/* * fs/kernfs/file.c - kernfs file implementation * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007, 2013 Tejun Heo * * This file is released under the GPLv2. */ #include #include #include #include #include #include #include #include "kernfs-internal.h" /* * There's one kernfs_open_file for each open file and one kernfs_open_node * for each kernfs_node with one or more open files. * * kernfs_node->attr.open points to kernfs_open_node. attr.open is * protected by kernfs_open_node_lock. * * filp->private_data points to seq_file whose ->private points to * kernfs_open_file. kernfs_open_files are chained at * kernfs_open_node->files, which is protected by kernfs_open_file_mutex. */ static DEFINE_SPINLOCK(kernfs_open_node_lock); static DEFINE_MUTEX(kernfs_open_file_mutex); struct kernfs_open_node { atomic_t refcnt; atomic_t event; wait_queue_head_t poll; struct list_head files; /* goes through kernfs_open_file.list */ }; static struct kernfs_open_file *kernfs_of(struct file *file) { return ((struct seq_file *)file->private_data)->private; } /* * Determine the kernfs_ops for the given kernfs_node. This function must * be called while holding an active reference. */ static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn) { if (kn->flags & KERNFS_LOCKDEP) lockdep_assert_held(kn); return kn->attr.ops; } /* * As kernfs_seq_stop() is also called after kernfs_seq_start() or * kernfs_seq_next() failure, it needs to distinguish whether it's stopping * a seq_file iteration which is fully initialized with an active reference * or an aborted kernfs_seq_start() due to get_active failure. The * position pointer is the only context for each seq_file iteration and * thus the stop condition should be encoded in it. As the return value is * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable * choice to indicate get_active failure. * * Unfortunately, this is complicated due to the optional custom seq_file * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop() * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or * custom seq_file operations and thus can't decide whether put_active * should be performed or not only on ERR_PTR(-ENODEV). * * This is worked around by factoring out the custom seq_stop() and * put_active part into kernfs_seq_stop_active(), skipping it from * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures * that kernfs_seq_stop_active() is skipped only after get_active failure. */ static void kernfs_seq_stop_active(struct seq_file *sf, void *v) { struct kernfs_open_file *of = sf->private; const struct kernfs_ops *ops = kernfs_ops(of->kn); if (ops->seq_stop) ops->seq_stop(sf, v); kernfs_put_active(of->kn); } static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos) { struct kernfs_open_file *of = sf->private; const struct kernfs_ops *ops; /* * @of->mutex nests outside active ref and is just to ensure that * the ops aren't called concurrently for the same open file. */ mutex_lock(&of->mutex); if (!kernfs_get_active(of->kn)) return ERR_PTR(-ENODEV); ops = kernfs_ops(of->kn); if (ops->seq_start) { void *next = ops->seq_start(sf, ppos); /* see the comment above kernfs_seq_stop_active() */ if (next == ERR_PTR(-ENODEV)) kernfs_seq_stop_active(sf, next); return next; } else { /* * The same behavior and code as single_open(). Returns * !NULL if pos is at the beginning; otherwise, NULL. */ return NULL + !*ppos; } } static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos) { struct kernfs_open_file *of = sf->private; const struct kernfs_ops *ops = kernfs_ops(of->kn); if (ops->seq_next) { void *next = ops->seq_next(sf, v, ppos); /* see the comment above kernfs_seq_stop_active() */ if (next == ERR_PTR(-ENODEV)) kernfs_seq_stop_active(sf, next); return next; } else { /* * The same behavior and code as single_open(), always * terminate after the initial read. */ ++*ppos; return NULL; } } static void kernfs_seq_stop(struct seq_file *sf, void *v) { struct kernfs_open_file *of = sf->private; if (v != ERR_PTR(-ENODEV)) kernfs_seq_stop_active(sf, v); mutex_unlock(&of->mutex); } static int kernfs_seq_show(struct seq_file *sf, void *v) { struct kernfs_open_file *of = sf->private; of->event = atomic_read(&of->kn->attr.open->event); return of->kn->attr.ops->seq_show(sf, v); } static const struct seq_operations kernfs_seq_ops = { .start = kernfs_seq_start, .next = kernfs_seq_next, .stop = kernfs_seq_stop, .show = kernfs_seq_show, }; /* * As reading a bin file can have side-effects, the exact offset and bytes * specified in read(2) call should be passed to the read callback making * it difficult to use seq_file. Implement simplistic custom buffering for * bin files. */ static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of, char __user *user_buf, size_t count, loff_t *ppos) { ssize_t len = min_t(size_t, count, PAGE_SIZE); const struct kernfs_ops *ops; char *buf; buf = kmalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; /* * @of->mutex nests outside active ref and is just to ensure that * the ops aren't called concurrently for the same open file. */ mutex_lock(&of->mutex); if (!kernfs_get_active(of->kn)) { len = -ENODEV; mutex_unlock(&of->mutex); goto out_free; } ops = kernfs_ops(of->kn); if (ops->read) len = ops->read(of, buf, len, *ppos); else len = -EINVAL; kernfs_put_active(of->kn); mutex_unlock(&of->mutex); if (len < 0) goto out_free; if (copy_to_user(user_buf, buf, len)) { len = -EFAULT; goto out_free; } *ppos += len; out_free: kfree(buf); return len; } /** * kernfs_fop_read - kernfs vfs read callback * @file: file pointer * @user_buf: data to write * @count: number of bytes * @ppos: starting offset */ static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct kernfs_open_file *of = kernfs_of(file); if (of->kn->flags & KERNFS_HAS_SEQ_SHOW) return seq_read(file, user_buf, count, ppos); else return kernfs_file_direct_read(of, user_buf, count, ppos); } /** * kernfs_fop_write - kernfs vfs write callback * @file: file pointer * @user_buf: data to write * @count: number of bytes * @ppos: starting offset * * Copy data in from userland and pass it to the matching kernfs write * operation. * * There is no easy way for us to know if userspace is only doing a partial * write, so we don't support them. We expect the entire buffer to come on * the first write. Hint: if you're writing a value, first read the file, * modify only the the value you're changing, then write entire buffer * back. */ static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct kernfs_open_file *of = kernfs_of(file); const struct kernfs_ops *ops; size_t len; char *buf; if (of->atomic_write_len) { len = count; if (len > of->atomic_write_len) return -E2BIG; } else { len = min_t(size_t, count, PAGE_SIZE); } buf = kmalloc(len + 1, GFP_KERNEL); if (!buf) return -ENOMEM; if (copy_from_user(buf, user_buf, len)) { len = -EFAULT; goto out_free; } buf[len] = '\0'; /* guarantee string termination */ /* * @of->mutex nests outside active ref and is just to ensure that * the ops aren't called concurrently for the same open file. */ mutex_lock(&of->mutex); if (!kernfs_get_active(of->kn)) { mutex_unlock(&of->mutex); len = -ENODEV; goto out_free; } ops = kernfs_ops(of->kn); if (ops->write) len = ops->write(of, buf, len, *ppos); else len = -EINVAL; kernfs_put_active(of->kn); mutex_unlock(&of->mutex); if (len > 0) *ppos += len; out_free: kfree(buf); return len; } static void kernfs_vma_open(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct kernfs_open_file *of = kernfs_of(file); if (!of->vm_ops) return; if (!kernfs_get_active(of->kn)) return; if (of->vm_ops->open) of->vm_ops->open(vma); kernfs_put_active(of->kn); } static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct file *file = vma->vm_file; struct kernfs_open_file *of = kernfs_of(file); int ret; if (!of->vm_ops) return VM_FAULT_SIGBUS; if (!kernfs_get_active(of->kn)) return VM_FAULT_SIGBUS; ret = VM_FAULT_SIGBUS; if (of->vm_ops->fault) ret = of->vm_ops->fault(vma, vmf); kernfs_put_active(of->kn); return ret; } static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) { struct file *file = vma->vm_file; struct kernfs_open_file *of = kernfs_of(file); int ret; if (!of->vm_ops) return VM_FAULT_SIGBUS; if (!kernfs_get_active(of->kn)) return VM_FAULT_SIGBUS; ret = 0; if (of->vm_ops->page_mkwrite) ret = of->vm_ops->page_mkwrite(vma, vmf); else file_update_time(file); kernfs_put_active(of->kn); return ret; } static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { struct file *file = vma->vm_file; struct kernfs_open_file *of = kernfs_of(file); int ret; if (!of->vm_ops) return -EINVAL; if (!kernfs_get_active(of->kn)) return -EINVAL; ret = -EINVAL; if (of->vm_ops->access) ret = of->vm_ops->access(vma, addr, buf, len, write); kernfs_put_active(of->kn); return ret; } #ifdef CONFIG_NUMA static int kernfs_vma_set_policy(struct vm_area_struct *vma, struct mempolicy *new) { struct file *file = vma->vm_file; struct kernfs_open_file *of = kernfs_of(file); int ret; if (!of->vm_ops) return 0; if (!kernfs_get_active(of->kn)) return -EINVAL; ret = 0; if (of->vm_ops->set_policy) ret = of->vm_ops->set_policy(vma, new); kernfs_put_active(of->kn); return ret; } static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma, unsigned long addr) { struct file *file = vma->vm_file; struct kernfs_open_file *of = kernfs_of(file); struct mempolicy *pol; if (!of->vm_ops) return vma->vm_policy; if (!kernfs_get_active(of->kn)) return vma->vm_policy; pol = vma->vm_policy; if (of->vm_ops->get_policy) pol = of->vm_ops->get_policy(vma, addr); kernfs_put_active(of->kn); return pol; } static int kernfs_vma_migrate(struct vm_area_struct *vma, const nodemask_t *from, const nodemask_t *to, unsigned long flags) { struct file *file = vma->vm_file; struct kernfs_open_file *of = kernfs_of(file); int ret; if (!of->vm_ops) return 0; if (!kernfs_get_active(of->kn)) return 0; ret = 0; if (of->vm_ops->migrate) ret = of->vm_ops->migrate(vma, from, to, flags); kernfs_put_active(of->kn); return ret; } #endif static const struct vm_operations_struct kernfs_vm_ops = { .open = kernfs_vma_open, .fault = kernfs_vma_fault, .page_mkwrite = kernfs_vma_page_mkwrite, .access = kernfs_vma_access, #ifdef CONFIG_NUMA .set_policy = kernfs_vma_set_policy, .get_policy = kernfs_vma_get_policy, .migrate = kernfs_vma_migrate, #endif }; static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma) { struct kernfs_open_file *of = kernfs_of(file); const struct kernfs_ops *ops; int rc; /* * mmap path and of->mutex are prone to triggering spurious lockdep * warnings and we don't want to add spurious locking dependency * between the two. Check whether mmap is actually implemented * without grabbing @of->mutex by testing HAS_MMAP flag. See the * comment in kernfs_file_open() for more details. */ if (!(of->kn->flags & KERNFS_HAS_MMAP)) return -ENODEV; mutex_lock(&of->mutex); rc = -ENODEV; if (!kernfs_get_active(of->kn)) goto out_unlock; ops = kernfs_ops(of->kn); rc = ops->mmap(of, vma); /* * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup() * to satisfy versions of X which crash if the mmap fails: that * substitutes a new vm_file, and we don't then want bin_vm_ops. */ if (vma->vm_file != file) goto out_put; rc = -EINVAL; if (of->mmapped && of->vm_ops != vma->vm_ops) goto out_put; /* * It is not possible to successfully wrap close. * So error if someone is trying to use close. */ rc = -EINVAL; if (vma->vm_ops && vma->vm_ops->close) goto out_put; rc = 0; of->mmapped = 1; of->vm_ops = vma->vm_ops; vma->vm_ops = &kernfs_vm_ops; out_put: kernfs_put_active(of->kn); out_unlock: mutex_unlock(&of->mutex); return rc; } /** * kernfs_get_open_node - get or create kernfs_open_node * @kn: target kernfs_node * @of: kernfs_open_file for this instance of open * * If @kn->attr.open exists, increment its reference count; otherwise, * create one. @of is chained to the files list. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * 0 on success, -errno on failure. */ static int kernfs_get_open_node(struct kernfs_node *kn, struct kernfs_open_file *of) { struct kernfs_open_node *on, *new_on = NULL; retry: mutex_lock(&kernfs_open_file_mutex); spin_lock_irq(&kernfs_open_node_lock); if (!kn->attr.open && new_on) { kn->attr.open = new_on; new_on = NULL; } on = kn->attr.open; if (on) { atomic_inc(&on->refcnt); list_add_tail(&of->list, &on->files); } spin_unlock_irq(&kernfs_open_node_lock); mutex_unlock(&kernfs_open_file_mutex); if (on) { kfree(new_on); return 0; } /* not there, initialize a new one and retry */ new_on = kmalloc(sizeof(*new_on), GFP_KERNEL); if (!new_on) return -ENOMEM; atomic_set(&new_on->refcnt, 0); atomic_set(&new_on->event, 1); init_waitqueue_head(&new_on->poll); INIT_LIST_HEAD(&new_on->files); goto retry; } /** * kernfs_put_open_node - put kernfs_open_node * @kn: target kernfs_nodet * @of: associated kernfs_open_file * * Put @kn->attr.open and unlink @of from the files list. If * reference count reaches zero, disassociate and free it. * * LOCKING: * None. */ static void kernfs_put_open_node(struct kernfs_node *kn, struct kernfs_open_file *of) { struct kernfs_open_node *on = kn->attr.open; unsigned long flags; mutex_lock(&kernfs_open_file_mutex); spin_lock_irqsave(&kernfs_open_node_lock, flags); if (of) list_del(&of->list); if (atomic_dec_and_test(&on->refcnt)) kn->attr.open = NULL; else on = NULL; spin_unlock_irqrestore(&kernfs_open_node_lock, flags); mutex_unlock(&kernfs_open_file_mutex); kfree(on); } static int kernfs_fop_open(struct inode *inode, struct file *file) { struct kernfs_node *kn = file->f_path.dentry->d_fsdata; const struct kernfs_ops *ops; struct kernfs_open_file *of; bool has_read, has_write, has_mmap; int error = -EACCES; if (!kernfs_get_active(kn)) return -ENODEV; ops = kernfs_ops(kn); has_read = ops->seq_show || ops->read || ops->mmap; has_write = ops->write || ops->mmap; has_mmap = ops->mmap; /* check perms and supported operations */ if ((file->f_mode & FMODE_WRITE) && (!(inode->i_mode & S_IWUGO) || !has_write)) goto err_out; if ((file->f_mode & FMODE_READ) && (!(inode->i_mode & S_IRUGO) || !has_read)) goto err_out; /* allocate a kernfs_open_file for the file */ error = -ENOMEM; of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL); if (!of) goto err_out; /* * The following is done to give a different lockdep key to * @of->mutex for files which implement mmap. This is a rather * crude way to avoid false positive lockdep warning around * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under * which mm->mmap_sem nests, while holding @of->mutex. As each * open file has a separate mutex, it's okay as long as those don't * happen on the same file. At this point, we can't easily give * each file a separate locking class. Let's differentiate on * whether the file has mmap or not for now. * * Both paths of the branch look the same. They're supposed to * look that way and give @of->mutex different static lockdep keys. */ if (has_mmap) mutex_init(&of->mutex); else mutex_init(&of->mutex); of->kn = kn; of->file = file; /* * Write path needs to atomic_write_len outside active reference. * Cache it in open_file. See kernfs_fop_write() for details. */ of->atomic_write_len = ops->atomic_write_len; /* * Always instantiate seq_file even if read access doesn't use * seq_file or is not requested. This unifies private data access * and readable regular files are the vast majority anyway. */ if (ops->seq_show) error = seq_open(file, &kernfs_seq_ops); else error = seq_open(file, NULL); if (error) goto err_free; ((struct seq_file *)file->private_data)->private = of; /* seq_file clears PWRITE unconditionally, restore it if WRITE */ if (file->f_mode & FMODE_WRITE) file->f_mode |= FMODE_PWRITE; /* make sure we have open node struct */ error = kernfs_get_open_node(kn, of); if (error) goto err_close; /* open succeeded, put active references */ kernfs_put_active(kn); return 0; err_close: seq_release(inode, file); err_free: kfree(of); err_out: kernfs_put_active(kn); return error; } static int kernfs_fop_release(struct inode *inode, struct file *filp) { struct kernfs_node *kn = filp->f_path.dentry->d_fsdata; struct kernfs_open_file *of = kernfs_of(filp); kernfs_put_open_node(kn, of); seq_release(inode, filp); kfree(of); return 0; } void kernfs_unmap_bin_file(struct kernfs_node *kn) { struct kernfs_open_node *on; struct kernfs_open_file *of; if (!(kn->flags & KERNFS_HAS_MMAP)) return; spin_lock_irq(&kernfs_open_node_lock); on = kn->attr.open; if (on) atomic_inc(&on->refcnt); spin_unlock_irq(&kernfs_open_node_lock); if (!on) return; mutex_lock(&kernfs_open_file_mutex); list_for_each_entry(of, &on->files, list) { struct inode *inode = file_inode(of->file); unmap_mapping_range(inode->i_mapping, 0, 0, 1); } mutex_unlock(&kernfs_open_file_mutex); kernfs_put_open_node(kn, NULL); } /* * Kernfs attribute files are pollable. The idea is that you read * the content and then you use 'poll' or 'select' to wait for * the content to change. When the content changes (assuming the * manager for the kobject supports notification), poll will * return POLLERR|POLLPRI, and select will return the fd whether * it is waiting for read, write, or exceptions. * Once poll/select indicates that the value has changed, you * need to close and re-open the file, or seek to 0 and read again. * Reminder: this only works for attributes which actively support * it, and it is not possible to test an attribute from userspace * to see if it supports poll (Neither 'poll' nor 'select' return * an appropriate error code). When in doubt, set a suitable timeout value. */ static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait) { struct kernfs_open_file *of = kernfs_of(filp); struct kernfs_node *kn = filp->f_path.dentry->d_fsdata; struct kernfs_open_node *on = kn->attr.open; /* need parent for the kobj, grab both */ if (!kernfs_get_active(kn)) goto trigger; poll_wait(filp, &on->poll, wait); kernfs_put_active(kn); if (of->event != atomic_read(&on->event)) goto trigger; return DEFAULT_POLLMASK; trigger: return DEFAULT_POLLMASK|POLLERR|POLLPRI; } /** * kernfs_notify - notify a kernfs file * @kn: file to notify * * Notify @kn such that poll(2) on @kn wakes up. */ void kernfs_notify(struct kernfs_node *kn) { struct kernfs_root *root = kernfs_root(kn); struct kernfs_open_node *on; struct kernfs_super_info *info; unsigned long flags; if (WARN_ON(kernfs_type(kn) != KERNFS_FILE)) return; /* kick poll */ spin_lock_irqsave(&kernfs_open_node_lock, flags); on = kn->attr.open; if (on) { atomic_inc(&on->event); wake_up_interruptible(&on->poll); } spin_unlock_irqrestore(&kernfs_open_node_lock, flags); /* kick fsnotify */ mutex_lock(&kernfs_mutex); list_for_each_entry(info, &root->supers, node) { struct inode *inode; struct dentry *dentry; inode = ilookup(info->sb, kn->ino); if (!inode) continue; dentry = d_find_any_alias(inode); if (dentry) { fsnotify_parent(NULL, dentry, FS_MODIFY); fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE, NULL, 0); dput(dentry); } iput(inode); } mutex_unlock(&kernfs_mutex); } EXPORT_SYMBOL_GPL(kernfs_notify); const struct file_operations kernfs_file_fops = { .read = kernfs_fop_read, .write = kernfs_fop_write, .llseek = generic_file_llseek, .mmap = kernfs_fop_mmap, .open = kernfs_fop_open, .release = kernfs_fop_release, .poll = kernfs_fop_poll, }; /** * __kernfs_create_file - kernfs internal function to create a file * @parent: directory to create the file in * @name: name of the file * @mode: mode of the file * @size: size of the file * @ops: kernfs operations for the file * @priv: private data for the file * @ns: optional namespace tag of the file * @static_name: don't copy file name * @key: lockdep key for the file's active_ref, %NULL to disable lockdep * * Returns the created node on success, ERR_PTR() value on error. */ struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent, const char *name, umode_t mode, loff_t size, const struct kernfs_ops *ops, void *priv, const void *ns, bool name_is_static, struct lock_class_key *key) { struct kernfs_node *kn; unsigned flags; int rc; flags = KERNFS_FILE; if (name_is_static) flags |= KERNFS_STATIC_NAME; kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags); if (!kn) return ERR_PTR(-ENOMEM); kn->attr.ops = ops; kn->attr.size = size; kn->ns = ns; kn->priv = priv; #ifdef CONFIG_DEBUG_LOCK_ALLOC if (key) { lockdep_init_map(&kn->dep_map, "s_active", key, 0); kn->flags |= KERNFS_LOCKDEP; } #endif /* * kn->attr.ops is accesible only while holding active ref. We * need to know whether some ops are implemented outside active * ref. Cache their existence in flags. */ if (ops->seq_show) kn->flags |= KERNFS_HAS_SEQ_SHOW; if (ops->mmap) kn->flags |= KERNFS_HAS_MMAP; rc = kernfs_add_one(kn); if (rc) { kernfs_put(kn); return ERR_PTR(rc); } return kn; }