// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "btree_gc.h" #include "btree_update.h" #include "buckets.h" #include "checksum.h" #include "error.h" #include "journal.h" #include "journal_io.h" #include "journal_reclaim.h" #include "journal_seq_blacklist.h" #include "replicas.h" #include "trace.h" struct journal_list { struct closure cl; struct mutex lock; struct list_head *head; int ret; }; #define JOURNAL_ENTRY_ADD_OK 0 #define JOURNAL_ENTRY_ADD_OUT_OF_RANGE 5 /* * Given a journal entry we just read, add it to the list of journal entries to * be replayed: */ static int journal_entry_add(struct bch_fs *c, struct bch_dev *ca, struct journal_list *jlist, struct jset *j) { struct journal_replay *i, *pos; struct list_head *where; size_t bytes = vstruct_bytes(j); __le64 last_seq; int ret; last_seq = !list_empty(jlist->head) ? list_last_entry(jlist->head, struct journal_replay, list)->j.last_seq : 0; /* Is this entry older than the range we need? */ if (le64_to_cpu(j->seq) < le64_to_cpu(last_seq)) { ret = JOURNAL_ENTRY_ADD_OUT_OF_RANGE; goto out; } /* Drop entries we don't need anymore */ list_for_each_entry_safe(i, pos, jlist->head, list) { if (le64_to_cpu(i->j.seq) >= le64_to_cpu(j->last_seq)) break; list_del(&i->list); kvpfree(i, offsetof(struct journal_replay, j) + vstruct_bytes(&i->j)); } list_for_each_entry_reverse(i, jlist->head, list) { /* Duplicate? */ if (le64_to_cpu(j->seq) == le64_to_cpu(i->j.seq)) { fsck_err_on(bytes != vstruct_bytes(&i->j) || memcmp(j, &i->j, bytes), c, "found duplicate but non identical journal entries (seq %llu)", le64_to_cpu(j->seq)); goto found; } if (le64_to_cpu(j->seq) > le64_to_cpu(i->j.seq)) { where = &i->list; goto add; } } where = jlist->head; add: i = kvpmalloc(offsetof(struct journal_replay, j) + bytes, GFP_KERNEL); if (!i) { ret = -ENOMEM; goto out; } list_add(&i->list, where); i->devs.nr = 0; unsafe_memcpy(&i->j, j, bytes, "embedded variable length struct"); found: if (!bch2_dev_list_has_dev(i->devs, ca->dev_idx)) bch2_dev_list_add_dev(&i->devs, ca->dev_idx); else fsck_err_on(1, c, "duplicate journal entries on same device"); ret = JOURNAL_ENTRY_ADD_OK; out: fsck_err: return ret; } static struct nonce journal_nonce(const struct jset *jset) { return (struct nonce) {{ [0] = 0, [1] = ((__le32 *) &jset->seq)[0], [2] = ((__le32 *) &jset->seq)[1], [3] = BCH_NONCE_JOURNAL, }}; } /* this fills in a range with empty jset_entries: */ static void journal_entry_null_range(void *start, void *end) { struct jset_entry *entry; for (entry = start; entry != end; entry = vstruct_next(entry)) memset(entry, 0, sizeof(*entry)); } #define JOURNAL_ENTRY_REREAD 5 #define JOURNAL_ENTRY_NONE 6 #define JOURNAL_ENTRY_BAD 7 #define journal_entry_err(c, msg, ...) \ ({ \ switch (write) { \ case READ: \ mustfix_fsck_err(c, msg, ##__VA_ARGS__); \ break; \ case WRITE: \ bch_err(c, "corrupt metadata before write:\n" \ msg, ##__VA_ARGS__); \ if (bch2_fs_inconsistent(c)) { \ ret = BCH_FSCK_ERRORS_NOT_FIXED; \ goto fsck_err; \ } \ break; \ } \ true; \ }) #define journal_entry_err_on(cond, c, msg, ...) \ ((cond) ? journal_entry_err(c, msg, ##__VA_ARGS__) : false) static int journal_validate_key(struct bch_fs *c, struct jset *jset, struct jset_entry *entry, struct bkey_i *k, enum bkey_type key_type, const char *type, int write) { void *next = vstruct_next(entry); const char *invalid; char buf[160]; int ret = 0; if (journal_entry_err_on(!k->k.u64s, c, "invalid %s in journal: k->u64s 0", type)) { entry->u64s = cpu_to_le16((u64 *) k - entry->_data); journal_entry_null_range(vstruct_next(entry), next); return 0; } if (journal_entry_err_on((void *) bkey_next(k) > (void *) vstruct_next(entry), c, "invalid %s in journal: extends past end of journal entry", type)) { entry->u64s = cpu_to_le16((u64 *) k - entry->_data); journal_entry_null_range(vstruct_next(entry), next); return 0; } if (journal_entry_err_on(k->k.format != KEY_FORMAT_CURRENT, c, "invalid %s in journal: bad format %u", type, k->k.format)) { le16_add_cpu(&entry->u64s, -k->k.u64s); memmove(k, bkey_next(k), next - (void *) bkey_next(k)); journal_entry_null_range(vstruct_next(entry), next); return 0; } if (JSET_BIG_ENDIAN(jset) != CPU_BIG_ENDIAN) bch2_bkey_swab(key_type, NULL, bkey_to_packed(k)); invalid = bch2_bkey_invalid(c, key_type, bkey_i_to_s_c(k)); if (invalid) { bch2_bkey_val_to_text(c, key_type, buf, sizeof(buf), bkey_i_to_s_c(k)); mustfix_fsck_err(c, "invalid %s in journal: %s\n%s", type, invalid, buf); le16_add_cpu(&entry->u64s, -k->k.u64s); memmove(k, bkey_next(k), next - (void *) bkey_next(k)); journal_entry_null_range(vstruct_next(entry), next); return 0; } fsck_err: return ret; } static int journal_entry_validate_btree_keys(struct bch_fs *c, struct jset *jset, struct jset_entry *entry, int write) { struct bkey_i *k; vstruct_for_each(entry, k) { int ret = journal_validate_key(c, jset, entry, k, bkey_type(entry->level, entry->btree_id), "key", write); if (ret) return ret; } return 0; } static int journal_entry_validate_btree_root(struct bch_fs *c, struct jset *jset, struct jset_entry *entry, int write) { struct bkey_i *k = entry->start; int ret = 0; if (journal_entry_err_on(!entry->u64s || le16_to_cpu(entry->u64s) != k->k.u64s, c, "invalid btree root journal entry: wrong number of keys")) { void *next = vstruct_next(entry); /* * we don't want to null out this jset_entry, * just the contents, so that later we can tell * we were _supposed_ to have a btree root */ entry->u64s = 0; journal_entry_null_range(vstruct_next(entry), next); return 0; } return journal_validate_key(c, jset, entry, k, BKEY_TYPE_BTREE, "btree root", write); fsck_err: return ret; } static int journal_entry_validate_prio_ptrs(struct bch_fs *c, struct jset *jset, struct jset_entry *entry, int write) { /* obsolete, don't care: */ return 0; } static int journal_entry_validate_blacklist(struct bch_fs *c, struct jset *jset, struct jset_entry *entry, int write) { int ret = 0; if (journal_entry_err_on(le16_to_cpu(entry->u64s) != 1, c, "invalid journal seq blacklist entry: bad size")) { journal_entry_null_range(entry, vstruct_next(entry)); } fsck_err: return ret; } static int journal_entry_validate_blacklist_v2(struct bch_fs *c, struct jset *jset, struct jset_entry *entry, int write) { struct jset_entry_blacklist_v2 *bl_entry; int ret = 0; if (journal_entry_err_on(le16_to_cpu(entry->u64s) != 2, c, "invalid journal seq blacklist entry: bad size")) { journal_entry_null_range(entry, vstruct_next(entry)); } bl_entry = container_of(entry, struct jset_entry_blacklist_v2, entry); if (journal_entry_err_on(le64_to_cpu(bl_entry->start) > le64_to_cpu(bl_entry->end), c, "invalid journal seq blacklist entry: start > end")) { journal_entry_null_range(entry, vstruct_next(entry)); } fsck_err: return ret; } struct jset_entry_ops { int (*validate)(struct bch_fs *, struct jset *, struct jset_entry *, int); }; static const struct jset_entry_ops bch2_jset_entry_ops[] = { #define x(f, nr) \ [BCH_JSET_ENTRY_##f] = (struct jset_entry_ops) { \ .validate = journal_entry_validate_##f, \ }, BCH_JSET_ENTRY_TYPES() #undef x }; static int journal_entry_validate(struct bch_fs *c, struct jset *jset, struct jset_entry *entry, int write) { int ret = 0; if (entry->type >= BCH_JSET_ENTRY_NR) { journal_entry_err(c, "invalid journal entry type %u", entry->type); journal_entry_null_range(entry, vstruct_next(entry)); return 0; } ret = bch2_jset_entry_ops[entry->type].validate(c, jset, entry, write); fsck_err: return ret; } static int jset_validate_entries(struct bch_fs *c, struct jset *jset, int write) { struct jset_entry *entry; int ret = 0; vstruct_for_each(jset, entry) { if (journal_entry_err_on(vstruct_next(entry) > vstruct_last(jset), c, "journal entry extends past end of jset")) { jset->u64s = cpu_to_le32((u64 *) entry - jset->_data); break; } ret = journal_entry_validate(c, jset, entry, write); if (ret) break; } fsck_err: return ret; } static int jset_validate(struct bch_fs *c, struct jset *jset, u64 sector, unsigned bucket_sectors_left, unsigned sectors_read, int write) { size_t bytes = vstruct_bytes(jset); struct bch_csum csum; int ret = 0; if (le64_to_cpu(jset->magic) != jset_magic(c)) return JOURNAL_ENTRY_NONE; if (le32_to_cpu(jset->version) != BCACHE_JSET_VERSION) { bch_err(c, "unknown journal entry version %u", le32_to_cpu(jset->version)); return BCH_FSCK_UNKNOWN_VERSION; } if (journal_entry_err_on(bytes > bucket_sectors_left << 9, c, "journal entry too big (%zu bytes), sector %lluu", bytes, sector)) { /* XXX: note we might have missing journal entries */ return JOURNAL_ENTRY_BAD; } if (bytes > sectors_read << 9) return JOURNAL_ENTRY_REREAD; if (fsck_err_on(!bch2_checksum_type_valid(c, JSET_CSUM_TYPE(jset)), c, "journal entry with unknown csum type %llu sector %lluu", JSET_CSUM_TYPE(jset), sector)) return JOURNAL_ENTRY_BAD; csum = csum_vstruct(c, JSET_CSUM_TYPE(jset), journal_nonce(jset), jset); if (journal_entry_err_on(bch2_crc_cmp(csum, jset->csum), c, "journal checksum bad, sector %llu", sector)) { /* XXX: retry IO, when we start retrying checksum errors */ /* XXX: note we might have missing journal entries */ return JOURNAL_ENTRY_BAD; } bch2_encrypt(c, JSET_CSUM_TYPE(jset), journal_nonce(jset), jset->encrypted_start, vstruct_end(jset) - (void *) jset->encrypted_start); if (journal_entry_err_on(le64_to_cpu(jset->last_seq) > le64_to_cpu(jset->seq), c, "invalid journal entry: last_seq > seq")) jset->last_seq = jset->seq; return 0; fsck_err: return ret; } struct journal_read_buf { void *data; size_t size; }; static int journal_read_buf_realloc(struct journal_read_buf *b, size_t new_size) { void *n; /* the bios are sized for this many pages, max: */ if (new_size > JOURNAL_ENTRY_SIZE_MAX) return -ENOMEM; new_size = roundup_pow_of_two(new_size); n = kvpmalloc(new_size, GFP_KERNEL); if (!n) return -ENOMEM; kvpfree(b->data, b->size); b->data = n; b->size = new_size; return 0; } static int journal_read_bucket(struct bch_dev *ca, struct journal_read_buf *buf, struct journal_list *jlist, unsigned bucket, u64 *seq, bool *entries_found) { struct bch_fs *c = ca->fs; struct journal_device *ja = &ca->journal; struct jset *j = NULL; unsigned sectors, sectors_read = 0; u64 offset = bucket_to_sector(ca, ja->buckets[bucket]), end = offset + ca->mi.bucket_size; bool saw_bad = false; int ret = 0; pr_debug("reading %u", bucket); while (offset < end) { if (!sectors_read) { struct bio *bio; unsigned nr_bvecs; reread: sectors_read = min_t(unsigned, end - offset, buf->size >> 9); nr_bvecs = buf_pages(buf->data, sectors_read << 9); bio = bio_kmalloc(nr_bvecs, GFP_KERNEL); bio_init(bio, ca->disk_sb.bdev, bio->bi_inline_vecs, nr_bvecs, REQ_OP_READ); bio->bi_iter.bi_sector = offset; bio->bi_iter.bi_size = sectors_read << 9; bch2_bio_map(bio, buf->data); ret = submit_bio_wait(bio); kfree(bio); if (bch2_dev_io_err_on(ret, ca, "journal read from sector %llu", offset) || bch2_meta_read_fault("journal")) return -EIO; j = buf->data; } ret = jset_validate(c, j, offset, end - offset, sectors_read, READ); switch (ret) { case BCH_FSCK_OK: break; case JOURNAL_ENTRY_REREAD: if (vstruct_bytes(j) > buf->size) { ret = journal_read_buf_realloc(buf, vstruct_bytes(j)); if (ret) return ret; } goto reread; case JOURNAL_ENTRY_NONE: if (!saw_bad) return 0; sectors = c->opts.block_size; goto next_block; case JOURNAL_ENTRY_BAD: saw_bad = true; sectors = c->opts.block_size; goto next_block; default: return ret; } /* * This happens sometimes if we don't have discards on - * when we've partially overwritten a bucket with new * journal entries. We don't need the rest of the * bucket: */ if (le64_to_cpu(j->seq) < ja->bucket_seq[bucket]) return 0; ja->bucket_seq[bucket] = le64_to_cpu(j->seq); mutex_lock(&jlist->lock); ret = journal_entry_add(c, ca, jlist, j); mutex_unlock(&jlist->lock); switch (ret) { case JOURNAL_ENTRY_ADD_OK: *entries_found = true; break; case JOURNAL_ENTRY_ADD_OUT_OF_RANGE: break; default: return ret; } if (le64_to_cpu(j->seq) > *seq) *seq = le64_to_cpu(j->seq); sectors = vstruct_sectors(j, c->block_bits); next_block: pr_debug("next"); offset += sectors; sectors_read -= sectors; j = ((void *) j) + (sectors << 9); } return 0; } static void bch2_journal_read_device(struct closure *cl) { #define read_bucket(b) \ ({ \ bool entries_found = false; \ ret = journal_read_bucket(ca, &buf, jlist, b, &seq, \ &entries_found); \ if (ret) \ goto err; \ __set_bit(b, bitmap); \ entries_found; \ }) struct journal_device *ja = container_of(cl, struct journal_device, read); struct bch_dev *ca = container_of(ja, struct bch_dev, journal); struct journal_list *jlist = container_of(cl->parent, struct journal_list, cl); struct request_queue *q = bdev_get_queue(ca->disk_sb.bdev); struct journal_read_buf buf = { NULL, 0 }; unsigned long *bitmap; unsigned i, l, r; u64 seq = 0; int ret; if (!ja->nr) goto out; bitmap = kcalloc(BITS_TO_LONGS(ja->nr), ja->nr, GFP_KERNEL); if (!bitmap) { ret = -ENOMEM; goto err; } ret = journal_read_buf_realloc(&buf, PAGE_SIZE); if (ret) goto err; pr_debug("%u journal buckets", ja->nr); /* * If the device supports discard but not secure discard, we can't do * the fancy fibonacci hash/binary search because the live journal * entries might not form a contiguous range: */ for (i = 0; i < ja->nr; i++) read_bucket(i); goto search_done; if (!blk_queue_nonrot(q)) goto linear_scan; /* * Read journal buckets ordered by golden ratio hash to quickly * find a sequence of buckets with valid journal entries */ for (i = 0; i < ja->nr; i++) { l = (i * 2654435769U) % ja->nr; if (test_bit(l, bitmap)) break; if (read_bucket(l)) goto bsearch; } /* * If that fails, check all the buckets we haven't checked * already */ pr_debug("falling back to linear search"); linear_scan: for (l = find_first_zero_bit(bitmap, ja->nr); l < ja->nr; l = find_next_zero_bit(bitmap, ja->nr, l + 1)) if (read_bucket(l)) goto bsearch; /* no journal entries on this device? */ if (l == ja->nr) goto out; bsearch: /* Binary search */ r = find_next_bit(bitmap, ja->nr, l + 1); pr_debug("starting binary search, l %u r %u", l, r); while (l + 1 < r) { unsigned m = (l + r) >> 1; u64 cur_seq = seq; read_bucket(m); if (cur_seq != seq) l = m; else r = m; } search_done: /* * Find the journal bucket with the highest sequence number: * * If there's duplicate journal entries in multiple buckets (which * definitely isn't supposed to happen, but...) - make sure to start * cur_idx at the last of those buckets, so we don't deadlock trying to * allocate */ seq = 0; for (i = 0; i < ja->nr; i++) if (ja->bucket_seq[i] >= seq && ja->bucket_seq[i] != ja->bucket_seq[(i + 1) % ja->nr]) { /* * When journal_next_bucket() goes to allocate for * the first time, it'll use the bucket after * ja->cur_idx */ ja->cur_idx = i; seq = ja->bucket_seq[i]; } /* * Set last_idx to indicate the entire journal is full and needs to be * reclaimed - journal reclaim will immediately reclaim whatever isn't * pinned when it first runs: */ ja->last_idx = (ja->cur_idx + 1) % ja->nr; /* * Read buckets in reverse order until we stop finding more journal * entries: */ for (i = (ja->cur_idx + ja->nr - 1) % ja->nr; i != ja->cur_idx; i = (i + ja->nr - 1) % ja->nr) if (!test_bit(i, bitmap) && !read_bucket(i)) break; out: kvpfree(buf.data, buf.size); kfree(bitmap); percpu_ref_put(&ca->io_ref); closure_return(cl); return; err: mutex_lock(&jlist->lock); jlist->ret = ret; mutex_unlock(&jlist->lock); goto out; #undef read_bucket } void bch2_journal_entries_free(struct list_head *list) { while (!list_empty(list)) { struct journal_replay *i = list_first_entry(list, struct journal_replay, list); list_del(&i->list); kvpfree(i, offsetof(struct journal_replay, j) + vstruct_bytes(&i->j)); } } int bch2_journal_set_seq(struct bch_fs *c, u64 last_seq, u64 end_seq) { struct journal *j = &c->journal; struct journal_entry_pin_list *p; u64 seq, nr = end_seq - last_seq + 1; if (nr > j->pin.size) { free_fifo(&j->pin); init_fifo(&j->pin, roundup_pow_of_two(nr), GFP_KERNEL); if (!j->pin.data) { bch_err(c, "error reallocating journal fifo (%llu open entries)", nr); return -ENOMEM; } } atomic64_set(&j->seq, end_seq); j->last_seq_ondisk = last_seq; j->pin.front = last_seq; j->pin.back = end_seq + 1; fifo_for_each_entry_ptr(p, &j->pin, seq) { INIT_LIST_HEAD(&p->list); INIT_LIST_HEAD(&p->flushed); atomic_set(&p->count, 0); p->devs.nr = 0; } return 0; } int bch2_journal_read(struct bch_fs *c, struct list_head *list) { struct journal *j = &c->journal; struct journal_list jlist; struct journal_replay *i; struct journal_entry_pin_list *p; struct bch_dev *ca; u64 cur_seq, end_seq; unsigned iter; size_t keys = 0, entries = 0; bool degraded = false; int ret = 0; closure_init_stack(&jlist.cl); mutex_init(&jlist.lock); jlist.head = list; jlist.ret = 0; for_each_member_device(ca, c, iter) { if (!test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) && !(bch2_dev_has_data(c, ca) & (1 << BCH_DATA_JOURNAL))) continue; if ((ca->mi.state == BCH_MEMBER_STATE_RW || ca->mi.state == BCH_MEMBER_STATE_RO) && percpu_ref_tryget(&ca->io_ref)) closure_call(&ca->journal.read, bch2_journal_read_device, system_unbound_wq, &jlist.cl); else degraded = true; } closure_sync(&jlist.cl); if (jlist.ret) return jlist.ret; if (list_empty(list)){ bch_err(c, "no journal entries found"); return BCH_FSCK_REPAIR_IMPOSSIBLE; } list_for_each_entry(i, list, list) { ret = jset_validate_entries(c, &i->j, READ); if (ret) goto fsck_err; /* * If we're mounting in degraded mode - if we didn't read all * the devices - this is wrong: */ if (!degraded && (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) || fsck_err_on(!bch2_replicas_marked(c, BCH_DATA_JOURNAL, i->devs), c, "superblock not marked as containing replicas (type %u)", BCH_DATA_JOURNAL))) { ret = bch2_mark_replicas(c, BCH_DATA_JOURNAL, i->devs); if (ret) return ret; } } i = list_last_entry(list, struct journal_replay, list); ret = bch2_journal_set_seq(c, le64_to_cpu(i->j.last_seq), le64_to_cpu(i->j.seq)); if (ret) return ret; mutex_lock(&j->blacklist_lock); list_for_each_entry(i, list, list) { p = journal_seq_pin(j, le64_to_cpu(i->j.seq)); atomic_set(&p->count, 1); p->devs = i->devs; if (bch2_journal_seq_blacklist_read(j, i)) { mutex_unlock(&j->blacklist_lock); return -ENOMEM; } } mutex_unlock(&j->blacklist_lock); cur_seq = journal_last_seq(j); end_seq = le64_to_cpu(list_last_entry(list, struct journal_replay, list)->j.seq); list_for_each_entry(i, list, list) { struct jset_entry *entry; struct bkey_i *k, *_n; bool blacklisted; mutex_lock(&j->blacklist_lock); while (cur_seq < le64_to_cpu(i->j.seq) && bch2_journal_seq_blacklist_find(j, cur_seq)) cur_seq++; blacklisted = bch2_journal_seq_blacklist_find(j, le64_to_cpu(i->j.seq)); mutex_unlock(&j->blacklist_lock); fsck_err_on(blacklisted, c, "found blacklisted journal entry %llu", le64_to_cpu(i->j.seq)); fsck_err_on(le64_to_cpu(i->j.seq) != cur_seq, c, "journal entries %llu-%llu missing! (replaying %llu-%llu)", cur_seq, le64_to_cpu(i->j.seq) - 1, journal_last_seq(j), end_seq); cur_seq = le64_to_cpu(i->j.seq) + 1; for_each_jset_key(k, _n, entry, &i->j) keys++; entries++; } bch_info(c, "journal read done, %zu keys in %zu entries, seq %llu", keys, entries, journal_cur_seq(j)); fsck_err: return ret; } /* journal replay: */ int bch2_journal_replay(struct bch_fs *c, struct list_head *list) { struct journal *j = &c->journal; struct journal_entry_pin_list *pin_list; struct bkey_i *k, *_n; struct jset_entry *entry; struct journal_replay *i, *n; int ret = 0; list_for_each_entry_safe(i, n, list, list) { j->replay_journal_seq = le64_to_cpu(i->j.seq); for_each_jset_key(k, _n, entry, &i->j) { if (entry->btree_id == BTREE_ID_ALLOC) { /* * allocation code handles replay for * BTREE_ID_ALLOC keys: */ ret = bch2_alloc_replay_key(c, k->k.p); } else { /* * We might cause compressed extents to be * split, so we need to pass in a * disk_reservation: */ struct disk_reservation disk_res = bch2_disk_reservation_init(c, 0); ret = bch2_btree_insert(c, entry->btree_id, k, &disk_res, NULL, BTREE_INSERT_NOFAIL| BTREE_INSERT_JOURNAL_REPLAY); } if (ret) { bch_err(c, "journal replay: error %d while replaying key", ret); goto err; } cond_resched(); } pin_list = journal_seq_pin(j, j->replay_journal_seq); if (atomic_dec_and_test(&pin_list->count)) journal_wake(j); } j->replay_journal_seq = 0; bch2_journal_set_replay_done(j); bch2_journal_flush_all_pins(j); ret = bch2_journal_error(j); err: bch2_journal_entries_free(list); return ret; } /* journal write: */ static void bch2_journal_add_btree_root(struct journal_buf *buf, enum btree_id id, struct bkey_i *k, unsigned level) { struct jset_entry *entry; entry = bch2_journal_add_entry_noreservation(buf, k->k.u64s); entry->type = BCH_JSET_ENTRY_btree_root; entry->btree_id = id; entry->level = level; memcpy_u64s(entry->_data, k, k->k.u64s); } static unsigned journal_dev_buckets_available(struct journal *j, struct bch_dev *ca) { struct journal_device *ja = &ca->journal; unsigned next = (ja->cur_idx + 1) % ja->nr; unsigned available = (ja->last_idx + ja->nr - next) % ja->nr; /* * Hack to avoid a deadlock during journal replay: * journal replay might require setting a new btree * root, which requires writing another journal entry - * thus, if the journal is full (and this happens when * replaying the first journal bucket's entries) we're * screwed. * * So don't let the journal fill up unless we're in * replay: */ if (test_bit(JOURNAL_REPLAY_DONE, &j->flags)) available = max((int) available - 2, 0); /* * Don't use the last bucket unless writing the new last_seq * will make another bucket available: */ if (ja->bucket_seq[ja->last_idx] >= journal_last_seq(j)) available = max((int) available - 1, 0); return available; } /* returns number of sectors available for next journal entry: */ int bch2_journal_entry_sectors(struct journal *j) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct bch_dev *ca; struct bkey_s_extent e = bkey_i_to_s_extent(&j->key); unsigned sectors_available = UINT_MAX; unsigned i, nr_online = 0, nr_devs = 0; lockdep_assert_held(&j->lock); rcu_read_lock(); for_each_member_device_rcu(ca, c, i, &c->rw_devs[BCH_DATA_JOURNAL]) { struct journal_device *ja = &ca->journal; unsigned buckets_required = 0; if (!ja->nr) continue; sectors_available = min_t(unsigned, sectors_available, ca->mi.bucket_size); /* * Note that we don't allocate the space for a journal entry * until we write it out - thus, if we haven't started the write * for the previous entry we have to make sure we have space for * it too: */ if (bch2_extent_has_device(e.c, ca->dev_idx)) { if (j->prev_buf_sectors > ja->sectors_free) buckets_required++; if (j->prev_buf_sectors + sectors_available > ja->sectors_free) buckets_required++; } else { if (j->prev_buf_sectors + sectors_available > ca->mi.bucket_size) buckets_required++; buckets_required++; } if (journal_dev_buckets_available(j, ca) >= buckets_required) nr_devs++; nr_online++; } rcu_read_unlock(); if (nr_online < c->opts.metadata_replicas_required) return -EROFS; if (nr_devs < min_t(unsigned, nr_online, c->opts.metadata_replicas)) return 0; return sectors_available; } /** * journal_next_bucket - move on to the next journal bucket if possible */ static int journal_write_alloc(struct journal *j, struct journal_buf *w, unsigned sectors) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct bkey_s_extent e; struct bch_extent_ptr *ptr; struct journal_device *ja; struct bch_dev *ca; struct dev_alloc_list devs_sorted; unsigned i, replicas, replicas_want = READ_ONCE(c->opts.metadata_replicas); spin_lock(&j->lock); e = bkey_i_to_s_extent(&j->key); /* * Drop any pointers to devices that have been removed, are no longer * empty, or filled up their current journal bucket: * * Note that a device may have had a small amount of free space (perhaps * one sector) that wasn't enough for the smallest possible journal * entry - that's why we drop pointers to devices <= current free space, * i.e. whichever device was limiting the current journal entry size. */ bch2_extent_drop_ptrs(e, ptr, ({ ca = bch_dev_bkey_exists(c, ptr->dev); ca->mi.state != BCH_MEMBER_STATE_RW || ca->journal.sectors_free <= sectors; })); extent_for_each_ptr(e, ptr) { ca = bch_dev_bkey_exists(c, ptr->dev); BUG_ON(ca->mi.state != BCH_MEMBER_STATE_RW || ca->journal.sectors_free <= sectors); ca->journal.sectors_free -= sectors; } replicas = bch2_extent_nr_ptrs(e.c); rcu_read_lock(); devs_sorted = bch2_wp_alloc_list(c, &j->wp, &c->rw_devs[BCH_DATA_JOURNAL]); for (i = 0; i < devs_sorted.nr; i++) { ca = rcu_dereference(c->devs[devs_sorted.devs[i]]); if (!ca) continue; if (!ca->mi.durability) continue; ja = &ca->journal; if (!ja->nr) continue; if (replicas >= replicas_want) break; /* * Check that we can use this device, and aren't already using * it: */ if (bch2_extent_has_device(e.c, ca->dev_idx) || !journal_dev_buckets_available(j, ca) || sectors > ca->mi.bucket_size) continue; j->wp.next_alloc[ca->dev_idx] += U32_MAX; bch2_wp_rescale(c, ca, &j->wp); ja->sectors_free = ca->mi.bucket_size - sectors; ja->cur_idx = (ja->cur_idx + 1) % ja->nr; ja->bucket_seq[ja->cur_idx] = le64_to_cpu(w->data->seq); extent_ptr_append(bkey_i_to_extent(&j->key), (struct bch_extent_ptr) { .offset = bucket_to_sector(ca, ja->buckets[ja->cur_idx]), .dev = ca->dev_idx, }); replicas += ca->mi.durability; } rcu_read_unlock(); j->prev_buf_sectors = 0; bkey_copy(&w->key, &j->key); spin_unlock(&j->lock); if (replicas < c->opts.metadata_replicas_required) return -EROFS; BUG_ON(!replicas); return 0; } static void journal_write_compact(struct jset *jset) { struct jset_entry *i, *next, *prev = NULL; /* * Simple compaction, dropping empty jset_entries (from journal * reservations that weren't fully used) and merging jset_entries that * can be. * * If we wanted to be really fancy here, we could sort all the keys in * the jset and drop keys that were overwritten - probably not worth it: */ vstruct_for_each_safe(jset, i, next) { unsigned u64s = le16_to_cpu(i->u64s); /* Empty entry: */ if (!u64s) continue; /* Can we merge with previous entry? */ if (prev && i->btree_id == prev->btree_id && i->level == prev->level && i->type == prev->type && i->type == BCH_JSET_ENTRY_btree_keys && le16_to_cpu(prev->u64s) + u64s <= U16_MAX) { memmove_u64s_down(vstruct_next(prev), i->_data, u64s); le16_add_cpu(&prev->u64s, u64s); continue; } /* Couldn't merge, move i into new position (after prev): */ prev = prev ? vstruct_next(prev) : jset->start; if (i != prev) memmove_u64s_down(prev, i, jset_u64s(u64s)); } prev = prev ? vstruct_next(prev) : jset->start; jset->u64s = cpu_to_le32((u64 *) prev - jset->_data); } static void journal_buf_realloc(struct journal *j, struct journal_buf *buf) { /* we aren't holding j->lock: */ unsigned new_size = READ_ONCE(j->buf_size_want); void *new_buf; if (buf->size >= new_size) return; new_buf = kvpmalloc(new_size, GFP_NOIO|__GFP_NOWARN); if (!new_buf) return; memcpy(new_buf, buf->data, buf->size); kvpfree(buf->data, buf->size); buf->data = new_buf; buf->size = new_size; } static void journal_write_done(struct closure *cl) { struct journal *j = container_of(cl, struct journal, io); struct bch_fs *c = container_of(j, struct bch_fs, journal); struct journal_buf *w = journal_prev_buf(j); struct bch_devs_list devs = bch2_extent_devs(bkey_i_to_s_c_extent(&w->key)); u64 seq = le64_to_cpu(w->data->seq); u64 last_seq = le64_to_cpu(w->data->last_seq); bch2_time_stats_update(j->write_time, j->write_start_time); if (!devs.nr) { bch_err(c, "unable to write journal to sufficient devices"); goto err; } if (bch2_mark_replicas(c, BCH_DATA_JOURNAL, devs)) goto err; spin_lock(&j->lock); j->seq_ondisk = seq; j->last_seq_ondisk = last_seq; if (seq >= j->pin.front) journal_seq_pin(j, seq)->devs = devs; /* * Updating last_seq_ondisk may let bch2_journal_reclaim_work() discard * more buckets: * * Must come before signaling write completion, for * bch2_fs_journal_stop(): */ mod_delayed_work(system_freezable_wq, &j->reclaim_work, 0); out: /* also must come before signalling write completion: */ closure_debug_destroy(cl); BUG_ON(!j->reservations.prev_buf_unwritten); atomic64_sub(((union journal_res_state) { .prev_buf_unwritten = 1 }).v, &j->reservations.counter); closure_wake_up(&w->wait); journal_wake(j); if (test_bit(JOURNAL_NEED_WRITE, &j->flags)) mod_delayed_work(system_freezable_wq, &j->write_work, 0); spin_unlock(&j->lock); return; err: bch2_fatal_error(c); bch2_journal_halt(j); spin_lock(&j->lock); goto out; } static void journal_write_endio(struct bio *bio) { struct bch_dev *ca = bio->bi_private; struct journal *j = &ca->fs->journal; if (bch2_dev_io_err_on(bio->bi_status, ca, "journal write") || bch2_meta_write_fault("journal")) { struct journal_buf *w = journal_prev_buf(j); unsigned long flags; spin_lock_irqsave(&j->err_lock, flags); bch2_extent_drop_device(bkey_i_to_s_extent(&w->key), ca->dev_idx); spin_unlock_irqrestore(&j->err_lock, flags); } closure_put(&j->io); percpu_ref_put(&ca->io_ref); } void bch2_journal_write(struct closure *cl) { struct journal *j = container_of(cl, struct journal, io); struct bch_fs *c = container_of(j, struct bch_fs, journal); struct bch_dev *ca; struct journal_buf *w = journal_prev_buf(j); struct jset *jset; struct bio *bio; struct bch_extent_ptr *ptr; unsigned i, sectors, bytes; journal_buf_realloc(j, w); jset = w->data; j->write_start_time = local_clock(); mutex_lock(&c->btree_root_lock); for (i = 0; i < BTREE_ID_NR; i++) { struct btree_root *r = &c->btree_roots[i]; if (r->alive) bch2_journal_add_btree_root(w, i, &r->key, r->level); } c->btree_roots_dirty = false; mutex_unlock(&c->btree_root_lock); journal_write_compact(jset); jset->read_clock = cpu_to_le16(c->bucket_clock[READ].hand); jset->write_clock = cpu_to_le16(c->bucket_clock[WRITE].hand); jset->magic = cpu_to_le64(jset_magic(c)); jset->version = cpu_to_le32(BCACHE_JSET_VERSION); SET_JSET_BIG_ENDIAN(jset, CPU_BIG_ENDIAN); SET_JSET_CSUM_TYPE(jset, bch2_meta_checksum_type(c)); if (bch2_csum_type_is_encryption(JSET_CSUM_TYPE(jset)) && jset_validate_entries(c, jset, WRITE)) goto err; bch2_encrypt(c, JSET_CSUM_TYPE(jset), journal_nonce(jset), jset->encrypted_start, vstruct_end(jset) - (void *) jset->encrypted_start); jset->csum = csum_vstruct(c, JSET_CSUM_TYPE(jset), journal_nonce(jset), jset); if (!bch2_csum_type_is_encryption(JSET_CSUM_TYPE(jset)) && jset_validate_entries(c, jset, WRITE)) goto err; sectors = vstruct_sectors(jset, c->block_bits); BUG_ON(sectors > j->prev_buf_sectors); bytes = vstruct_bytes(w->data); memset((void *) w->data + bytes, 0, (sectors << 9) - bytes); if (journal_write_alloc(j, w, sectors)) { bch2_journal_halt(j); bch_err(c, "Unable to allocate journal write"); bch2_fatal_error(c); continue_at(cl, journal_write_done, system_highpri_wq); return; } /* * XXX: we really should just disable the entire journal in nochanges * mode */ if (c->opts.nochanges) goto no_io; extent_for_each_ptr(bkey_i_to_s_extent(&w->key), ptr) { ca = bch_dev_bkey_exists(c, ptr->dev); if (!percpu_ref_tryget(&ca->io_ref)) { /* XXX: fix this */ bch_err(c, "missing device for journal write\n"); continue; } this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_JOURNAL], sectors); bio = ca->journal.bio; bio_reset(bio, ca->disk_sb.bdev, REQ_OP_WRITE|REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA); bio->bi_iter.bi_sector = ptr->offset; bio->bi_iter.bi_size = sectors << 9; bio->bi_end_io = journal_write_endio; bio->bi_private = ca; bch2_bio_map(bio, jset); trace_journal_write(bio); closure_bio_submit(bio, cl); ca->journal.bucket_seq[ca->journal.cur_idx] = le64_to_cpu(w->data->seq); } for_each_rw_member(ca, c, i) if (journal_flushes_device(ca) && !bch2_extent_has_device(bkey_i_to_s_c_extent(&w->key), i)) { percpu_ref_get(&ca->io_ref); bio = ca->journal.bio; bio_reset(bio, ca->disk_sb.bdev, REQ_OP_FLUSH); bio->bi_end_io = journal_write_endio; bio->bi_private = ca; closure_bio_submit(bio, cl); } no_io: extent_for_each_ptr(bkey_i_to_s_extent(&j->key), ptr) ptr->offset += sectors; bch2_bucket_seq_cleanup(c); continue_at(cl, journal_write_done, system_highpri_wq); return; err: bch2_inconsistent_error(c); continue_at(cl, journal_write_done, system_highpri_wq); }