Initialization failed.\n"); goto err_irq; } /* If we are going to flush writes, we need to read from the VME bus. * We need to do this safely, thus we read the devices own CR/CSR * register. To do this we must set up a window in CR/CSR space and * hence have one less master window resource available. */ master_num = TSI148_MAX_MASTER; if (err_chk) { master_num--; tsi148_device->flush_image = kmalloc(sizeof(*tsi148_device->flush_image), GFP_KERNEL); if (!tsi148_device->flush_image) { retval = -ENOMEM; goto err_master; } tsi148_device->flush_image->parent = tsi148_bridge; spin_lock_init(&tsi148_device->flush_image->lock); tsi148_device->flush_image->locked = 1; tsi148_device->flush_image->number = master_num; memset(&tsi148_device->flush_image->bus_resource, 0, sizeof(tsi148_device->flush_image->bus_resource)); tsi148_device->flush_image->kern_base = NULL; } /* Add master windows to list */ for (i = 0; i < master_num; i++) { master_image = kmalloc(sizeof(*master_image), GFP_KERNEL); if (!master_image) { retval = -ENOMEM; goto err_master; } master_image->parent = tsi148_bridge; spin_lock_init(&master_image->lock); master_image->locked = 0; master_image->number = i; master_image->address_attr = VME_A16 | VME_A24 | VME_A32 | VME_A64 | VME_CRCSR | VME_USER1 | VME_USER2 | VME_USER3 | VME_USER4; master_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT | VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 | VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER | VME_PROG | VME_DATA; master_image->width_attr = VME_D16 | VME_D32; memset(&master_image->bus_resource, 0, sizeof(master_image->bus_resource)); master_image->kern_base = NULL; list_add_tail(&master_image->list, &tsi148_bridge->master_resources); } /* Add slave windows to list */ for (i = 0; i < TSI148_MAX_SLAVE; i++) { slave_image = kmalloc(sizeof(*slave_image), GFP_KERNEL); if (!slave_image) { retval = -ENOMEM; goto err_slave; } slave_image->parent = tsi148_bridge; mutex_init(&slave_image->mtx); slave_image->locked = 0; slave_image->number = i; slave_image->address_attr = VME_A16 | VME_A24 | VME_A32 | VME_A64; slave_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT | VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 | VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER | VME_PROG | VME_DATA; list_add_tail(&slave_image->list, &tsi148_bridge->slave_resources); } /* Add dma engines to list */ for (i = 0; i < TSI148_MAX_DMA; i++) { dma_ctrlr = kmalloc(sizeof(*dma_ctrlr), GFP_KERNEL); if (!dma_ctrlr) { retval = -ENOMEM; goto err_dma; } dma_ctrlr->parent = tsi148_bridge; mutex_init(&dma_ctrlr->mtx); dma_ctrlr->locked = 0; dma_ctrlr->number = i; dma_ctrlr->route_attr = VME_DMA_VME_TO_MEM | VME_DMA_MEM_TO_VME | VME_DMA_VME_TO_VME | VME_DMA_MEM_TO_MEM | VME_DMA_PATTERN_TO_VME | VME_DMA_PATTERN_TO_MEM; INIT_LIST_HEAD(&dma_ctrlr->pending); INIT_LIST_HEAD(&dma_ctrlr->running); list_add_tail(&dma_ctrlr->list, &tsi148_bridge->dma_resources); } /* Add location monitor to list */ lm = kmalloc(sizeof(*lm), GFP_KERNEL); if (!lm) { retval = -ENOMEM; goto err_lm; } lm->parent = tsi148_bridge; mutex_init(&lm->mtx); lm->locked = 0; lm->number = 1; lm->monitors = 4; list_add_tail(&lm->list, &tsi148_bridge->lm_resources); tsi148_bridge->slave_get = tsi148_slave_get; tsi148_bridge->slave_set = tsi148_slave_set; tsi148_bridge->master_get = tsi148_master_get; tsi148_bridge->master_set = tsi148_master_set; tsi148_bridge->master_read = tsi148_master_read; tsi148_bridge->master_write = tsi148_master_write; tsi148_bridge->master_rmw = tsi148_master_rmw; tsi148_bridge->dma_list_add = tsi148_dma_list_add; tsi148_bridge->dma_list_exec = tsi148_dma_list_exec; tsi148_bridge->dma_list_empty = tsi148_dma_list_empty; tsi148_bridge->irq_set = tsi148_irq_set; tsi148_bridge->irq_generate = tsi148_irq_generate; tsi148_bridge->lm_set = tsi148_lm_set; tsi148_bridge->lm_get = tsi148_lm_get; tsi148_bridge->lm_attach = tsi148_lm_attach; tsi148_bridge->lm_detach = tsi148_lm_detach; tsi148_bridge->slot_get = tsi148_slot_get; tsi148_bridge->alloc_consistent = tsi148_alloc_consistent; tsi148_bridge->free_consistent = tsi148_free_consistent; data = ioread32be(tsi148_device->base + TSI148_LCSR_VSTAT); dev_info(&pdev->dev, "Board is%s the VME system controller\n", (data & TSI148_LCSR_VSTAT_SCONS) ? "" : " not"); if (!geoid) dev_info(&pdev->dev, "VME geographical address is %d\n", data & TSI148_LCSR_VSTAT_GA_M); else dev_info(&pdev->dev, "VME geographical address is set to %d\n", geoid); dev_info(&pdev->dev, "VME Write and flush and error check is %s\n", err_chk ? "enabled" : "disabled"); retval = tsi148_crcsr_init(tsi148_bridge, pdev); if (retval) { dev_err(&pdev->dev, "CR/CSR configuration failed.\n"); goto err_crcsr; } retval = vme_register_bridge(tsi148_bridge); if (retval != 0) { dev_err(&pdev->dev, "Chip Registration failed.\n"); goto err_reg; } pci_set_drvdata(pdev, tsi148_bridge); /* Clear VME bus "board fail", and "power-up reset" lines */ data = ioread32be(tsi148_device->base + TSI148_LCSR_VSTAT); data &= ~TSI148_LCSR_VSTAT_BRDFL; data |= TSI148_LCSR_VSTAT_CPURST; iowrite32be(data, tsi148_device->base + TSI148_LCSR_VSTAT); return 0; err_reg: tsi148_crcsr_exit(tsi148_bridge, pdev); err_crcsr: err_lm: /* resources are stored in link list */ list_for_each_safe(pos, n, &tsi148_bridge->lm_resources) { lm = list_entry(pos, struct vme_lm_resource, list); list_del(pos); kfree(lm); } err_dma: /* resources are stored in link list */ list_for_each_safe(pos, n, &tsi148_bridge->dma_resources) { dma_ctrlr = list_entry(pos, struct vme_dma_resource, list); list_del(pos); kfree(dma_ctrlr); } err_slave: /* resources are stored in link list */ list_for_each_safe(pos, n, &tsi148_bridge->slave_resources) { slave_image = list_entry(pos, struct vme_slave_resource, list); list_del(pos); kfree(slave_image); } err_master: /* resources are stored in link list */ list_for_each_safe(pos, n, &tsi148_bridge->master_resources) { master_image = list_entry(pos, struct vme_master_resource, list); list_del(pos); kfree(master_image); } tsi148_irq_exit(tsi148_bridge, pdev); err_irq: err_test: iounmap(tsi148_device->base); err_remap: pci_release_regions(pdev); err_resource: pci_disable_device(pdev); err_enable: kfree(tsi148_device); err_driver: kfree(tsi148_bridge); err_struct: return retval; } static void tsi148_remove(struct pci_dev *pdev) { struct list_head *pos = NULL; struct list_head *tmplist; struct vme_master_resource *master_image; struct vme_slave_resource *slave_image; struct vme_dma_resource *dma_ctrlr; int i; struct tsi148_driver *bridge; struct vme_bridge *tsi148_bridge = pci_get_drvdata(pdev); bridge = tsi148_bridge->driver_priv; dev_dbg(&pdev->dev, "Driver is being unloaded.\n"); /* * Shutdown all inbound and outbound windows. */ for (i = 0; i < 8; i++) { iowrite32be(0, bridge->base + TSI148_LCSR_IT[i] + TSI148_LCSR_OFFSET_ITAT); iowrite32be(0, bridge->base + TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTAT); } /* * Shutdown Location monitor. */ iowrite32be(0, bridge->base + TSI148_LCSR_LMAT); /* * Shutdown CRG map. */ iowrite32be(0, bridge->base + TSI148_LCSR_CSRAT); /* * Clear error status. */ iowrite32be(0xFFFFFFFF, bridge->base + TSI148_LCSR_EDPAT); iowrite32be(0xFFFFFFFF, bridge->base + TSI148_LCSR_VEAT); iowrite32be(0x07000700, bridge->base + TSI148_LCSR_PSTAT); /* * Remove VIRQ interrupt (if any) */ if (ioread32be(bridge->base + TSI148_LCSR_VICR) & 0x800) iowrite32be(0x8000, bridge->base + TSI148_LCSR_VICR); /* * Map all Interrupts to PCI INTA */ iowrite32be(0x0, bridge->base + TSI148_LCSR_INTM1); iowrite32be(0x0, bridge->base + TSI148_LCSR_INTM2); tsi148_irq_exit(tsi148_bridge, pdev); vme_unregister_bridge(tsi148_bridge); tsi148_crcsr_exit(tsi148_bridge, pdev); /* resources are stored in link list */ list_for_each_safe(pos, tmplist, &tsi148_bridge->dma_resources) { dma_ctrlr = list_entry(pos, struct vme_dma_resource, list); list_del(pos); kfree(dma_ctrlr); } /* resources are stored in link list */ list_for_each_safe(pos, tmplist, &tsi148_bridge->slave_resources) { slave_image = list_entry(pos, struct vme_slave_resource, list); list_del(pos); kfree(slave_image); } /* resources are stored in link list */ list_for_each_safe(pos, tmplist, &tsi148_bridge->master_resources) { master_image = list_entry(pos, struct vme_master_resource, list); list_del(pos); kfree(master_image); } iounmap(bridge->base); pci_release_regions(pdev); pci_disable_device(pdev); kfree(tsi148_bridge->driver_priv); kfree(tsi148_bridge); } module_pci_driver(tsi148_driver); MODULE_PARM_DESC(err_chk, "Check for VME errors on reads and writes"); module_param(err_chk, bool, 0); MODULE_PARM_DESC(geoid, "Override geographical addressing"); module_param(geoid, uint, 0); MODULE_DESCRIPTION("VME driver for the Tundra Tempe VME bridge"); MODULE_LICENSE("GPL");