/* * Copyright (C) 2009 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include <linux/sched.h> #include <linux/sort.h> #include "ctree.h" #include "delayed-ref.h" #include "transaction.h" /* * delayed back reference update tracking. For subvolume trees * we queue up extent allocations and backref maintenance for * delayed processing. This avoids deep call chains where we * add extents in the middle of btrfs_search_slot, and it allows * us to buffer up frequently modified backrefs in an rb tree instead * of hammering updates on the extent allocation tree. * * Right now this code is only used for reference counted trees, but * the long term goal is to get rid of the similar code for delayed * extent tree modifications. */ /* * entries in the rb tree are ordered by the byte number of the extent * and by the byte number of the parent block. */ static int comp_entry(struct btrfs_delayed_ref_node *ref, u64 bytenr, u64 parent) { if (bytenr < ref->bytenr) return -1; if (bytenr > ref->bytenr) return 1; if (parent < ref->parent) return -1; if (parent > ref->parent) return 1; return 0; } /* * insert a new ref into the rbtree. This returns any existing refs * for the same (bytenr,parent) tuple, or NULL if the new node was properly * inserted. */ static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root, u64 bytenr, u64 parent, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent_node = NULL; struct btrfs_delayed_ref_node *entry; int cmp; while (*p) { parent_node = *p; entry = rb_entry(parent_node, struct btrfs_delayed_ref_node, rb_node); cmp = comp_entry(entry, bytenr, parent); if (cmp < 0) p = &(*p)->rb_left; else if (cmp > 0) p = &(*p)->rb_right; else return entry; } entry = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); rb_link_node(node, parent_node, p); rb_insert_color(node, root); return NULL; } /* * find an entry based on (bytenr,parent). This returns the delayed * ref if it was able to find one, or NULL if nothing was in that spot */ static struct btrfs_delayed_ref_node *tree_search(struct rb_root *root, u64 bytenr, u64 parent, struct btrfs_delayed_ref_node **last) { struct rb_node *n = root->rb_node; struct btrfs_delayed_ref_node *entry; int cmp; while (n) { entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); WARN_ON(!entry->in_tree); if (last) *last = entry; cmp = comp_entry(entry, bytenr, parent); if (cmp < 0) n = n->rb_left; else if (cmp > 0) n = n->rb_right; else return entry; } return NULL; } int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_head *head) { struct btrfs_delayed_ref_root *delayed_refs; delayed_refs = &trans->transaction->delayed_refs; assert_spin_locked(&delayed_refs->lock); if (mutex_trylock(&head->mutex)) return 0; atomic_inc(&head->node.refs); spin_unlock(&delayed_refs->lock); mutex_lock(&head->mutex); spin_lock(&delayed_refs->lock); if (!head->node.in_tree) { mutex_unlock(&head->mutex); btrfs_put_delayed_ref(&head->node); return -EAGAIN; } btrfs_put_delayed_ref(&head->node); return 0; } int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans, struct list_head *cluster, u64 start) { int count = 0; struct btrfs_delayed_ref_root *delayed_refs; struct rb_node *node; struct btrfs_delayed_ref_node *ref; struct btrfs_delayed_ref_head *head; delayed_refs = &trans->transaction->delayed_refs; if (start == 0) { node = rb_first(&delayed_refs->root); } else { ref = NULL; tree_search(&delayed_refs->root, start, (u64)-1, &ref); if (ref) { struct btrfs_delayed_ref_node *tmp; node = rb_prev(&ref->rb_node); while (node) { tmp = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); if (tmp->bytenr < start) break; ref = tmp; node = rb_prev(&ref->rb_node); } node = &ref->rb_node; } else node = rb_first(&delayed_refs->root); } again: while (node && count < 32) { ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); if (btrfs_delayed_ref_is_head(ref)) { head = btrfs_delayed_node_to_head(ref); if (list_empty(&head->cluster)) { list_add_tail(&head->cluster, cluster); delayed_refs->run_delayed_start = head->node.bytenr; count++; WARN_ON(delayed_refs->num_heads_ready == 0); delayed_refs->num_heads_ready--; } else if (count) { /* the goal of the clustering is to find extents * that are likely to end up in the same extent * leaf on disk. So, we don't want them spread * all over the tree. Stop now if we've hit * a head that was already in use */ break; } } node = rb_next(node); } if (count) { return 0; } else if (start) { /* * we've gone to the end of the rbtree without finding any * clusters. start from the beginning and try again */ start = 0; node = rb_first(&delayed_refs->root); goto again; } return 1; } /* * This checks to see if there are any delayed refs in the * btree for a given bytenr. It returns one if it finds any * and zero otherwise. * * If it only finds a head node, it returns 0. * * The idea is to use this when deciding if you can safely delete an * extent from the extent allocation tree. There may be a pending * ref in the rbtree that adds or removes references, so as long as this * returns one you need to leave the BTRFS_EXTENT_ITEM in the extent * allocation tree. */ int btrfs_delayed_ref_pending(struct btrfs_trans_handle *trans, u64 bytenr) { struct btrfs_delayed_ref_node *ref; struct btrfs_delayed_ref_root *delayed_refs; struct rb_node *prev_node; int ret = 0; delayed_refs = &trans->transaction->delayed_refs; spin_lock(&delayed_refs->lock); ref = tree_search(&delayed_refs->root, bytenr, (u64)-1, NULL); if (ref) { prev_node = rb_prev(&ref->rb_node); if (!prev_node) goto out; ref = rb_entry(prev_node, struct btrfs_delayed_ref_node, rb_node); if (ref->bytenr == bytenr) ret = 1; } out: spin_unlock(&delayed_refs->lock); return ret; } /* * helper function to lookup reference count * * the head node for delayed ref is used to store the sum of all the * reference count modifications queued up in the rbtree. This way you * can check to see what the reference count would be if all of the * delayed refs are processed. */ int btrfs_lookup_extent_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 num_bytes, u32 *refs) { struct btrfs_delayed_ref_node *ref; struct btrfs_delayed_ref_head *head; struct btrfs_delayed_ref_root *delayed_refs; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_extent_item *ei; struct btrfs_key key; u32 num_refs; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = bytenr; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = num_bytes; delayed_refs = &trans->transaction->delayed_refs; again: ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path, 0, 0); if (ret < 0) goto out; if (ret == 0) { leaf = path->nodes[0]; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); num_refs = btrfs_extent_refs(leaf, ei); } else { num_refs = 0; ret = 0; } spin_lock(&delayed_refs->lock); ref = tree_search(&delayed_refs->root, bytenr, (u64)-1, NULL); if (ref) { head = btrfs_delayed_node_to_head(ref); if (mutex_trylock(&head->mutex)) { num_refs += ref->ref_mod; mutex_unlock(&head->mutex); *refs = num_refs; goto out; } atomic_inc(&ref->refs); spin_unlock(&delayed_refs->lock); btrfs_release_path(root->fs_info->extent_root, path); mutex_lock(&head->mutex); mutex_unlock(&head->mutex); btrfs_put_delayed_ref(ref); goto again; } else { *refs = num_refs; } out: spin_unlock(&delayed_refs->lock); btrfs_free_path(path); return ret; } /* * helper function to update an extent delayed ref in the * rbtree. existing and update must both have the same * bytenr and parent * * This may free existing if the update cancels out whatever * operation it was doing. */ static noinline void update_existing_ref(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_root *delayed_refs, struct btrfs_delayed_ref_node *existing, struct btrfs_delayed_ref_node *update) { struct btrfs_delayed_ref *existing_ref; struct btrfs_delayed_ref *ref; existing_ref = btrfs_delayed_node_to_ref(existing); ref = btrfs_delayed_node_to_ref(update); if (ref->pin) existing_ref->pin = 1; if (ref->action != existing_ref->action) { /* * this is effectively undoing either an add or a * drop. We decrement the ref_mod, and if it goes * down to zero we just delete the entry without * every changing the extent allocation tree. */ existing->ref_mod--; if (existing->ref_mod == 0) { rb_erase(&existing->rb_node, &delayed_refs->root); existing->in_tree = 0; btrfs_put_delayed_ref(existing); delayed_refs->num_entries--; if (trans->delayed_ref_updates) trans->delayed_ref_updates--; } } else { if (existing_ref->action == BTRFS_ADD_DELAYED_REF) { /* if we're adding refs, make sure all the * details match up. The extent could * have been totally freed and reallocated * by a different owner before the delayed * ref entries were removed. */ existing_ref->owner_objectid = ref->owner_objectid; existing_ref->generation = ref->generation; existing_ref->root = ref->root; existing->num_bytes = update->num_bytes; } /* * the action on the existing ref matches * the action on the ref we're trying to add. * Bump the ref_mod by one so the backref that * is eventually added/removed has the correct * reference count */ existing->ref_mod += update->ref_mod; } } /* * helper function to update the accounting in the head ref * existing and update must have the same bytenr */ static noinline void update_existing_head_ref(struct btrfs_delayed_ref_node *existing, struct btrfs_delayed_ref_node *update) { struct btrfs_delayed_ref_head *existing_ref; struct btrfs_delayed_ref_head *ref; existing_ref = btrfs_delayed_node_to_head(existing); ref = btrfs_delayed_node_to_head(update); if (ref->must_insert_reserved) { /* if the extent was freed and then * reallocated before the delayed ref * entries were processed, we can end up * with an existing head ref without * the must_insert_reserved flag set. * Set it again here */ existing_ref->must_insert_reserved = ref->must_insert_reserved; /* * update the num_bytes so we make sure the accounting * is done correctly */ existing->num_bytes = update->num_bytes; } /* * update the reference mod on the head to reflect this new operation */ existing->ref_mod += update->ref_mod; } /* * helper function to actually insert a delayed ref into the rbtree. * this does all the dirty work in terms of maintaining the correct * overall modification count in the head node and properly dealing * with updating existing nodes as new modifications are queued. */ static noinline int __btrfs_add_delayed_ref(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_node *ref, u64 bytenr, u64 num_bytes, u64 parent, u64 ref_root, u64 ref_generation, u64 owner_objectid, int action, int pin) { struct btrfs_delayed_ref_node *existing; struct btrfs_delayed_ref *full_ref; struct btrfs_delayed_ref_head *head_ref = NULL; struct btrfs_delayed_ref_root *delayed_refs; int count_mod = 1; int must_insert_reserved = 0; /* * the head node stores the sum of all the mods, so dropping a ref * should drop the sum in the head node by one. */ if (parent == (u64)-1) { if (action == BTRFS_DROP_DELAYED_REF) count_mod = -1; else if (action == BTRFS_UPDATE_DELAYED_HEAD) count_mod = 0; } /* * BTRFS_ADD_DELAYED_EXTENT means that we need to update * the reserved accounting when the extent is finally added, or * if a later modification deletes the delayed ref without ever * inserting the extent into the extent allocation tree. * ref->must_insert_reserved is the flag used to record * that accounting mods are required. * * Once we record must_insert_reserved, switch the action to * BTRFS_ADD_DELAYED_REF because other special casing is not required. */ if (action == BTRFS_ADD_DELAYED_EXTENT) { must_insert_reserved = 1; action = BTRFS_ADD_DELAYED_REF; } else { must_insert_reserved = 0; } delayed_refs = &trans->transaction->delayed_refs; /* first set the basic ref node struct up */ atomic_set(&ref->refs, 1); ref->bytenr = bytenr; ref->parent = parent; ref->ref_mod = count_mod; ref->in_tree = 1; ref->num_bytes = num_bytes; if (btrfs_delayed_ref_is_head(ref)) { head_ref = btrfs_delayed_node_to_head(ref); head_ref->must_insert_reserved = must_insert_reserved; INIT_LIST_HEAD(&head_ref->cluster); mutex_init(&head_ref->mutex); } else { full_ref = btrfs_delayed_node_to_ref(ref); full_ref->root = ref_root; full_ref->generation = ref_generation; full_ref->owner_objectid = owner_objectid; full_ref->pin = pin; full_ref->action = action; } existing = tree_insert(&delayed_refs->root, bytenr, parent, &ref->rb_node); if (existing) { if (btrfs_delayed_ref_is_head(ref)) update_existing_head_ref(existing, ref); else update_existing_ref(trans, delayed_refs, existing, ref); /* * we've updated the existing ref, free the newly * allocated ref */ kfree(ref); } else { if (btrfs_delayed_ref_is_head(ref)) { delayed_refs->num_heads++; delayed_refs->num_heads_ready++; } delayed_refs->num_entries++; trans->delayed_ref_updates++; } return 0; } /* * add a delayed ref to the tree. This does all of the accounting required * to make sure the delayed ref is eventually processed before this * transaction commits. */ int btrfs_add_delayed_ref(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes, u64 parent, u64 ref_root, u64 ref_generation, u64 owner_objectid, int action, int pin) { struct btrfs_delayed_ref *ref; struct btrfs_delayed_ref_head *head_ref; struct btrfs_delayed_ref_root *delayed_refs; int ret; ref = kmalloc(sizeof(*ref), GFP_NOFS); if (!ref) return -ENOMEM; /* * the parent = 0 case comes from cases where we don't actually * know the parent yet. It will get updated later via a add/drop * pair. */ if (parent == 0) parent = bytenr; head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS); if (!head_ref) { kfree(ref); return -ENOMEM; } delayed_refs = &trans->transaction->delayed_refs; spin_lock(&delayed_refs->lock); /* * insert both the head node and the new ref without dropping * the spin lock */ ret = __btrfs_add_delayed_ref(trans, &head_ref->node, bytenr, num_bytes, (u64)-1, 0, 0, 0, action, pin); BUG_ON(ret); ret = __btrfs_add_delayed_ref(trans, &ref->node, bytenr, num_bytes, parent, ref_root, ref_generation, owner_objectid, action, pin); BUG_ON(ret); spin_unlock(&delayed_refs->lock); return 0; } /* * this does a simple search for the head node for a given extent. * It must be called with the delayed ref spinlock held, and it returns * the head node if any where found, or NULL if not. */ struct btrfs_delayed_ref_head * btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr) { struct btrfs_delayed_ref_node *ref; struct btrfs_delayed_ref_root *delayed_refs; delayed_refs = &trans->transaction->delayed_refs; ref = tree_search(&delayed_refs->root, bytenr, (u64)-1, NULL); if (ref) return btrfs_delayed_node_to_head(ref); return NULL; } /* * add a delayed ref to the tree. This does all of the accounting required * to make sure the delayed ref is eventually processed before this * transaction commits. * * The main point of this call is to add and remove a backreference in a single * shot, taking the lock only once, and only searching for the head node once. * * It is the same as doing a ref add and delete in two separate calls. */ int btrfs_update_delayed_ref(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes, u64 orig_parent, u64 parent, u64 orig_ref_root, u64 ref_root, u64 orig_ref_generation, u64 ref_generation, u64 owner_objectid, int pin) { struct btrfs_delayed_ref *ref; struct btrfs_delayed_ref *old_ref; struct btrfs_delayed_ref_head *head_ref; struct btrfs_delayed_ref_root *delayed_refs; int ret; ref = kmalloc(sizeof(*ref), GFP_NOFS); if (!ref) return -ENOMEM; old_ref = kmalloc(sizeof(*old_ref), GFP_NOFS); if (!old_ref) { kfree(ref); return -ENOMEM; } /* * the parent = 0 case comes from cases where we don't actually * know the parent yet. It will get updated later via a add/drop * pair. */ if (parent == 0) parent = bytenr; if (orig_parent == 0) orig_parent = bytenr; head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS); if (!head_ref) { kfree(ref); kfree(old_ref); return -ENOMEM; } delayed_refs = &trans->transaction->delayed_refs; spin_lock(&delayed_refs->lock); /* * insert both the head node and the new ref without dropping * the spin lock */ ret = __btrfs_add_delayed_ref(trans, &head_ref->node, bytenr, num_bytes, (u64)-1, 0, 0, 0, BTRFS_UPDATE_DELAYED_HEAD, 0); BUG_ON(ret); ret = __btrfs_add_delayed_ref(trans, &ref->node, bytenr, num_bytes, parent, ref_root, ref_generation, owner_objectid, BTRFS_ADD_DELAYED_REF, 0); BUG_ON(ret); ret = __btrfs_add_delayed_ref(trans, &old_ref->node, bytenr, num_bytes, orig_parent, orig_ref_root, orig_ref_generation, owner_objectid, BTRFS_DROP_DELAYED_REF, pin); BUG_ON(ret); spin_unlock(&delayed_refs->lock); return 0; }