/* * gmidi.c -- USB MIDI Gadget Driver * * Copyright (C) 2006 Thumtronics Pty Ltd. * Developed for Thumtronics by Grey Innovation * Ben Williamson <ben.williamson@greyinnovation.com> * * This software is distributed under the terms of the GNU General Public * License ("GPL") version 2, as published by the Free Software Foundation. * * This code is based in part on: * * Gadget Zero driver, Copyright (C) 2003-2004 David Brownell. * USB Audio driver, Copyright (C) 2002 by Takashi Iwai. * USB MIDI driver, Copyright (C) 2002-2005 Clemens Ladisch. * * Refer to the USB Device Class Definition for MIDI Devices: * http://www.usb.org/developers/devclass_docs/midi10.pdf */ /* #define VERBOSE_DEBUG */ #include <linux/kernel.h> #include <linux/utsname.h> #include <linux/device.h> #include <sound/core.h> #include <sound/initval.h> #include <sound/rawmidi.h> #include <linux/usb/ch9.h> #include <linux/usb/gadget.h> #include <linux/usb/audio.h> #include <linux/usb/midi.h> #include "gadget_chips.h" MODULE_AUTHOR("Ben Williamson"); MODULE_LICENSE("GPL v2"); #define DRIVER_VERSION "25 Jul 2006" static const char shortname[] = "g_midi"; static const char longname[] = "MIDI Gadget"; static int index = SNDRV_DEFAULT_IDX1; static char *id = SNDRV_DEFAULT_STR1; module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for the USB MIDI Gadget adapter."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for the USB MIDI Gadget adapter."); /* Some systems will want different product identifers published in the * device descriptor, either numbers or strings or both. These string * parameters are in UTF-8 (superset of ASCII's 7 bit characters). */ static ushort idVendor; module_param(idVendor, ushort, S_IRUGO); MODULE_PARM_DESC(idVendor, "USB Vendor ID"); static ushort idProduct; module_param(idProduct, ushort, S_IRUGO); MODULE_PARM_DESC(idProduct, "USB Product ID"); static ushort bcdDevice; module_param(bcdDevice, ushort, S_IRUGO); MODULE_PARM_DESC(bcdDevice, "USB Device version (BCD)"); static char *iManufacturer; module_param(iManufacturer, charp, S_IRUGO); MODULE_PARM_DESC(iManufacturer, "USB Manufacturer string"); static char *iProduct; module_param(iProduct, charp, S_IRUGO); MODULE_PARM_DESC(iProduct, "USB Product string"); static char *iSerialNumber; module_param(iSerialNumber, charp, S_IRUGO); MODULE_PARM_DESC(iSerialNumber, "SerialNumber"); /* * this version autoconfigures as much as possible, * which is reasonable for most "bulk-only" drivers. */ static const char *EP_IN_NAME; static const char *EP_OUT_NAME; /* big enough to hold our biggest descriptor */ #define USB_BUFSIZ 256 /* This is a gadget, and the IN/OUT naming is from the host's perspective. USB -> OUT endpoint -> rawmidi USB <- IN endpoint <- rawmidi */ struct gmidi_in_port { struct gmidi_device* dev; int active; uint8_t cable; /* cable number << 4 */ uint8_t state; #define STATE_UNKNOWN 0 #define STATE_1PARAM 1 #define STATE_2PARAM_1 2 #define STATE_2PARAM_2 3 #define STATE_SYSEX_0 4 #define STATE_SYSEX_1 5 #define STATE_SYSEX_2 6 uint8_t data[2]; }; struct gmidi_device { spinlock_t lock; struct usb_gadget *gadget; struct usb_request *req; /* for control responses */ u8 config; struct usb_ep *in_ep, *out_ep; struct snd_card *card; struct snd_rawmidi *rmidi; struct snd_rawmidi_substream *in_substream; struct snd_rawmidi_substream *out_substream; /* For the moment we only support one port in each direction, but in_port is kept as a separate struct so we can have more later. */ struct gmidi_in_port in_port; unsigned long out_triggered; struct tasklet_struct tasklet; }; static void gmidi_transmit(struct gmidi_device* dev, struct usb_request* req); #define DBG(d, fmt, args...) \ dev_dbg(&(d)->gadget->dev , fmt , ## args) #define VDBG(d, fmt, args...) \ dev_vdbg(&(d)->gadget->dev , fmt , ## args) #define ERROR(d, fmt, args...) \ dev_err(&(d)->gadget->dev , fmt , ## args) #define WARN(d, fmt, args...) \ dev_warn(&(d)->gadget->dev , fmt , ## args) #define INFO(d, fmt, args...) \ dev_info(&(d)->gadget->dev , fmt , ## args) static unsigned buflen = 256; static unsigned qlen = 32; module_param(buflen, uint, S_IRUGO); module_param(qlen, uint, S_IRUGO); /* Thanks to Grey Innovation for donating this product ID. * * DO NOT REUSE THESE IDs with a protocol-incompatible driver!! Ever!! * Instead: allocate your own, using normal USB-IF procedures. */ #define DRIVER_VENDOR_NUM 0x17b3 /* Grey Innovation */ #define DRIVER_PRODUCT_NUM 0x0004 /* Linux-USB "MIDI Gadget" */ /* * DESCRIPTORS ... most are static, but strings and (full) * configuration descriptors are built on demand. */ #define STRING_MANUFACTURER 25 #define STRING_PRODUCT 42 #define STRING_SERIAL 101 #define STRING_MIDI_GADGET 250 /* We only have the one configuration, it's number 1. */ #define GMIDI_CONFIG 1 /* We have two interfaces- AudioControl and MIDIStreaming */ #define GMIDI_AC_INTERFACE 0 #define GMIDI_MS_INTERFACE 1 #define GMIDI_NUM_INTERFACES 2 DECLARE_USB_AC_HEADER_DESCRIPTOR(1); DECLARE_USB_MIDI_OUT_JACK_DESCRIPTOR(1); DECLARE_USB_MS_ENDPOINT_DESCRIPTOR(1); /* B.1 Device Descriptor */ static struct usb_device_descriptor device_desc = { .bLength = USB_DT_DEVICE_SIZE, .bDescriptorType = USB_DT_DEVICE, .bcdUSB = __constant_cpu_to_le16(0x0200), .bDeviceClass = USB_CLASS_PER_INTERFACE, .idVendor = __constant_cpu_to_le16(DRIVER_VENDOR_NUM), .idProduct = __constant_cpu_to_le16(DRIVER_PRODUCT_NUM), .iManufacturer = STRING_MANUFACTURER, .iProduct = STRING_PRODUCT, .bNumConfigurations = 1, }; /* B.2 Configuration Descriptor */ static struct usb_config_descriptor config_desc = { .bLength = USB_DT_CONFIG_SIZE, .bDescriptorType = USB_DT_CONFIG, /* compute wTotalLength on the fly */ .bNumInterfaces = GMIDI_NUM_INTERFACES, .bConfigurationValue = GMIDI_CONFIG, .iConfiguration = STRING_MIDI_GADGET, /* * FIXME: When embedding this driver in a device, * these need to be set to reflect the actual * power properties of the device. Is it selfpowered? */ .bmAttributes = USB_CONFIG_ATT_ONE, .bMaxPower = 1, }; /* B.3.1 Standard AC Interface Descriptor */ static const struct usb_interface_descriptor ac_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = GMIDI_AC_INTERFACE, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL, .iInterface = STRING_MIDI_GADGET, }; /* B.3.2 Class-Specific AC Interface Descriptor */ static const struct usb_ac_header_descriptor_1 ac_header_desc = { .bLength = USB_DT_AC_HEADER_SIZE(1), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = USB_MS_HEADER, .bcdADC = __constant_cpu_to_le16(0x0100), .wTotalLength = __constant_cpu_to_le16(USB_DT_AC_HEADER_SIZE(1)), .bInCollection = 1, .baInterfaceNr = { [0] = GMIDI_MS_INTERFACE, } }; /* B.4.1 Standard MS Interface Descriptor */ static const struct usb_interface_descriptor ms_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = GMIDI_MS_INTERFACE, .bNumEndpoints = 2, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_MIDISTREAMING, .iInterface = STRING_MIDI_GADGET, }; /* B.4.2 Class-Specific MS Interface Descriptor */ static const struct usb_ms_header_descriptor ms_header_desc = { .bLength = USB_DT_MS_HEADER_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = USB_MS_HEADER, .bcdMSC = __constant_cpu_to_le16(0x0100), .wTotalLength = __constant_cpu_to_le16(USB_DT_MS_HEADER_SIZE + 2*USB_DT_MIDI_IN_SIZE + 2*USB_DT_MIDI_OUT_SIZE(1)), }; #define JACK_IN_EMB 1 #define JACK_IN_EXT 2 #define JACK_OUT_EMB 3 #define JACK_OUT_EXT 4 /* B.4.3 MIDI IN Jack Descriptors */ static const struct usb_midi_in_jack_descriptor jack_in_emb_desc = { .bLength = USB_DT_MIDI_IN_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = USB_MS_MIDI_IN_JACK, .bJackType = USB_MS_EMBEDDED, .bJackID = JACK_IN_EMB, }; static const struct usb_midi_in_jack_descriptor jack_in_ext_desc = { .bLength = USB_DT_MIDI_IN_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = USB_MS_MIDI_IN_JACK, .bJackType = USB_MS_EXTERNAL, .bJackID = JACK_IN_EXT, }; /* B.4.4 MIDI OUT Jack Descriptors */ static const struct usb_midi_out_jack_descriptor_1 jack_out_emb_desc = { .bLength = USB_DT_MIDI_OUT_SIZE(1), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = USB_MS_MIDI_OUT_JACK, .bJackType = USB_MS_EMBEDDED, .bJackID = JACK_OUT_EMB, .bNrInputPins = 1, .pins = { [0] = { .baSourceID = JACK_IN_EXT, .baSourcePin = 1, } } }; static const struct usb_midi_out_jack_descriptor_1 jack_out_ext_desc = { .bLength = USB_DT_MIDI_OUT_SIZE(1), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = USB_MS_MIDI_OUT_JACK, .bJackType = USB_MS_EXTERNAL, .bJackID = JACK_OUT_EXT, .bNrInputPins = 1, .pins = { [0] = { .baSourceID = JACK_IN_EMB, .baSourcePin = 1, } } }; /* B.5.1 Standard Bulk OUT Endpoint Descriptor */ static struct usb_endpoint_descriptor bulk_out_desc = { .bLength = USB_DT_ENDPOINT_AUDIO_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; /* B.5.2 Class-specific MS Bulk OUT Endpoint Descriptor */ static const struct usb_ms_endpoint_descriptor_1 ms_out_desc = { .bLength = USB_DT_MS_ENDPOINT_SIZE(1), .bDescriptorType = USB_DT_CS_ENDPOINT, .bDescriptorSubtype = USB_MS_GENERAL, .bNumEmbMIDIJack = 1, .baAssocJackID = { [0] = JACK_IN_EMB, } }; /* B.6.1 Standard Bulk IN Endpoint Descriptor */ static struct usb_endpoint_descriptor bulk_in_desc = { .bLength = USB_DT_ENDPOINT_AUDIO_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; /* B.6.2 Class-specific MS Bulk IN Endpoint Descriptor */ static const struct usb_ms_endpoint_descriptor_1 ms_in_desc = { .bLength = USB_DT_MS_ENDPOINT_SIZE(1), .bDescriptorType = USB_DT_CS_ENDPOINT, .bDescriptorSubtype = USB_MS_GENERAL, .bNumEmbMIDIJack = 1, .baAssocJackID = { [0] = JACK_OUT_EMB, } }; static const struct usb_descriptor_header *gmidi_function [] = { (struct usb_descriptor_header *)&ac_interface_desc, (struct usb_descriptor_header *)&ac_header_desc, (struct usb_descriptor_header *)&ms_interface_desc, (struct usb_descriptor_header *)&ms_header_desc, (struct usb_descriptor_header *)&jack_in_emb_desc, (struct usb_descriptor_header *)&jack_in_ext_desc, (struct usb_descriptor_header *)&jack_out_emb_desc, (struct usb_descriptor_header *)&jack_out_ext_desc, /* If you add more jacks, update ms_header_desc.wTotalLength */ (struct usb_descriptor_header *)&bulk_out_desc, (struct usb_descriptor_header *)&ms_out_desc, (struct usb_descriptor_header *)&bulk_in_desc, (struct usb_descriptor_header *)&ms_in_desc, NULL, }; static char manufacturer[50]; static char product_desc[40] = "MIDI Gadget"; static char serial_number[20]; /* static strings, in UTF-8 */ static struct usb_string strings [] = { { STRING_MANUFACTURER, manufacturer, }, { STRING_PRODUCT, product_desc, }, { STRING_SERIAL, serial_number, }, { STRING_MIDI_GADGET, longname, }, { } /* end of list */ }; static struct usb_gadget_strings stringtab = { .language = 0x0409, /* en-us */ .strings = strings, }; static int config_buf(struct usb_gadget *gadget, u8 *buf, u8 type, unsigned index) { int len; /* only one configuration */ if (index != 0) { return -EINVAL; } len = usb_gadget_config_buf(&config_desc, buf, USB_BUFSIZ, gmidi_function); if (len < 0) { return len; } ((struct usb_config_descriptor *)buf)->bDescriptorType = type; return len; } static struct usb_request *alloc_ep_req(struct usb_ep *ep, unsigned length) { struct usb_request *req; req = usb_ep_alloc_request(ep, GFP_ATOMIC); if (req) { req->length = length; req->buf = kmalloc(length, GFP_ATOMIC); if (!req->buf) { usb_ep_free_request(ep, req); req = NULL; } } return req; } static void free_ep_req(struct usb_ep *ep, struct usb_request *req) { kfree(req->buf); usb_ep_free_request(ep, req); } static const uint8_t gmidi_cin_length[] = { 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 }; /* * Receives a chunk of MIDI data. */ static void gmidi_read_data(struct usb_ep *ep, int cable, uint8_t *data, int length) { struct gmidi_device *dev = ep->driver_data; /* cable is ignored, because for now we only have one. */ if (!dev->out_substream) { /* Nobody is listening - throw it on the floor. */ return; } if (!test_bit(dev->out_substream->number, &dev->out_triggered)) { return; } snd_rawmidi_receive(dev->out_substream, data, length); } static void gmidi_handle_out_data(struct usb_ep *ep, struct usb_request *req) { unsigned i; u8 *buf = req->buf; for (i = 0; i + 3 < req->actual; i += 4) { if (buf[i] != 0) { int cable = buf[i] >> 4; int length = gmidi_cin_length[buf[i] & 0x0f]; gmidi_read_data(ep, cable, &buf[i + 1], length); } } } static void gmidi_complete(struct usb_ep *ep, struct usb_request *req) { struct gmidi_device *dev = ep->driver_data; int status = req->status; switch (status) { case 0: /* normal completion */ if (ep == dev->out_ep) { /* we received stuff. req is queued again, below */ gmidi_handle_out_data(ep, req); } else if (ep == dev->in_ep) { /* our transmit completed. see if there's more to go. gmidi_transmit eats req, don't queue it again. */ gmidi_transmit(dev, req); return; } break; /* this endpoint is normally active while we're configured */ case -ECONNABORTED: /* hardware forced ep reset */ case -ECONNRESET: /* request dequeued */ case -ESHUTDOWN: /* disconnect from host */ VDBG(dev, "%s gone (%d), %d/%d\n", ep->name, status, req->actual, req->length); if (ep == dev->out_ep) { gmidi_handle_out_data(ep, req); } free_ep_req(ep, req); return; case -EOVERFLOW: /* buffer overrun on read means that * we didn't provide a big enough * buffer. */ default: DBG(dev, "%s complete --> %d, %d/%d\n", ep->name, status, req->actual, req->length); break; case -EREMOTEIO: /* short read */ break; } status = usb_ep_queue(ep, req, GFP_ATOMIC); if (status) { ERROR(dev, "kill %s: resubmit %d bytes --> %d\n", ep->name, req->length, status); usb_ep_set_halt(ep); /* FIXME recover later ... somehow */ } } static int set_gmidi_config(struct gmidi_device *dev, gfp_t gfp_flags) { int err = 0; struct usb_request *req; struct usb_ep *ep; unsigned i; err = usb_ep_enable(dev->in_ep, &bulk_in_desc); if (err) { ERROR(dev, "can't start %s: %d\n", dev->in_ep->name, err); goto fail; } dev->in_ep->driver_data = dev; err = usb_ep_enable(dev->out_ep, &bulk_out_desc); if (err) { ERROR(dev, "can't start %s: %d\n", dev->out_ep->name, err); goto fail; } dev->out_ep->driver_data = dev; /* allocate a bunch of read buffers and queue them all at once. */ ep = dev->out_ep; for (i = 0; i < qlen && err == 0; i++) { req = alloc_ep_req(ep, buflen); if (req) { req->complete = gmidi_complete; err = usb_ep_queue(ep, req, GFP_ATOMIC); if (err) { DBG(dev, "%s queue req: %d\n", ep->name, err); } } else { err = -ENOMEM; } } fail: /* caller is responsible for cleanup on error */ return err; } static void gmidi_reset_config(struct gmidi_device *dev) { if (dev->config == 0) { return; } DBG(dev, "reset config\n"); /* just disable endpoints, forcing completion of pending i/o. * all our completion handlers free their requests in this case. */ usb_ep_disable(dev->in_ep); usb_ep_disable(dev->out_ep); dev->config = 0; } /* change our operational config. this code must agree with the code * that returns config descriptors, and altsetting code. * * it's also responsible for power management interactions. some * configurations might not work with our current power sources. * * note that some device controller hardware will constrain what this * code can do, perhaps by disallowing more than one configuration or * by limiting configuration choices (like the pxa2xx). */ static int gmidi_set_config(struct gmidi_device *dev, unsigned number, gfp_t gfp_flags) { int result = 0; struct usb_gadget *gadget = dev->gadget; #if 0 /* FIXME */ /* Hacking this bit out fixes a bug where on receipt of two USB_REQ_SET_CONFIGURATION messages, we end up with no buffered OUT requests waiting for data. This is clearly hiding a bug elsewhere, because if the config didn't change then we really shouldn't do anything. */ /* Having said that, when we do "change" from config 1 to config 1, we at least gmidi_reset_config() which clears out any requests on endpoints, so it's not like we leak or anything. */ if (number == dev->config) { return 0; } #endif if (gadget_is_sa1100(gadget) && dev->config) { /* tx fifo is full, but we can't clear it...*/ ERROR(dev, "can't change configurations\n"); return -ESPIPE; } gmidi_reset_config(dev); switch (number) { case GMIDI_CONFIG: result = set_gmidi_config(dev, gfp_flags); break; default: result = -EINVAL; /* FALL THROUGH */ case 0: return result; } if (!result && (!dev->in_ep || !dev->out_ep)) { result = -ENODEV; } if (result) { gmidi_reset_config(dev); } else { char *speed; switch (gadget->speed) { case USB_SPEED_LOW: speed = "low"; break; case USB_SPEED_FULL: speed = "full"; break; case USB_SPEED_HIGH: speed = "high"; break; default: speed = "?"; break; } dev->config = number; INFO(dev, "%s speed\n", speed); } return result; } static void gmidi_setup_complete(struct usb_ep *ep, struct usb_request *req) { if (req->status || req->actual != req->length) { DBG((struct gmidi_device *) ep->driver_data, "setup complete --> %d, %d/%d\n", req->status, req->actual, req->length); } } /* * The setup() callback implements all the ep0 functionality that's * not handled lower down, in hardware or the hardware driver (like * device and endpoint feature flags, and their status). It's all * housekeeping for the gadget function we're implementing. Most of * the work is in config-specific setup. */ static int gmidi_setup(struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl) { struct gmidi_device *dev = get_gadget_data(gadget); struct usb_request *req = dev->req; int value = -EOPNOTSUPP; u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); /* usually this stores reply data in the pre-allocated ep0 buffer, * but config change events will reconfigure hardware. */ req->zero = 0; switch (ctrl->bRequest) { case USB_REQ_GET_DESCRIPTOR: if (ctrl->bRequestType != USB_DIR_IN) { goto unknown; } switch (w_value >> 8) { case USB_DT_DEVICE: value = min(w_length, (u16) sizeof(device_desc)); memcpy(req->buf, &device_desc, value); break; case USB_DT_CONFIG: value = config_buf(gadget, req->buf, w_value >> 8, w_value & 0xff); if (value >= 0) { value = min(w_length, (u16)value); } break; case USB_DT_STRING: /* wIndex == language code. * this driver only handles one language, you can * add string tables for other languages, using * any UTF-8 characters */ value = usb_gadget_get_string(&stringtab, w_value & 0xff, req->buf); if (value >= 0) { value = min(w_length, (u16)value); } break; } break; /* currently two configs, two speeds */ case USB_REQ_SET_CONFIGURATION: if (ctrl->bRequestType != 0) { goto unknown; } if (gadget->a_hnp_support) { DBG(dev, "HNP available\n"); } else if (gadget->a_alt_hnp_support) { DBG(dev, "HNP needs a different root port\n"); } else { VDBG(dev, "HNP inactive\n"); } spin_lock(&dev->lock); value = gmidi_set_config(dev, w_value, GFP_ATOMIC); spin_unlock(&dev->lock); break; case USB_REQ_GET_CONFIGURATION: if (ctrl->bRequestType != USB_DIR_IN) { goto unknown; } *(u8 *)req->buf = dev->config; value = min(w_length, (u16)1); break; /* until we add altsetting support, or other interfaces, * only 0/0 are possible. pxa2xx only supports 0/0 (poorly) * and already killed pending endpoint I/O. */ case USB_REQ_SET_INTERFACE: if (ctrl->bRequestType != USB_RECIP_INTERFACE) { goto unknown; } spin_lock(&dev->lock); if (dev->config && w_index < GMIDI_NUM_INTERFACES && w_value == 0) { u8 config = dev->config; /* resets interface configuration, forgets about * previous transaction state (queued bufs, etc) * and re-inits endpoint state (toggle etc) * no response queued, just zero status == success. * if we had more than one interface we couldn't * use this "reset the config" shortcut. */ gmidi_reset_config(dev); gmidi_set_config(dev, config, GFP_ATOMIC); value = 0; } spin_unlock(&dev->lock); break; case USB_REQ_GET_INTERFACE: if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE)) { goto unknown; } if (!dev->config) { break; } if (w_index >= GMIDI_NUM_INTERFACES) { value = -EDOM; break; } *(u8 *)req->buf = 0; value = min(w_length, (u16)1); break; default: unknown: VDBG(dev, "unknown control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); } /* respond with data transfer before status phase? */ if (value >= 0) { req->length = value; req->zero = value < w_length; value = usb_ep_queue(gadget->ep0, req, GFP_ATOMIC); if (value < 0) { DBG(dev, "ep_queue --> %d\n", value); req->status = 0; gmidi_setup_complete(gadget->ep0, req); } } /* device either stalls (value < 0) or reports success */ return value; } static void gmidi_disconnect(struct usb_gadget *gadget) { struct gmidi_device *dev = get_gadget_data(gadget); unsigned long flags; spin_lock_irqsave(&dev->lock, flags); gmidi_reset_config(dev); /* a more significant application might have some non-usb * activities to quiesce here, saving resources like power * or pushing the notification up a network stack. */ spin_unlock_irqrestore(&dev->lock, flags); /* next we may get setup() calls to enumerate new connections; * or an unbind() during shutdown (including removing module). */ } static void /* __init_or_exit */ gmidi_unbind(struct usb_gadget *gadget) { struct gmidi_device *dev = get_gadget_data(gadget); struct snd_card *card; DBG(dev, "unbind\n"); card = dev->card; dev->card = NULL; if (card) { snd_card_free(card); } /* we've already been disconnected ... no i/o is active */ if (dev->req) { dev->req->length = USB_BUFSIZ; free_ep_req(gadget->ep0, dev->req); } kfree(dev); set_gadget_data(gadget, NULL); } static int gmidi_snd_free(struct snd_device *device) { return 0; } static void gmidi_transmit_packet(struct usb_request *req, uint8_t p0, uint8_t p1, uint8_t p2, uint8_t p3) { unsigned length = req->length; u8 *buf = (u8 *)req->buf + length; buf[0] = p0; buf[1] = p1; buf[2] = p2; buf[3] = p3; req->length = length + 4; } /* * Converts MIDI commands to USB MIDI packets. */ static void gmidi_transmit_byte(struct usb_request *req, struct gmidi_in_port *port, uint8_t b) { uint8_t p0 = port->cable; if (b >= 0xf8) { gmidi_transmit_packet(req, p0 | 0x0f, b, 0, 0); } else if (b >= 0xf0) { switch (b) { case 0xf0: port->data[0] = b; port->state = STATE_SYSEX_1; break; case 0xf1: case 0xf3: port->data[0] = b; port->state = STATE_1PARAM; break; case 0xf2: port->data[0] = b; port->state = STATE_2PARAM_1; break; case 0xf4: case 0xf5: port->state = STATE_UNKNOWN; break; case 0xf6: gmidi_transmit_packet(req, p0 | 0x05, 0xf6, 0, 0); port->state = STATE_UNKNOWN; break; case 0xf7: switch (port->state) { case STATE_SYSEX_0: gmidi_transmit_packet(req, p0 | 0x05, 0xf7, 0, 0); break; case STATE_SYSEX_1: gmidi_transmit_packet(req, p0 | 0x06, port->data[0], 0xf7, 0); break; case STATE_SYSEX_2: gmidi_transmit_packet(req, p0 | 0x07, port->data[0], port->data[1], 0xf7); break; } port->state = STATE_UNKNOWN; break; } } else if (b >= 0x80) { port->data[0] = b; if (b >= 0xc0 && b <= 0xdf) port->state = STATE_1PARAM; else port->state = STATE_2PARAM_1; } else { /* b < 0x80 */ switch (port->state) { case STATE_1PARAM: if (port->data[0] < 0xf0) { p0 |= port->data[0] >> 4; } else { p0 |= 0x02; port->state = STATE_UNKNOWN; } gmidi_transmit_packet(req, p0, port->data[0], b, 0); break; case STATE_2PARAM_1: port->data[1] = b; port->state = STATE_2PARAM_2; break; case STATE_2PARAM_2: if (port->data[0] < 0xf0) { p0 |= port->data[0] >> 4; port->state = STATE_2PARAM_1; } else { p0 |= 0x03; port->state = STATE_UNKNOWN; } gmidi_transmit_packet(req, p0, port->data[0], port->data[1], b); break; case STATE_SYSEX_0: port->data[0] = b; port->state = STATE_SYSEX_1; break; case STATE_SYSEX_1: port->data[1] = b; port->state = STATE_SYSEX_2; break; case STATE_SYSEX_2: gmidi_transmit_packet(req, p0 | 0x04, port->data[0], port->data[1], b); port->state = STATE_SYSEX_0; break; } } } static void gmidi_transmit(struct gmidi_device *dev, struct usb_request *req) { struct usb_ep *ep = dev->in_ep; struct gmidi_in_port *port = &dev->in_port; if (!ep) { return; } if (!req) { req = alloc_ep_req(ep, buflen); } if (!req) { ERROR(dev, "gmidi_transmit: alloc_ep_request failed\n"); return; } req->length = 0; req->complete = gmidi_complete; if (port->active) { while (req->length + 3 < buflen) { uint8_t b; if (snd_rawmidi_transmit(dev->in_substream, &b, 1) != 1) { port->active = 0; break; } gmidi_transmit_byte(req, port, b); } } if (req->length > 0) { usb_ep_queue(ep, req, GFP_ATOMIC); } else { free_ep_req(ep, req); } } static void gmidi_in_tasklet(unsigned long data) { struct gmidi_device *dev = (struct gmidi_device *)data; gmidi_transmit(dev, NULL); } static int gmidi_in_open(struct snd_rawmidi_substream *substream) { struct gmidi_device *dev = substream->rmidi->private_data; VDBG(dev, "gmidi_in_open\n"); dev->in_substream = substream; dev->in_port.state = STATE_UNKNOWN; return 0; } static int gmidi_in_close(struct snd_rawmidi_substream *substream) { struct gmidi_device *dev = substream->rmidi->private_data; VDBG(dev, "gmidi_in_close\n"); return 0; } static void gmidi_in_trigger(struct snd_rawmidi_substream *substream, int up) { struct gmidi_device *dev = substream->rmidi->private_data; VDBG(dev, "gmidi_in_trigger %d\n", up); dev->in_port.active = up; if (up) { tasklet_hi_schedule(&dev->tasklet); } } static int gmidi_out_open(struct snd_rawmidi_substream *substream) { struct gmidi_device *dev = substream->rmidi->private_data; VDBG(dev, "gmidi_out_open\n"); dev->out_substream = substream; return 0; } static int gmidi_out_close(struct snd_rawmidi_substream *substream) { struct gmidi_device *dev = substream->rmidi->private_data; VDBG(dev, "gmidi_out_close\n"); return 0; } static void gmidi_out_trigger(struct snd_rawmidi_substream *substream, int up) { struct gmidi_device *dev = substream->rmidi->private_data; VDBG(dev, "gmidi_out_trigger %d\n", up); if (up) { set_bit(substream->number, &dev->out_triggered); } else { clear_bit(substream->number, &dev->out_triggered); } } static struct snd_rawmidi_ops gmidi_in_ops = { .open = gmidi_in_open, .close = gmidi_in_close, .trigger = gmidi_in_trigger, }; static struct snd_rawmidi_ops gmidi_out_ops = { .open = gmidi_out_open, .close = gmidi_out_close, .trigger = gmidi_out_trigger }; /* register as a sound "card" */ static int gmidi_register_card(struct gmidi_device *dev) { struct snd_card *card; struct snd_rawmidi *rmidi; int err; int out_ports = 1; int in_ports = 1; static struct snd_device_ops ops = { .dev_free = gmidi_snd_free, }; card = snd_card_new(index, id, THIS_MODULE, 0); if (!card) { ERROR(dev, "snd_card_new failed\n"); err = -ENOMEM; goto fail; } dev->card = card; err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, dev, &ops); if (err < 0) { ERROR(dev, "snd_device_new failed: error %d\n", err); goto fail; } strcpy(card->driver, longname); strcpy(card->longname, longname); strcpy(card->shortname, shortname); /* Set up rawmidi */ dev->in_port.dev = dev; dev->in_port.active = 0; snd_component_add(card, "MIDI"); err = snd_rawmidi_new(card, "USB MIDI Gadget", 0, out_ports, in_ports, &rmidi); if (err < 0) { ERROR(dev, "snd_rawmidi_new failed: error %d\n", err); goto fail; } dev->rmidi = rmidi; strcpy(rmidi->name, card->shortname); rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX; rmidi->private_data = dev; /* Yes, rawmidi OUTPUT = USB IN, and rawmidi INPUT = USB OUT. It's an upside-down world being a gadget. */ snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &gmidi_in_ops); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &gmidi_out_ops); snd_card_set_dev(card, &dev->gadget->dev); /* register it - we're ready to go */ err = snd_card_register(card); if (err < 0) { ERROR(dev, "snd_card_register failed\n"); goto fail; } VDBG(dev, "gmidi_register_card finished ok\n"); return 0; fail: if (dev->card) { snd_card_free(dev->card); dev->card = NULL; } return err; } /* * Creates an output endpoint, and initializes output ports. */ static int __init gmidi_bind(struct usb_gadget *gadget) { struct gmidi_device *dev; struct usb_ep *in_ep, *out_ep; int gcnum, err = 0; /* support optional vendor/distro customization */ if (idVendor) { if (!idProduct) { pr_err("idVendor needs idProduct!\n"); return -ENODEV; } device_desc.idVendor = cpu_to_le16(idVendor); device_desc.idProduct = cpu_to_le16(idProduct); if (bcdDevice) { device_desc.bcdDevice = cpu_to_le16(bcdDevice); } } if (iManufacturer) { strlcpy(manufacturer, iManufacturer, sizeof(manufacturer)); } else { snprintf(manufacturer, sizeof(manufacturer), "%s %s with %s", init_utsname()->sysname, init_utsname()->release, gadget->name); } if (iProduct) { strlcpy(product_desc, iProduct, sizeof(product_desc)); } if (iSerialNumber) { device_desc.iSerialNumber = STRING_SERIAL, strlcpy(serial_number, iSerialNumber, sizeof(serial_number)); } /* Bulk-only drivers like this one SHOULD be able to * autoconfigure on any sane usb controller driver, * but there may also be important quirks to address. */ usb_ep_autoconfig_reset(gadget); in_ep = usb_ep_autoconfig(gadget, &bulk_in_desc); if (!in_ep) { autoconf_fail: pr_err("%s: can't autoconfigure on %s\n", shortname, gadget->name); return -ENODEV; } EP_IN_NAME = in_ep->name; in_ep->driver_data = in_ep; /* claim */ out_ep = usb_ep_autoconfig(gadget, &bulk_out_desc); if (!out_ep) { goto autoconf_fail; } EP_OUT_NAME = out_ep->name; out_ep->driver_data = out_ep; /* claim */ gcnum = usb_gadget_controller_number(gadget); if (gcnum >= 0) { device_desc.bcdDevice = cpu_to_le16(0x0200 + gcnum); } else { /* gmidi is so simple (no altsettings) that * it SHOULD NOT have problems with bulk-capable hardware. * so warn about unrecognized controllers, don't panic. */ pr_warning("%s: controller '%s' not recognized\n", shortname, gadget->name); device_desc.bcdDevice = __constant_cpu_to_le16(0x9999); } /* ok, we made sense of the hardware ... */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { return -ENOMEM; } spin_lock_init(&dev->lock); dev->gadget = gadget; dev->in_ep = in_ep; dev->out_ep = out_ep; set_gadget_data(gadget, dev); tasklet_init(&dev->tasklet, gmidi_in_tasklet, (unsigned long)dev); /* preallocate control response and buffer */ dev->req = alloc_ep_req(gadget->ep0, USB_BUFSIZ); if (!dev->req) { err = -ENOMEM; goto fail; } dev->req->complete = gmidi_setup_complete; device_desc.bMaxPacketSize0 = gadget->ep0->maxpacket; gadget->ep0->driver_data = dev; INFO(dev, "%s, version: " DRIVER_VERSION "\n", longname); INFO(dev, "using %s, OUT %s IN %s\n", gadget->name, EP_OUT_NAME, EP_IN_NAME); /* register as an ALSA sound card */ err = gmidi_register_card(dev); if (err < 0) { goto fail; } VDBG(dev, "gmidi_bind finished ok\n"); return 0; fail: gmidi_unbind(gadget); return err; } static void gmidi_suspend(struct usb_gadget *gadget) { struct gmidi_device *dev = get_gadget_data(gadget); if (gadget->speed == USB_SPEED_UNKNOWN) { return; } DBG(dev, "suspend\n"); } static void gmidi_resume(struct usb_gadget *gadget) { struct gmidi_device *dev = get_gadget_data(gadget); DBG(dev, "resume\n"); } static struct usb_gadget_driver gmidi_driver = { .speed = USB_SPEED_FULL, .function = (char *)longname, .bind = gmidi_bind, .unbind = gmidi_unbind, .setup = gmidi_setup, .disconnect = gmidi_disconnect, .suspend = gmidi_suspend, .resume = gmidi_resume, .driver = { .name = (char *)shortname, .owner = THIS_MODULE, }, }; static int __init gmidi_init(void) { return usb_gadget_register_driver(&gmidi_driver); } module_init(gmidi_init); static void __exit gmidi_cleanup(void) { usb_gadget_unregister_driver(&gmidi_driver); } module_exit(gmidi_cleanup);