// SPDX-License-Identifier: GPL-2.0 /* * Moving/copying garbage collector * * Copyright 2012 Google, Inc. */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "btree_iter.h" #include "btree_update.h" #include "buckets.h" #include "clock.h" #include "disk_groups.h" #include "errcode.h" #include "error.h" #include "extents.h" #include "eytzinger.h" #include "io.h" #include "keylist.h" #include "move.h" #include "movinggc.h" #include "super-io.h" #include "trace.h" #include #include #include #include #include #include static inline int fragmentation_cmp(copygc_heap *heap, struct copygc_heap_entry l, struct copygc_heap_entry r) { return cmp_int(l.fragmentation, r.fragmentation); } static int find_buckets_to_copygc(struct bch_fs *c) { copygc_heap *h = &c->copygc_heap; struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; int ret; bch2_trans_init(&trans, c, 0, 0); /* * Find buckets with lowest sector counts, skipping completely * empty buckets, by building a maxheap sorted by sector count, * and repeatedly replacing the maximum element until all * buckets have been visited. */ h->used = 0; for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN, BTREE_ITER_PREFETCH, k, ret) { struct bch_dev *ca = bch_dev_bkey_exists(c, iter.pos.inode); struct copygc_heap_entry e; struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a; a = bch2_alloc_to_v4(k, &a_convert); if ((a->data_type != BCH_DATA_btree && a->data_type != BCH_DATA_user) || a->dirty_sectors >= ca->mi.bucket_size || bch2_bucket_is_open(c, iter.pos.inode, iter.pos.offset)) continue; e = (struct copygc_heap_entry) { .dev = iter.pos.inode, .gen = a->gen, .replicas = 1 + a->stripe_redundancy, .fragmentation = div_u64((u64) a->dirty_sectors * (1ULL << 31), ca->mi.bucket_size), .sectors = a->dirty_sectors, .bucket = iter.pos.offset, }; heap_add_or_replace(h, e, -fragmentation_cmp, NULL); } bch2_trans_iter_exit(&trans, &iter); bch2_trans_exit(&trans); return ret; } static int bch2_copygc(struct bch_fs *c) { copygc_heap *h = &c->copygc_heap; struct copygc_heap_entry e; struct bch_move_stats move_stats; struct bch_dev *ca; unsigned dev_idx; size_t heap_size = 0; struct moving_context ctxt; struct data_update_opts data_opts = { .btree_insert_flags = BTREE_INSERT_USE_RESERVE|JOURNAL_WATERMARK_copygc, }; int ret = 0; bch2_move_stats_init(&move_stats, "copygc"); for_each_rw_member(ca, c, dev_idx) heap_size += ca->mi.nbuckets >> 7; if (h->size < heap_size) { free_heap(&c->copygc_heap); if (!init_heap(&c->copygc_heap, heap_size, GFP_KERNEL)) { bch_err(c, "error allocating copygc heap"); return 0; } } ret = find_buckets_to_copygc(c); if (ret) { bch2_fs_fatal_error(c, "error walking buckets to copygc!"); return ret; } if (!h->used) { s64 wait = S64_MAX, dev_wait; u64 dev_min_wait_fragmented = 0; u64 dev_min_wait_allowed = 0; int dev_min_wait = -1; for_each_rw_member(ca, c, dev_idx) { struct bch_dev_usage usage = bch2_dev_usage_read(ca); s64 allowed = ((__dev_buckets_available(ca, usage, RESERVE_none) * ca->mi.bucket_size) >> 1); s64 fragmented = usage.d[BCH_DATA_user].fragmented; dev_wait = max(0LL, allowed - fragmented); if (dev_min_wait < 0 || dev_wait < wait) { dev_min_wait = dev_idx; dev_min_wait_fragmented = fragmented; dev_min_wait_allowed = allowed; } } bch_err_ratelimited(c, "copygc requested to run but found no buckets to move! dev %u fragmented %llu allowed %llu", dev_min_wait, dev_min_wait_fragmented, dev_min_wait_allowed); return 0; } heap_resort(h, fragmentation_cmp, NULL); bch2_moving_ctxt_init(&ctxt, c, NULL, &move_stats, writepoint_ptr(&c->copygc_write_point), false); /* not correct w.r.t. device removal */ while (h->used && !ret) { BUG_ON(!heap_pop(h, e, -fragmentation_cmp, NULL)); ret = __bch2_evacuate_bucket(&ctxt, POS(e.dev, e.bucket), e.gen, data_opts); } bch2_moving_ctxt_exit(&ctxt); if (ret < 0 && !bch2_err_matches(ret, EROFS)) bch_err(c, "error from bch2_move_data() in copygc: %s", bch2_err_str(ret)); trace_and_count(c, copygc, c, atomic64_read(&move_stats.sectors_moved), 0, 0, 0); return ret; } /* * Copygc runs when the amount of fragmented data is above some arbitrary * threshold: * * The threshold at the limit - when the device is full - is the amount of space * we reserved in bch2_recalc_capacity; we can't have more than that amount of * disk space stranded due to fragmentation and store everything we have * promised to store. * * But we don't want to be running copygc unnecessarily when the device still * has plenty of free space - rather, we want copygc to smoothly run every so * often and continually reduce the amount of fragmented space as the device * fills up. So, we increase the threshold by half the current free space. */ unsigned long bch2_copygc_wait_amount(struct bch_fs *c) { struct bch_dev *ca; unsigned dev_idx; s64 wait = S64_MAX, fragmented_allowed, fragmented; for_each_rw_member(ca, c, dev_idx) { struct bch_dev_usage usage = bch2_dev_usage_read(ca); fragmented_allowed = ((__dev_buckets_available(ca, usage, RESERVE_none) * ca->mi.bucket_size) >> 1); fragmented = usage.d[BCH_DATA_user].fragmented; wait = min(wait, max(0LL, fragmented_allowed - fragmented)); } return wait; } static int bch2_copygc_thread(void *arg) { struct bch_fs *c = arg; struct io_clock *clock = &c->io_clock[WRITE]; u64 last, wait; int ret = 0; set_freezable(); while (!ret && !kthread_should_stop()) { cond_resched(); if (kthread_wait_freezable(c->copy_gc_enabled)) break; last = atomic64_read(&clock->now); wait = bch2_copygc_wait_amount(c); if (wait > clock->max_slop) { trace_and_count(c, copygc_wait, c, wait, last + wait); c->copygc_wait = last + wait; bch2_kthread_io_clock_wait(clock, last + wait, MAX_SCHEDULE_TIMEOUT); continue; } c->copygc_wait = 0; c->copygc_running = true; ret = bch2_copygc(c); c->copygc_running = false; wake_up(&c->copygc_running_wq); } return 0; } void bch2_copygc_stop(struct bch_fs *c) { if (c->copygc_thread) { kthread_stop(c->copygc_thread); put_task_struct(c->copygc_thread); } c->copygc_thread = NULL; } int bch2_copygc_start(struct bch_fs *c) { struct task_struct *t; int ret; if (c->copygc_thread) return 0; if (c->opts.nochanges) return 0; if (bch2_fs_init_fault("copygc_start")) return -ENOMEM; t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name); ret = PTR_ERR_OR_ZERO(t); if (ret) { bch_err(c, "error creating copygc thread: %s", bch2_err_str(ret)); return ret; } get_task_struct(t); c->copygc_thread = t; wake_up_process(c->copygc_thread); return 0; } void bch2_fs_copygc_init(struct bch_fs *c) { init_waitqueue_head(&c->copygc_running_wq); c->copygc_running = false; }