/* * linux/fs/block_dev.c * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE */ #include <linux/init.h> #include <linux/mm.h> #include <linux/fcntl.h> #include <linux/slab.h> #include <linux/kmod.h> #include <linux/major.h> #include <linux/smp_lock.h> #include <linux/device_cgroup.h> #include <linux/highmem.h> #include <linux/blkdev.h> #include <linux/module.h> #include <linux/blkpg.h> #include <linux/buffer_head.h> #include <linux/pagevec.h> #include <linux/writeback.h> #include <linux/mpage.h> #include <linux/mount.h> #include <linux/uio.h> #include <linux/namei.h> #include <linux/log2.h> #include <linux/kmemleak.h> #include <asm/uaccess.h> #include "internal.h" struct bdev_inode { struct block_device bdev; struct inode vfs_inode; }; static const struct address_space_operations def_blk_aops; static inline struct bdev_inode *BDEV_I(struct inode *inode) { return container_of(inode, struct bdev_inode, vfs_inode); } inline struct block_device *I_BDEV(struct inode *inode) { return &BDEV_I(inode)->bdev; } EXPORT_SYMBOL(I_BDEV); static sector_t max_block(struct block_device *bdev) { sector_t retval = ~((sector_t)0); loff_t sz = i_size_read(bdev->bd_inode); if (sz) { unsigned int size = block_size(bdev); unsigned int sizebits = blksize_bits(size); retval = (sz >> sizebits); } return retval; } /* Kill _all_ buffers and pagecache , dirty or not.. */ static void kill_bdev(struct block_device *bdev) { if (bdev->bd_inode->i_mapping->nrpages == 0) return; invalidate_bh_lrus(); truncate_inode_pages(bdev->bd_inode->i_mapping, 0); } int set_blocksize(struct block_device *bdev, int size) { /* Size must be a power of two, and between 512 and PAGE_SIZE */ if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) return -EINVAL; /* Size cannot be smaller than the size supported by the device */ if (size < bdev_logical_block_size(bdev)) return -EINVAL; /* Don't change the size if it is same as current */ if (bdev->bd_block_size != size) { sync_blockdev(bdev); bdev->bd_block_size = size; bdev->bd_inode->i_blkbits = blksize_bits(size); kill_bdev(bdev); } return 0; } EXPORT_SYMBOL(set_blocksize); int sb_set_blocksize(struct super_block *sb, int size) { if (set_blocksize(sb->s_bdev, size)) return 0; /* If we get here, we know size is power of two * and it's value is between 512 and PAGE_SIZE */ sb->s_blocksize = size; sb->s_blocksize_bits = blksize_bits(size); return sb->s_blocksize; } EXPORT_SYMBOL(sb_set_blocksize); int sb_min_blocksize(struct super_block *sb, int size) { int minsize = bdev_logical_block_size(sb->s_bdev); if (size < minsize) size = minsize; return sb_set_blocksize(sb, size); } EXPORT_SYMBOL(sb_min_blocksize); static int blkdev_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh, int create) { if (iblock >= max_block(I_BDEV(inode))) { if (create) return -EIO; /* * for reads, we're just trying to fill a partial page. * return a hole, they will have to call get_block again * before they can fill it, and they will get -EIO at that * time */ return 0; } bh->b_bdev = I_BDEV(inode); bh->b_blocknr = iblock; set_buffer_mapped(bh); return 0; } static int blkdev_get_blocks(struct inode *inode, sector_t iblock, struct buffer_head *bh, int create) { sector_t end_block = max_block(I_BDEV(inode)); unsigned long max_blocks = bh->b_size >> inode->i_blkbits; if ((iblock + max_blocks) > end_block) { max_blocks = end_block - iblock; if ((long)max_blocks <= 0) { if (create) return -EIO; /* write fully beyond EOF */ /* * It is a read which is fully beyond EOF. We return * a !buffer_mapped buffer */ max_blocks = 0; } } bh->b_bdev = I_BDEV(inode); bh->b_blocknr = iblock; bh->b_size = max_blocks << inode->i_blkbits; if (max_blocks) set_buffer_mapped(bh); return 0; } static ssize_t blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t offset, unsigned long nr_segs) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; return blockdev_direct_IO_no_locking(rw, iocb, inode, I_BDEV(inode), iov, offset, nr_segs, blkdev_get_blocks, NULL); } int __sync_blockdev(struct block_device *bdev, int wait) { if (!bdev) return 0; if (!wait) return filemap_flush(bdev->bd_inode->i_mapping); return filemap_write_and_wait(bdev->bd_inode->i_mapping); } /* * Write out and wait upon all the dirty data associated with a block * device via its mapping. Does not take the superblock lock. */ int sync_blockdev(struct block_device *bdev) { return __sync_blockdev(bdev, 1); } EXPORT_SYMBOL(sync_blockdev); /* * Write out and wait upon all dirty data associated with this * device. Filesystem data as well as the underlying block * device. Takes the superblock lock. */ int fsync_bdev(struct block_device *bdev) { struct super_block *sb = get_super(bdev); if (sb) { int res = sync_filesystem(sb); drop_super(sb); return res; } return sync_blockdev(bdev); } EXPORT_SYMBOL(fsync_bdev); /** * freeze_bdev -- lock a filesystem and force it into a consistent state * @bdev: blockdevice to lock * * If a superblock is found on this device, we take the s_umount semaphore * on it to make sure nobody unmounts until the snapshot creation is done. * The reference counter (bd_fsfreeze_count) guarantees that only the last * unfreeze process can unfreeze the frozen filesystem actually when multiple * freeze requests arrive simultaneously. It counts up in freeze_bdev() and * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze * actually. */ struct super_block *freeze_bdev(struct block_device *bdev) { struct super_block *sb; int error = 0; mutex_lock(&bdev->bd_fsfreeze_mutex); if (++bdev->bd_fsfreeze_count > 1) { /* * We don't even need to grab a reference - the first call * to freeze_bdev grab an active reference and only the last * thaw_bdev drops it. */ sb = get_super(bdev); drop_super(sb); mutex_unlock(&bdev->bd_fsfreeze_mutex); return sb; } sb = get_active_super(bdev); if (!sb) goto out; error = freeze_super(sb); if (error) { deactivate_super(sb); bdev->bd_fsfreeze_count--; mutex_unlock(&bdev->bd_fsfreeze_mutex); return ERR_PTR(error); } deactivate_super(sb); out: sync_blockdev(bdev); mutex_unlock(&bdev->bd_fsfreeze_mutex); return sb; /* thaw_bdev releases s->s_umount */ } EXPORT_SYMBOL(freeze_bdev); /** * thaw_bdev -- unlock filesystem * @bdev: blockdevice to unlock * @sb: associated superblock * * Unlocks the filesystem and marks it writeable again after freeze_bdev(). */ int thaw_bdev(struct block_device *bdev, struct super_block *sb) { int error = -EINVAL; mutex_lock(&bdev->bd_fsfreeze_mutex); if (!bdev->bd_fsfreeze_count) goto out; error = 0; if (--bdev->bd_fsfreeze_count > 0) goto out; if (!sb) goto out; error = thaw_super(sb); if (error) { bdev->bd_fsfreeze_count++; mutex_unlock(&bdev->bd_fsfreeze_mutex); return error; } out: mutex_unlock(&bdev->bd_fsfreeze_mutex); return 0; } EXPORT_SYMBOL(thaw_bdev); static int blkdev_writepage(struct page *page, struct writeback_control *wbc) { return block_write_full_page(page, blkdev_get_block, wbc); } static int blkdev_readpage(struct file * file, struct page * page) { return block_read_full_page(page, blkdev_get_block); } static int blkdev_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { *pagep = NULL; return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, blkdev_get_block); } static int blkdev_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { int ret; ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); unlock_page(page); page_cache_release(page); return ret; } /* * private llseek: * for a block special file file->f_path.dentry->d_inode->i_size is zero * so we compute the size by hand (just as in block_read/write above) */ static loff_t block_llseek(struct file *file, loff_t offset, int origin) { struct inode *bd_inode = file->f_mapping->host; loff_t size; loff_t retval; mutex_lock(&bd_inode->i_mutex); size = i_size_read(bd_inode); switch (origin) { case 2: offset += size; break; case 1: offset += file->f_pos; } retval = -EINVAL; if (offset >= 0 && offset <= size) { if (offset != file->f_pos) { file->f_pos = offset; } retval = offset; } mutex_unlock(&bd_inode->i_mutex); return retval; } /* * Filp is never NULL; the only case when ->fsync() is called with * NULL first argument is nfsd_sync_dir() and that's not a directory. */ int blkdev_fsync(struct file *filp, struct dentry *dentry, int datasync) { struct inode *bd_inode = filp->f_mapping->host; struct block_device *bdev = I_BDEV(bd_inode); int error; /* * There is no need to serialise calls to blkdev_issue_flush with * i_mutex and doing so causes performance issues with concurrent * O_SYNC writers to a block device. */ mutex_unlock(&bd_inode->i_mutex); error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL, BLKDEV_IFL_WAIT); if (error == -EOPNOTSUPP) error = 0; mutex_lock(&bd_inode->i_mutex); return error; } EXPORT_SYMBOL(blkdev_fsync); /* * pseudo-fs */ static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); static struct kmem_cache * bdev_cachep __read_mostly; static struct inode *bdev_alloc_inode(struct super_block *sb) { struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); if (!ei) return NULL; return &ei->vfs_inode; } static void bdev_destroy_inode(struct inode *inode) { struct bdev_inode *bdi = BDEV_I(inode); kmem_cache_free(bdev_cachep, bdi); } static void init_once(void *foo) { struct bdev_inode *ei = (struct bdev_inode *) foo; struct block_device *bdev = &ei->bdev; memset(bdev, 0, sizeof(*bdev)); mutex_init(&bdev->bd_mutex); INIT_LIST_HEAD(&bdev->bd_inodes); INIT_LIST_HEAD(&bdev->bd_list); #ifdef CONFIG_SYSFS INIT_LIST_HEAD(&bdev->bd_holder_list); #endif inode_init_once(&ei->vfs_inode); /* Initialize mutex for freeze. */ mutex_init(&bdev->bd_fsfreeze_mutex); } static inline void __bd_forget(struct inode *inode) { list_del_init(&inode->i_devices); inode->i_bdev = NULL; inode->i_mapping = &inode->i_data; } static void bdev_clear_inode(struct inode *inode) { struct block_device *bdev = &BDEV_I(inode)->bdev; struct list_head *p; spin_lock(&bdev_lock); while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { __bd_forget(list_entry(p, struct inode, i_devices)); } list_del_init(&bdev->bd_list); spin_unlock(&bdev_lock); } static const struct super_operations bdev_sops = { .statfs = simple_statfs, .alloc_inode = bdev_alloc_inode, .destroy_inode = bdev_destroy_inode, .drop_inode = generic_delete_inode, .clear_inode = bdev_clear_inode, }; static int bd_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_pseudo(fs_type, "bdev:", &bdev_sops, 0x62646576, mnt); } static struct file_system_type bd_type = { .name = "bdev", .get_sb = bd_get_sb, .kill_sb = kill_anon_super, }; struct super_block *blockdev_superblock __read_mostly; void __init bdev_cache_init(void) { int err; struct vfsmount *bd_mnt; bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD|SLAB_PANIC), init_once); err = register_filesystem(&bd_type); if (err) panic("Cannot register bdev pseudo-fs"); bd_mnt = kern_mount(&bd_type); if (IS_ERR(bd_mnt)) panic("Cannot create bdev pseudo-fs"); /* * This vfsmount structure is only used to obtain the * blockdev_superblock, so tell kmemleak not to report it. */ kmemleak_not_leak(bd_mnt); blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ } /* * Most likely _very_ bad one - but then it's hardly critical for small * /dev and can be fixed when somebody will need really large one. * Keep in mind that it will be fed through icache hash function too. */ static inline unsigned long hash(dev_t dev) { return MAJOR(dev)+MINOR(dev); } static int bdev_test(struct inode *inode, void *data) { return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; } static int bdev_set(struct inode *inode, void *data) { BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; return 0; } static LIST_HEAD(all_bdevs); struct block_device *bdget(dev_t dev) { struct block_device *bdev; struct inode *inode; inode = iget5_locked(blockdev_superblock, hash(dev), bdev_test, bdev_set, &dev); if (!inode) return NULL; bdev = &BDEV_I(inode)->bdev; if (inode->i_state & I_NEW) { bdev->bd_contains = NULL; bdev->bd_inode = inode; bdev->bd_block_size = (1 << inode->i_blkbits); bdev->bd_part_count = 0; bdev->bd_invalidated = 0; inode->i_mode = S_IFBLK; inode->i_rdev = dev; inode->i_bdev = bdev; inode->i_data.a_ops = &def_blk_aops; mapping_set_gfp_mask(&inode->i_data, GFP_USER); inode->i_data.backing_dev_info = &default_backing_dev_info; spin_lock(&bdev_lock); list_add(&bdev->bd_list, &all_bdevs); spin_unlock(&bdev_lock); unlock_new_inode(inode); } return bdev; } EXPORT_SYMBOL(bdget); /** * bdgrab -- Grab a reference to an already referenced block device * @bdev: Block device to grab a reference to. */ struct block_device *bdgrab(struct block_device *bdev) { atomic_inc(&bdev->bd_inode->i_count); return bdev; } long nr_blockdev_pages(void) { struct block_device *bdev; long ret = 0; spin_lock(&bdev_lock); list_for_each_entry(bdev, &all_bdevs, bd_list) { ret += bdev->bd_inode->i_mapping->nrpages; } spin_unlock(&bdev_lock); return ret; } void bdput(struct block_device *bdev) { iput(bdev->bd_inode); } EXPORT_SYMBOL(bdput); static struct block_device *bd_acquire(struct inode *inode) { struct block_device *bdev; spin_lock(&bdev_lock); bdev = inode->i_bdev; if (bdev) { atomic_inc(&bdev->bd_inode->i_count); spin_unlock(&bdev_lock); return bdev; } spin_unlock(&bdev_lock); bdev = bdget(inode->i_rdev); if (bdev) { spin_lock(&bdev_lock); if (!inode->i_bdev) { /* * We take an additional bd_inode->i_count for inode, * and it's released in clear_inode() of inode. * So, we can access it via ->i_mapping always * without igrab(). */ atomic_inc(&bdev->bd_inode->i_count); inode->i_bdev = bdev; inode->i_mapping = bdev->bd_inode->i_mapping; list_add(&inode->i_devices, &bdev->bd_inodes); } spin_unlock(&bdev_lock); } return bdev; } /* Call when you free inode */ void bd_forget(struct inode *inode) { struct block_device *bdev = NULL; spin_lock(&bdev_lock); if (inode->i_bdev) { if (!sb_is_blkdev_sb(inode->i_sb)) bdev = inode->i_bdev; __bd_forget(inode); } spin_unlock(&bdev_lock); if (bdev) iput(bdev->bd_inode); } /** * bd_may_claim - test whether a block device can be claimed * @bdev: block device of interest * @whole: whole block device containing @bdev, may equal @bdev * @holder: holder trying to claim @bdev * * Test whther @bdev can be claimed by @holder. * * CONTEXT: * spin_lock(&bdev_lock). * * RETURNS: * %true if @bdev can be claimed, %false otherwise. */ static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, void *holder) { if (bdev->bd_holder == holder) return true; /* already a holder */ else if (bdev->bd_holder != NULL) return false; /* held by someone else */ else if (bdev->bd_contains == bdev) return true; /* is a whole device which isn't held */ else if (whole->bd_holder == bd_claim) return true; /* is a partition of a device that is being partitioned */ else if (whole->bd_holder != NULL) return false; /* is a partition of a held device */ else return true; /* is a partition of an un-held device */ } /** * bd_prepare_to_claim - prepare to claim a block device * @bdev: block device of interest * @whole: the whole device containing @bdev, may equal @bdev * @holder: holder trying to claim @bdev * * Prepare to claim @bdev. This function fails if @bdev is already * claimed by another holder and waits if another claiming is in * progress. This function doesn't actually claim. On successful * return, the caller has ownership of bd_claiming and bd_holder[s]. * * CONTEXT: * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab * it multiple times. * * RETURNS: * 0 if @bdev can be claimed, -EBUSY otherwise. */ static int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, void *holder) { retry: /* if someone else claimed, fail */ if (!bd_may_claim(bdev, whole, holder)) return -EBUSY; /* if someone else is claiming, wait for it to finish */ if (whole->bd_claiming && whole->bd_claiming != holder) { wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); DEFINE_WAIT(wait); prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock(&bdev_lock); schedule(); finish_wait(wq, &wait); spin_lock(&bdev_lock); goto retry; } /* yay, all mine */ return 0; } /** * bd_start_claiming - start claiming a block device * @bdev: block device of interest * @holder: holder trying to claim @bdev * * @bdev is about to be opened exclusively. Check @bdev can be opened * exclusively and mark that an exclusive open is in progress. Each * successful call to this function must be matched with a call to * either bd_claim() or bd_abort_claiming(). If this function * succeeds, the matching bd_claim() is guaranteed to succeed. * * CONTEXT: * Might sleep. * * RETURNS: * Pointer to the block device containing @bdev on success, ERR_PTR() * value on failure. */ static struct block_device *bd_start_claiming(struct block_device *bdev, void *holder) { struct gendisk *disk; struct block_device *whole; int partno, err; might_sleep(); /* * @bdev might not have been initialized properly yet, look up * and grab the outer block device the hard way. */ disk = get_gendisk(bdev->bd_dev, &partno); if (!disk) return ERR_PTR(-ENXIO); whole = bdget_disk(disk, 0); put_disk(disk); if (!whole) return ERR_PTR(-ENOMEM); /* prepare to claim, if successful, mark claiming in progress */ spin_lock(&bdev_lock); err = bd_prepare_to_claim(bdev, whole, holder); if (err == 0) { whole->bd_claiming = holder; spin_unlock(&bdev_lock); return whole; } else { spin_unlock(&bdev_lock); bdput(whole); return ERR_PTR(err); } } /* releases bdev_lock */ static void __bd_abort_claiming(struct block_device *whole, void *holder) { BUG_ON(whole->bd_claiming != holder); whole->bd_claiming = NULL; wake_up_bit(&whole->bd_claiming, 0); spin_unlock(&bdev_lock); bdput(whole); } /** * bd_abort_claiming - abort claiming a block device * @whole: whole block device returned by bd_start_claiming() * @holder: holder trying to claim @bdev * * Abort a claiming block started by bd_start_claiming(). Note that * @whole is not the block device to be claimed but the whole device * returned by bd_start_claiming(). * * CONTEXT: * Grabs and releases bdev_lock. */ static void bd_abort_claiming(struct block_device *whole, void *holder) { spin_lock(&bdev_lock); __bd_abort_claiming(whole, holder); /* releases bdev_lock */ } /** * bd_claim - claim a block device * @bdev: block device to claim * @holder: holder trying to claim @bdev * * Try to claim @bdev which must have been opened successfully. This * function may be called with or without preceding * blk_start_claiming(). In the former case, this function is always * successful and terminates the claiming block. * * CONTEXT: * Might sleep. * * RETURNS: * 0 if successful, -EBUSY if @bdev is already claimed. */ int bd_claim(struct block_device *bdev, void *holder) { struct block_device *whole = bdev->bd_contains; int res; might_sleep(); spin_lock(&bdev_lock); res = bd_prepare_to_claim(bdev, whole, holder); if (res == 0) { /* note that for a whole device bd_holders * will be incremented twice, and bd_holder will * be set to bd_claim before being set to holder */ whole->bd_holders++; whole->bd_holder = bd_claim; bdev->bd_holders++; bdev->bd_holder = holder; } if (whole->bd_claiming) __bd_abort_claiming(whole, holder); /* releases bdev_lock */ else spin_unlock(&bdev_lock); return res; } EXPORT_SYMBOL(bd_claim); void bd_release(struct block_device *bdev) { spin_lock(&bdev_lock); if (!--bdev->bd_contains->bd_holders) bdev->bd_contains->bd_holder = NULL; if (!--bdev->bd_holders) bdev->bd_holder = NULL; spin_unlock(&bdev_lock); } EXPORT_SYMBOL(bd_release); #ifdef CONFIG_SYSFS /* * Functions for bd_claim_by_kobject / bd_release_from_kobject * * If a kobject is passed to bd_claim_by_kobject() * and the kobject has a parent directory, * following symlinks are created: * o from the kobject to the claimed bdev * o from "holders" directory of the bdev to the parent of the kobject * bd_release_from_kobject() removes these symlinks. * * Example: * If /dev/dm-0 maps to /dev/sda, kobject corresponding to * /sys/block/dm-0/slaves is passed to bd_claim_by_kobject(), then: * /sys/block/dm-0/slaves/sda --> /sys/block/sda * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 */ static int add_symlink(struct kobject *from, struct kobject *to) { if (!from || !to) return 0; return sysfs_create_link(from, to, kobject_name(to)); } static void del_symlink(struct kobject *from, struct kobject *to) { if (!from || !to) return; sysfs_remove_link(from, kobject_name(to)); } /* * 'struct bd_holder' contains pointers to kobjects symlinked by * bd_claim_by_kobject. * It's connected to bd_holder_list which is protected by bdev->bd_sem. */ struct bd_holder { struct list_head list; /* chain of holders of the bdev */ int count; /* references from the holder */ struct kobject *sdir; /* holder object, e.g. "/block/dm-0/slaves" */ struct kobject *hdev; /* e.g. "/block/dm-0" */ struct kobject *hdir; /* e.g. "/block/sda/holders" */ struct kobject *sdev; /* e.g. "/block/sda" */ }; /* * Get references of related kobjects at once. * Returns 1 on success. 0 on failure. * * Should call bd_holder_release_dirs() after successful use. */ static int bd_holder_grab_dirs(struct block_device *bdev, struct bd_holder *bo) { if (!bdev || !bo) return 0; bo->sdir = kobject_get(bo->sdir); if (!bo->sdir) return 0; bo->hdev = kobject_get(bo->sdir->parent); if (!bo->hdev) goto fail_put_sdir; bo->sdev = kobject_get(&part_to_dev(bdev->bd_part)->kobj); if (!bo->sdev) goto fail_put_hdev; bo->hdir = kobject_get(bdev->bd_part->holder_dir); if (!bo->hdir) goto fail_put_sdev; return 1; fail_put_sdev: kobject_put(bo->sdev); fail_put_hdev: kobject_put(bo->hdev); fail_put_sdir: kobject_put(bo->sdir); return 0; } /* Put references of related kobjects at once. */ static void bd_holder_release_dirs(struct bd_holder *bo) { kobject_put(bo->hdir); kobject_put(bo->sdev); kobject_put(bo->hdev); kobject_put(bo->sdir); } static struct bd_holder *alloc_bd_holder(struct kobject *kobj) { struct bd_holder *bo; bo = kzalloc(sizeof(*bo), GFP_KERNEL); if (!bo) return NULL; bo->count = 1; bo->sdir = kobj; return bo; } static void free_bd_holder(struct bd_holder *bo) { kfree(bo); } /** * find_bd_holder - find matching struct bd_holder from the block device * * @bdev: struct block device to be searched * @bo: target struct bd_holder * * Returns matching entry with @bo in @bdev->bd_holder_list. * If found, increment the reference count and return the pointer. * If not found, returns NULL. */ static struct bd_holder *find_bd_holder(struct block_device *bdev, struct bd_holder *bo) { struct bd_holder *tmp; list_for_each_entry(tmp, &bdev->bd_holder_list, list) if (tmp->sdir == bo->sdir) { tmp->count++; return tmp; } return NULL; } /** * add_bd_holder - create sysfs symlinks for bd_claim() relationship * * @bdev: block device to be bd_claimed * @bo: preallocated and initialized by alloc_bd_holder() * * Add @bo to @bdev->bd_holder_list, create symlinks. * * Returns 0 if symlinks are created. * Returns -ve if something fails. */ static int add_bd_holder(struct block_device *bdev, struct bd_holder *bo) { int err; if (!bo) return -EINVAL; if (!bd_holder_grab_dirs(bdev, bo)) return -EBUSY; err = add_symlink(bo->sdir, bo->sdev); if (err) return err; err = add_symlink(bo->hdir, bo->hdev); if (err) { del_symlink(bo->sdir, bo->sdev); return err; } list_add_tail(&bo->list, &bdev->bd_holder_list); return 0; } /** * del_bd_holder - delete sysfs symlinks for bd_claim() relationship * * @bdev: block device to be bd_claimed * @kobj: holder's kobject * * If there is matching entry with @kobj in @bdev->bd_holder_list * and no other bd_claim() from the same kobject, * remove the struct bd_holder from the list, delete symlinks for it. * * Returns a pointer to the struct bd_holder when it's removed from the list * and ready to be freed. * Returns NULL if matching claim isn't found or there is other bd_claim() * by the same kobject. */ static struct bd_holder *del_bd_holder(struct block_device *bdev, struct kobject *kobj) { struct bd_holder *bo; list_for_each_entry(bo, &bdev->bd_holder_list, list) { if (bo->sdir == kobj) { bo->count--; BUG_ON(bo->count < 0); if (!bo->count) { list_del(&bo->list); del_symlink(bo->sdir, bo->sdev); del_symlink(bo->hdir, bo->hdev); bd_holder_release_dirs(bo); return bo; } break; } } return NULL; } /** * bd_claim_by_kobject - bd_claim() with additional kobject signature * * @bdev: block device to be claimed * @holder: holder's signature * @kobj: holder's kobject * * Do bd_claim() and if it succeeds, create sysfs symlinks between * the bdev and the holder's kobject. * Use bd_release_from_kobject() when relesing the claimed bdev. * * Returns 0 on success. (same as bd_claim()) * Returns errno on failure. */ static int bd_claim_by_kobject(struct block_device *bdev, void *holder, struct kobject *kobj) { int err; struct bd_holder *bo, *found; if (!kobj) return -EINVAL; bo = alloc_bd_holder(kobj); if (!bo) return -ENOMEM; mutex_lock(&bdev->bd_mutex); err = bd_claim(bdev, holder); if (err) goto fail; found = find_bd_holder(bdev, bo); if (found) goto fail; err = add_bd_holder(bdev, bo); if (err) bd_release(bdev); else bo = NULL; fail: mutex_unlock(&bdev->bd_mutex); free_bd_holder(bo); return err; } /** * bd_release_from_kobject - bd_release() with additional kobject signature * * @bdev: block device to be released * @kobj: holder's kobject * * Do bd_release() and remove sysfs symlinks created by bd_claim_by_kobject(). */ static void bd_release_from_kobject(struct block_device *bdev, struct kobject *kobj) { if (!kobj) return; mutex_lock(&bdev->bd_mutex); bd_release(bdev); free_bd_holder(del_bd_holder(bdev, kobj)); mutex_unlock(&bdev->bd_mutex); } /** * bd_claim_by_disk - wrapper function for bd_claim_by_kobject() * * @bdev: block device to be claimed * @holder: holder's signature * @disk: holder's gendisk * * Call bd_claim_by_kobject() with getting @disk->slave_dir. */ int bd_claim_by_disk(struct block_device *bdev, void *holder, struct gendisk *disk) { return bd_claim_by_kobject(bdev, holder, kobject_get(disk->slave_dir)); } EXPORT_SYMBOL_GPL(bd_claim_by_disk); /** * bd_release_from_disk - wrapper function for bd_release_from_kobject() * * @bdev: block device to be claimed * @disk: holder's gendisk * * Call bd_release_from_kobject() and put @disk->slave_dir. */ void bd_release_from_disk(struct block_device *bdev, struct gendisk *disk) { bd_release_from_kobject(bdev, disk->slave_dir); kobject_put(disk->slave_dir); } EXPORT_SYMBOL_GPL(bd_release_from_disk); #endif /* * Tries to open block device by device number. Use it ONLY if you * really do not have anything better - i.e. when you are behind a * truly sucky interface and all you are given is a device number. _Never_ * to be used for internal purposes. If you ever need it - reconsider * your API. */ struct block_device *open_by_devnum(dev_t dev, fmode_t mode) { struct block_device *bdev = bdget(dev); int err = -ENOMEM; if (bdev) err = blkdev_get(bdev, mode); return err ? ERR_PTR(err) : bdev; } EXPORT_SYMBOL(open_by_devnum); /** * flush_disk - invalidates all buffer-cache entries on a disk * * @bdev: struct block device to be flushed * * Invalidates all buffer-cache entries on a disk. It should be called * when a disk has been changed -- either by a media change or online * resize. */ static void flush_disk(struct block_device *bdev) { if (__invalidate_device(bdev)) { char name[BDEVNAME_SIZE] = ""; if (bdev->bd_disk) disk_name(bdev->bd_disk, 0, name); printk(KERN_WARNING "VFS: busy inodes on changed media or " "resized disk %s\n", name); } if (!bdev->bd_disk) return; if (disk_partitionable(bdev->bd_disk)) bdev->bd_invalidated = 1; } /** * check_disk_size_change - checks for disk size change and adjusts bdev size. * @disk: struct gendisk to check * @bdev: struct bdev to adjust. * * This routine checks to see if the bdev size does not match the disk size * and adjusts it if it differs. */ void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) { loff_t disk_size, bdev_size; disk_size = (loff_t)get_capacity(disk) << 9; bdev_size = i_size_read(bdev->bd_inode); if (disk_size != bdev_size) { char name[BDEVNAME_SIZE]; disk_name(disk, 0, name); printk(KERN_INFO "%s: detected capacity change from %lld to %lld\n", name, bdev_size, disk_size); i_size_write(bdev->bd_inode, disk_size); flush_disk(bdev); } } EXPORT_SYMBOL(check_disk_size_change); /** * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back * @disk: struct gendisk to be revalidated * * This routine is a wrapper for lower-level driver's revalidate_disk * call-backs. It is used to do common pre and post operations needed * for all revalidate_disk operations. */ int revalidate_disk(struct gendisk *disk) { struct block_device *bdev; int ret = 0; if (disk->fops->revalidate_disk) ret = disk->fops->revalidate_disk(disk); bdev = bdget_disk(disk, 0); if (!bdev) return ret; mutex_lock(&bdev->bd_mutex); check_disk_size_change(disk, bdev); mutex_unlock(&bdev->bd_mutex); bdput(bdev); return ret; } EXPORT_SYMBOL(revalidate_disk); /* * This routine checks whether a removable media has been changed, * and invalidates all buffer-cache-entries in that case. This * is a relatively slow routine, so we have to try to minimize using * it. Thus it is called only upon a 'mount' or 'open'. This * is the best way of combining speed and utility, I think. * People changing diskettes in the middle of an operation deserve * to lose :-) */ int check_disk_change(struct block_device *bdev) { struct gendisk *disk = bdev->bd_disk; const struct block_device_operations *bdops = disk->fops; if (!bdops->media_changed) return 0; if (!bdops->media_changed(bdev->bd_disk)) return 0; flush_disk(bdev); if (bdops->revalidate_disk) bdops->revalidate_disk(bdev->bd_disk); return 1; } EXPORT_SYMBOL(check_disk_change); void bd_set_size(struct block_device *bdev, loff_t size) { unsigned bsize = bdev_logical_block_size(bdev); bdev->bd_inode->i_size = size; while (bsize < PAGE_CACHE_SIZE) { if (size & bsize) break; bsize <<= 1; } bdev->bd_block_size = bsize; bdev->bd_inode->i_blkbits = blksize_bits(bsize); } EXPORT_SYMBOL(bd_set_size); static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); /* * bd_mutex locking: * * mutex_lock(part->bd_mutex) * mutex_lock_nested(whole->bd_mutex, 1) */ static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) { struct gendisk *disk; int ret; int partno; int perm = 0; if (mode & FMODE_READ) perm |= MAY_READ; if (mode & FMODE_WRITE) perm |= MAY_WRITE; /* * hooks: /n/, see "layering violations". */ ret = devcgroup_inode_permission(bdev->bd_inode, perm); if (ret != 0) { bdput(bdev); return ret; } lock_kernel(); restart: ret = -ENXIO; disk = get_gendisk(bdev->bd_dev, &partno); if (!disk) goto out_unlock_kernel; mutex_lock_nested(&bdev->bd_mutex, for_part); if (!bdev->bd_openers) { bdev->bd_disk = disk; bdev->bd_contains = bdev; if (!partno) { struct backing_dev_info *bdi; ret = -ENXIO; bdev->bd_part = disk_get_part(disk, partno); if (!bdev->bd_part) goto out_clear; if (disk->fops->open) { ret = disk->fops->open(bdev, mode); if (ret == -ERESTARTSYS) { /* Lost a race with 'disk' being * deleted, try again. * See md.c */ disk_put_part(bdev->bd_part); bdev->bd_part = NULL; module_put(disk->fops->owner); put_disk(disk); bdev->bd_disk = NULL; mutex_unlock(&bdev->bd_mutex); goto restart; } if (ret) goto out_clear; } if (!bdev->bd_openers) { bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); bdi = blk_get_backing_dev_info(bdev); if (bdi == NULL) bdi = &default_backing_dev_info; bdev->bd_inode->i_data.backing_dev_info = bdi; } if (bdev->bd_invalidated) rescan_partitions(disk, bdev); } else { struct block_device *whole; whole = bdget_disk(disk, 0); ret = -ENOMEM; if (!whole) goto out_clear; BUG_ON(for_part); ret = __blkdev_get(whole, mode, 1); if (ret) goto out_clear; bdev->bd_contains = whole; bdev->bd_inode->i_data.backing_dev_info = whole->bd_inode->i_data.backing_dev_info; bdev->bd_part = disk_get_part(disk, partno); if (!(disk->flags & GENHD_FL_UP) || !bdev->bd_part || !bdev->bd_part->nr_sects) { ret = -ENXIO; goto out_clear; } bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); } } else { module_put(disk->fops->owner); put_disk(disk); disk = NULL; if (bdev->bd_contains == bdev) { if (bdev->bd_disk->fops->open) { ret = bdev->bd_disk->fops->open(bdev, mode); if (ret) goto out_unlock_bdev; } if (bdev->bd_invalidated) rescan_partitions(bdev->bd_disk, bdev); } } bdev->bd_openers++; if (for_part) bdev->bd_part_count++; mutex_unlock(&bdev->bd_mutex); unlock_kernel(); return 0; out_clear: disk_put_part(bdev->bd_part); bdev->bd_disk = NULL; bdev->bd_part = NULL; bdev->bd_inode->i_data.backing_dev_info = &default_backing_dev_info; if (bdev != bdev->bd_contains) __blkdev_put(bdev->bd_contains, mode, 1); bdev->bd_contains = NULL; out_unlock_bdev: mutex_unlock(&bdev->bd_mutex); out_unlock_kernel: unlock_kernel(); if (disk) module_put(disk->fops->owner); put_disk(disk); bdput(bdev); return ret; } int blkdev_get(struct block_device *bdev, fmode_t mode) { return __blkdev_get(bdev, mode, 0); } EXPORT_SYMBOL(blkdev_get); static int blkdev_open(struct inode * inode, struct file * filp) { struct block_device *whole = NULL; struct block_device *bdev; int res; /* * Preserve backwards compatibility and allow large file access * even if userspace doesn't ask for it explicitly. Some mkfs * binary needs it. We might want to drop this workaround * during an unstable branch. */ filp->f_flags |= O_LARGEFILE; if (filp->f_flags & O_NDELAY) filp->f_mode |= FMODE_NDELAY; if (filp->f_flags & O_EXCL) filp->f_mode |= FMODE_EXCL; if ((filp->f_flags & O_ACCMODE) == 3) filp->f_mode |= FMODE_WRITE_IOCTL; bdev = bd_acquire(inode); if (bdev == NULL) return -ENOMEM; if (filp->f_mode & FMODE_EXCL) { whole = bd_start_claiming(bdev, filp); if (IS_ERR(whole)) { bdput(bdev); return PTR_ERR(whole); } } filp->f_mapping = bdev->bd_inode->i_mapping; res = blkdev_get(bdev, filp->f_mode); if (whole) { if (res == 0) BUG_ON(bd_claim(bdev, filp) != 0); else bd_abort_claiming(whole, filp); } return res; } static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) { int ret = 0; struct gendisk *disk = bdev->bd_disk; struct block_device *victim = NULL; mutex_lock_nested(&bdev->bd_mutex, for_part); lock_kernel(); if (for_part) bdev->bd_part_count--; if (!--bdev->bd_openers) { sync_blockdev(bdev); kill_bdev(bdev); } if (bdev->bd_contains == bdev) { if (disk->fops->release) ret = disk->fops->release(disk, mode); } if (!bdev->bd_openers) { struct module *owner = disk->fops->owner; put_disk(disk); module_put(owner); disk_put_part(bdev->bd_part); bdev->bd_part = NULL; bdev->bd_disk = NULL; bdev->bd_inode->i_data.backing_dev_info = &default_backing_dev_info; if (bdev != bdev->bd_contains) victim = bdev->bd_contains; bdev->bd_contains = NULL; } unlock_kernel(); mutex_unlock(&bdev->bd_mutex); bdput(bdev); if (victim) __blkdev_put(victim, mode, 1); return ret; } int blkdev_put(struct block_device *bdev, fmode_t mode) { return __blkdev_put(bdev, mode, 0); } EXPORT_SYMBOL(blkdev_put); static int blkdev_close(struct inode * inode, struct file * filp) { struct block_device *bdev = I_BDEV(filp->f_mapping->host); if (bdev->bd_holder == filp) bd_release(bdev); return blkdev_put(bdev, filp->f_mode); } static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) { struct block_device *bdev = I_BDEV(file->f_mapping->host); fmode_t mode = file->f_mode; /* * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have * to updated it before every ioctl. */ if (file->f_flags & O_NDELAY) mode |= FMODE_NDELAY; else mode &= ~FMODE_NDELAY; return blkdev_ioctl(bdev, mode, cmd, arg); } /* * Write data to the block device. Only intended for the block device itself * and the raw driver which basically is a fake block device. * * Does not take i_mutex for the write and thus is not for general purpose * use. */ ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct file *file = iocb->ki_filp; ssize_t ret; BUG_ON(iocb->ki_pos != pos); ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); if (ret > 0 || ret == -EIOCBQUEUED) { ssize_t err; err = generic_write_sync(file, pos, ret); if (err < 0 && ret > 0) ret = err; } return ret; } EXPORT_SYMBOL_GPL(blkdev_aio_write); /* * Try to release a page associated with block device when the system * is under memory pressure. */ static int blkdev_releasepage(struct page *page, gfp_t wait) { struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; if (super && super->s_op->bdev_try_to_free_page) return super->s_op->bdev_try_to_free_page(super, page, wait); return try_to_free_buffers(page); } static const struct address_space_operations def_blk_aops = { .readpage = blkdev_readpage, .writepage = blkdev_writepage, .sync_page = block_sync_page, .write_begin = blkdev_write_begin, .write_end = blkdev_write_end, .writepages = generic_writepages, .releasepage = blkdev_releasepage, .direct_IO = blkdev_direct_IO, }; const struct file_operations def_blk_fops = { .open = blkdev_open, .release = blkdev_close, .llseek = block_llseek, .read = do_sync_read, .write = do_sync_write, .aio_read = generic_file_aio_read, .aio_write = blkdev_aio_write, .mmap = generic_file_mmap, .fsync = blkdev_fsync, .unlocked_ioctl = block_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = compat_blkdev_ioctl, #endif .splice_read = generic_file_splice_read, .splice_write = generic_file_splice_write, }; int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) { int res; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); res = blkdev_ioctl(bdev, 0, cmd, arg); set_fs(old_fs); return res; } EXPORT_SYMBOL(ioctl_by_bdev); /** * lookup_bdev - lookup a struct block_device by name * @pathname: special file representing the block device * * Get a reference to the blockdevice at @pathname in the current * namespace if possible and return it. Return ERR_PTR(error) * otherwise. */ struct block_device *lookup_bdev(const char *pathname) { struct block_device *bdev; struct inode *inode; struct path path; int error; if (!pathname || !*pathname) return ERR_PTR(-EINVAL); error = kern_path(pathname, LOOKUP_FOLLOW, &path); if (error) return ERR_PTR(error); inode = path.dentry->d_inode; error = -ENOTBLK; if (!S_ISBLK(inode->i_mode)) goto fail; error = -EACCES; if (path.mnt->mnt_flags & MNT_NODEV) goto fail; error = -ENOMEM; bdev = bd_acquire(inode); if (!bdev) goto fail; out: path_put(&path); return bdev; fail: bdev = ERR_PTR(error); goto out; } EXPORT_SYMBOL(lookup_bdev); /** * open_bdev_exclusive - open a block device by name and set it up for use * * @path: special file representing the block device * @mode: FMODE_... combination to pass be used * @holder: owner for exclusion * * Open the blockdevice described by the special file at @path, claim it * for the @holder. */ struct block_device *open_bdev_exclusive(const char *path, fmode_t mode, void *holder) { struct block_device *bdev, *whole; int error; bdev = lookup_bdev(path); if (IS_ERR(bdev)) return bdev; whole = bd_start_claiming(bdev, holder); if (IS_ERR(whole)) { bdput(bdev); return whole; } error = blkdev_get(bdev, mode); if (error) goto out_abort_claiming; error = -EACCES; if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) goto out_blkdev_put; BUG_ON(bd_claim(bdev, holder) != 0); return bdev; out_blkdev_put: blkdev_put(bdev, mode); out_abort_claiming: bd_abort_claiming(whole, holder); return ERR_PTR(error); } EXPORT_SYMBOL(open_bdev_exclusive); /** * close_bdev_exclusive - close a blockdevice opened by open_bdev_exclusive() * * @bdev: blockdevice to close * @mode: mode, must match that used to open. * * This is the counterpart to open_bdev_exclusive(). */ void close_bdev_exclusive(struct block_device *bdev, fmode_t mode) { bd_release(bdev); blkdev_put(bdev, mode); } EXPORT_SYMBOL(close_bdev_exclusive); int __invalidate_device(struct block_device *bdev) { struct super_block *sb = get_super(bdev); int res = 0; if (sb) { /* * no need to lock the super, get_super holds the * read mutex so the filesystem cannot go away * under us (->put_super runs with the write lock * hold). */ shrink_dcache_sb(sb); res = invalidate_inodes(sb); drop_super(sb); } invalidate_bdev(bdev); return res; } EXPORT_SYMBOL(__invalidate_device);