// SPDX-License-Identifier: GPL-2.0 #include "ctree.h" #include "space-info.h" #include "sysfs.h" #include "volumes.h" #include "free-space-cache.h" u64 btrfs_space_info_used(struct btrfs_space_info *s_info, bool may_use_included) { ASSERT(s_info); return s_info->bytes_used + s_info->bytes_reserved + s_info->bytes_pinned + s_info->bytes_readonly + (may_use_included ? s_info->bytes_may_use : 0); } /* * after adding space to the filesystem, we need to clear the full flags * on all the space infos. */ void btrfs_clear_space_info_full(struct btrfs_fs_info *info) { struct list_head *head = &info->space_info; struct btrfs_space_info *found; rcu_read_lock(); list_for_each_entry_rcu(found, head, list) found->full = 0; rcu_read_unlock(); } static const char *alloc_name(u64 flags) { switch (flags) { case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: return "mixed"; case BTRFS_BLOCK_GROUP_METADATA: return "metadata"; case BTRFS_BLOCK_GROUP_DATA: return "data"; case BTRFS_BLOCK_GROUP_SYSTEM: return "system"; default: WARN_ON(1); return "invalid-combination"; }; } static int create_space_info(struct btrfs_fs_info *info, u64 flags) { struct btrfs_space_info *space_info; int i; int ret; space_info = kzalloc(sizeof(*space_info), GFP_NOFS); if (!space_info) return -ENOMEM; ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, GFP_KERNEL); if (ret) { kfree(space_info); return ret; } for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) INIT_LIST_HEAD(&space_info->block_groups[i]); init_rwsem(&space_info->groups_sem); spin_lock_init(&space_info->lock); space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; init_waitqueue_head(&space_info->wait); INIT_LIST_HEAD(&space_info->ro_bgs); INIT_LIST_HEAD(&space_info->tickets); INIT_LIST_HEAD(&space_info->priority_tickets); ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, info->space_info_kobj, "%s", alloc_name(space_info->flags)); if (ret) { kobject_put(&space_info->kobj); return ret; } list_add_rcu(&space_info->list, &info->space_info); if (flags & BTRFS_BLOCK_GROUP_DATA) info->data_sinfo = space_info; return ret; } int btrfs_init_space_info(struct btrfs_fs_info *fs_info) { struct btrfs_super_block *disk_super; u64 features; u64 flags; int mixed = 0; int ret; disk_super = fs_info->super_copy; if (!btrfs_super_root(disk_super)) return -EINVAL; features = btrfs_super_incompat_flags(disk_super); if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) mixed = 1; flags = BTRFS_BLOCK_GROUP_SYSTEM; ret = create_space_info(fs_info, flags); if (ret) goto out; if (mixed) { flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; ret = create_space_info(fs_info, flags); } else { flags = BTRFS_BLOCK_GROUP_METADATA; ret = create_space_info(fs_info, flags); if (ret) goto out; flags = BTRFS_BLOCK_GROUP_DATA; ret = create_space_info(fs_info, flags); } out: return ret; } void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags, u64 total_bytes, u64 bytes_used, u64 bytes_readonly, struct btrfs_space_info **space_info) { struct btrfs_space_info *found; int factor; factor = btrfs_bg_type_to_factor(flags); found = btrfs_find_space_info(info, flags); ASSERT(found); spin_lock(&found->lock); found->total_bytes += total_bytes; found->disk_total += total_bytes * factor; found->bytes_used += bytes_used; found->disk_used += bytes_used * factor; found->bytes_readonly += bytes_readonly; if (total_bytes > 0) found->full = 0; btrfs_space_info_add_new_bytes(info, found, total_bytes - bytes_used - bytes_readonly); spin_unlock(&found->lock); *space_info = found; } struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, u64 flags) { struct list_head *head = &info->space_info; struct btrfs_space_info *found; flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; rcu_read_lock(); list_for_each_entry_rcu(found, head, list) { if (found->flags & flags) { rcu_read_unlock(); return found; } } rcu_read_unlock(); return NULL; } static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) { return (global->size << 1); } int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, struct btrfs_space_info *space_info, u64 bytes, enum btrfs_reserve_flush_enum flush, bool system_chunk) { struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; u64 profile; u64 space_size; u64 avail; u64 used; int factor; /* Don't overcommit when in mixed mode. */ if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) return 0; if (system_chunk) profile = btrfs_system_alloc_profile(fs_info); else profile = btrfs_metadata_alloc_profile(fs_info); used = btrfs_space_info_used(space_info, false); /* * We only want to allow over committing if we have lots of actual space * free, but if we don't have enough space to handle the global reserve * space then we could end up having a real enospc problem when trying * to allocate a chunk or some other such important allocation. */ spin_lock(&global_rsv->lock); space_size = calc_global_rsv_need_space(global_rsv); spin_unlock(&global_rsv->lock); if (used + space_size >= space_info->total_bytes) return 0; used += space_info->bytes_may_use; avail = atomic64_read(&fs_info->free_chunk_space); /* * If we have dup, raid1 or raid10 then only half of the free * space is actually usable. For raid56, the space info used * doesn't include the parity drive, so we don't have to * change the math */ factor = btrfs_bg_type_to_factor(profile); avail = div_u64(avail, factor); /* * If we aren't flushing all things, let us overcommit up to * 1/2th of the space. If we can flush, don't let us overcommit * too much, let it overcommit up to 1/8 of the space. */ if (flush == BTRFS_RESERVE_FLUSH_ALL) avail >>= 3; else avail >>= 1; if (used + bytes < space_info->total_bytes + avail) return 1; return 0; } /* * This is for space we already have accounted in space_info->bytes_may_use, so * basically when we're returning space from block_rsv's. */ void btrfs_space_info_add_old_bytes(struct btrfs_fs_info *fs_info, struct btrfs_space_info *space_info, u64 num_bytes) { struct reserve_ticket *ticket; struct list_head *head; u64 used; enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; bool check_overcommit = false; spin_lock(&space_info->lock); head = &space_info->priority_tickets; /* * If we are over our limit then we need to check and see if we can * overcommit, and if we can't then we just need to free up our space * and not satisfy any requests. */ used = btrfs_space_info_used(space_info, true); if (used - num_bytes >= space_info->total_bytes) check_overcommit = true; again: while (!list_empty(head) && num_bytes) { ticket = list_first_entry(head, struct reserve_ticket, list); /* * We use 0 bytes because this space is already reserved, so * adding the ticket space would be a double count. */ if (check_overcommit && !btrfs_can_overcommit(fs_info, space_info, 0, flush, false)) break; if (num_bytes >= ticket->bytes) { list_del_init(&ticket->list); num_bytes -= ticket->bytes; ticket->bytes = 0; space_info->tickets_id++; wake_up(&ticket->wait); } else { ticket->bytes -= num_bytes; num_bytes = 0; } } if (num_bytes && head == &space_info->priority_tickets) { head = &space_info->tickets; flush = BTRFS_RESERVE_FLUSH_ALL; goto again; } btrfs_space_info_update_bytes_may_use(fs_info, space_info, -num_bytes); trace_btrfs_space_reservation(fs_info, "space_info", space_info->flags, num_bytes, 0); spin_unlock(&space_info->lock); } /* * This is for newly allocated space that isn't accounted in * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent * we use this helper. */ void btrfs_space_info_add_new_bytes(struct btrfs_fs_info *fs_info, struct btrfs_space_info *space_info, u64 num_bytes) { struct reserve_ticket *ticket; struct list_head *head = &space_info->priority_tickets; again: while (!list_empty(head) && num_bytes) { ticket = list_first_entry(head, struct reserve_ticket, list); if (num_bytes >= ticket->bytes) { trace_btrfs_space_reservation(fs_info, "space_info", space_info->flags, ticket->bytes, 1); list_del_init(&ticket->list); num_bytes -= ticket->bytes; btrfs_space_info_update_bytes_may_use(fs_info, space_info, ticket->bytes); ticket->bytes = 0; space_info->tickets_id++; wake_up(&ticket->wait); } else { trace_btrfs_space_reservation(fs_info, "space_info", space_info->flags, num_bytes, 1); btrfs_space_info_update_bytes_may_use(fs_info, space_info, num_bytes); ticket->bytes -= num_bytes; num_bytes = 0; } } if (num_bytes && head == &space_info->priority_tickets) { head = &space_info->tickets; goto again; } } #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ do { \ struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ spin_lock(&__rsv->lock); \ btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ __rsv->size, __rsv->reserved); \ spin_unlock(&__rsv->lock); \ } while (0) void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, struct btrfs_space_info *info, u64 bytes, int dump_block_groups) { struct btrfs_block_group_cache *cache; int index = 0; spin_lock(&info->lock); btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", info->flags, info->total_bytes - btrfs_space_info_used(info, true), info->full ? "" : "not "); btrfs_info(fs_info, "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", info->total_bytes, info->bytes_used, info->bytes_pinned, info->bytes_reserved, info->bytes_may_use, info->bytes_readonly); spin_unlock(&info->lock); DUMP_BLOCK_RSV(fs_info, global_block_rsv); DUMP_BLOCK_RSV(fs_info, trans_block_rsv); DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); if (!dump_block_groups) return; down_read(&info->groups_sem); again: list_for_each_entry(cache, &info->block_groups[index], list) { spin_lock(&cache->lock); btrfs_info(fs_info, "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", cache->key.objectid, cache->key.offset, btrfs_block_group_used(&cache->item), cache->pinned, cache->reserved, cache->ro ? "[readonly]" : ""); btrfs_dump_free_space(cache, bytes); spin_unlock(&cache->lock); } if (++index < BTRFS_NR_RAID_TYPES) goto again; up_read(&info->groups_sem); }