/* pgtable.h: FR-V page table mangling * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Derived from: * include/asm-m68knommu/pgtable.h * include/asm-i386/pgtable.h */ #ifndef _ASM_PGTABLE_H #define _ASM_PGTABLE_H #include <asm/mem-layout.h> #include <asm/setup.h> #include <asm/processor.h> #ifndef __ASSEMBLY__ #include <linux/threads.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/sched.h> struct vm_area_struct; #endif #ifndef __ASSEMBLY__ #if defined(CONFIG_HIGHPTE) typedef unsigned long pte_addr_t; #else typedef pte_t *pte_addr_t; #endif #endif /*****************************************************************************/ /* * MMU-less operation case first */ #ifndef CONFIG_MMU #define pgd_present(pgd) (1) /* pages are always present on NO_MM */ #define pgd_none(pgd) (0) #define pgd_bad(pgd) (0) #define pgd_clear(pgdp) #define kern_addr_valid(addr) (1) #define pmd_offset(a, b) ((void *) 0) #define PAGE_NONE __pgprot(0) /* these mean nothing to NO_MM */ #define PAGE_SHARED __pgprot(0) /* these mean nothing to NO_MM */ #define PAGE_COPY __pgprot(0) /* these mean nothing to NO_MM */ #define PAGE_READONLY __pgprot(0) /* these mean nothing to NO_MM */ #define PAGE_KERNEL __pgprot(0) /* these mean nothing to NO_MM */ #define __swp_type(x) (0) #define __swp_offset(x) (0) #define __swp_entry(typ,off) ((swp_entry_t) { ((typ) | ((off) << 7)) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #ifndef __ASSEMBLY__ static inline int pte_file(pte_t pte) { return 0; } #endif #define ZERO_PAGE(vaddr) ({ BUG(); NULL; }) #define swapper_pg_dir ((pgd_t *) NULL) #define pgtable_cache_init() do {} while (0) #define arch_enter_lazy_mmu_mode() do {} while (0) #define arch_leave_lazy_mmu_mode() do {} while (0) #define arch_enter_lazy_cpu_mode() do {} while (0) #define arch_leave_lazy_cpu_mode() do {} while (0) #else /* !CONFIG_MMU */ /*****************************************************************************/ /* * then MMU operation */ /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ #ifndef __ASSEMBLY__ extern unsigned long empty_zero_page; #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) #endif /* * we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry) * [see Documentation/frv/mmu-layout.txt] * * Page Directory: * - Size: 16KB * - 64 PGEs per PGD * - Each PGE holds 1 PUD and covers 64MB * * Page Upper Directory: * - Size: 256B * - 1 PUE per PUD * - Each PUE holds 1 PMD and covers 64MB * * Page Mid-Level Directory * - Size: 256B * - 1 PME per PMD * - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table * - All STEs are instantiated at the same time * * Page Table * - Size: 16KB * - 4096 PTEs per PT * - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries * * Pages * - Size: 4KB * * total PTEs * = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs * = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT * = 262144 (or 256 * 1024) */ #define PGDIR_SHIFT 26 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE - 1)) #define PTRS_PER_PGD 64 #define PUD_SHIFT 26 #define PTRS_PER_PUD 1 #define PUD_SIZE (1UL << PUD_SHIFT) #define PUD_MASK (~(PUD_SIZE - 1)) #define PUE_SIZE 256 #define PMD_SHIFT 26 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE - 1)) #define PTRS_PER_PMD 1 #define PME_SIZE 256 #define __frv_PT_SIZE 256 #define PTRS_PER_PTE 4096 #define USER_PGDS_IN_LAST_PML4 (TASK_SIZE / PGDIR_SIZE) #define FIRST_USER_ADDRESS 0 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) #define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS) #define TWOLEVEL_PGDIR_SHIFT 26 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) #define BOOT_KERNEL_PGD_PTRS (PTRS_PER_PGD - BOOT_USER_PGD_PTRS) #ifndef __ASSEMBLY__ extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pud_ERROR(e) \ printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e))) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e)))) /* * Certain architectures need to do special things when PTEs * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) \ do { \ *(pteptr) = (pteval); \ asm volatile("dcf %M0" :: "U"(*pteptr)); \ } while(0) #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) /* * pgd_offset() returns a (pgd_t *) * pgd_index() is used get the offset into the pgd page's array of pgd_t's; */ #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) /* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pud is never bad, and a pud always exists (as it's folded * into the pgd entry) */ static inline int pgd_none(pgd_t pgd) { return 0; } static inline int pgd_bad(pgd_t pgd) { return 0; } static inline int pgd_present(pgd_t pgd) { return 1; } static inline void pgd_clear(pgd_t *pgd) { } #define pgd_populate(mm, pgd, pud) do { } while (0) /* * (puds are folded into pgds so this doesn't get actually called, * but the define is needed for a generic inline function.) */ #define set_pgd(pgdptr, pgdval) \ do { \ memcpy((pgdptr), &(pgdval), sizeof(pgd_t)); \ asm volatile("dcf %M0" :: "U"(*(pgdptr))); \ } while(0) static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) { return (pud_t *) pgd; } #define pgd_page(pgd) (pud_page((pud_t){ pgd })) #define pgd_page_vaddr(pgd) (pud_page_vaddr((pud_t){ pgd })) /* * allocating and freeing a pud is trivial: the 1-entry pud is * inside the pgd, so has no extra memory associated with it. */ #define pud_alloc_one(mm, address) NULL #define pud_free(mm, x) do { } while (0) #define __pud_free_tlb(tlb, x) do { } while (0) /* * The "pud_xxx()" functions here are trivial for a folded two-level * setup: the pmd is never bad, and a pmd always exists (as it's folded * into the pud entry) */ static inline int pud_none(pud_t pud) { return 0; } static inline int pud_bad(pud_t pud) { return 0; } static inline int pud_present(pud_t pud) { return 1; } static inline void pud_clear(pud_t *pud) { } #define pud_populate(mm, pmd, pte) do { } while (0) /* * (pmds are folded into puds so this doesn't get actually called, * but the define is needed for a generic inline function.) */ #define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval }) #define pud_page(pud) (pmd_page((pmd_t){ pud })) #define pud_page_vaddr(pud) (pmd_page_vaddr((pmd_t){ pud })) /* * (pmds are folded into pgds so this doesn't get actually called, * but the define is needed for a generic inline function.) */ extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd); #define set_pmd(pmdptr, pmdval) \ do { \ __set_pmd((pmdptr), (pmdval).ste[0]); \ } while(0) #define __pmd_index(address) 0 static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address) { return (pmd_t *) dir + __pmd_index(address); } #define pte_same(a, b) ((a).pte == (b).pte) #define pte_page(x) (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT)))) #define pte_none(x) (!(x).pte) #define pte_pfn(x) ((unsigned long)(((x).pte >> PAGE_SHIFT))) #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) #define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) #define VMALLOC_VMADDR(x) ((unsigned long) (x)) #endif /* !__ASSEMBLY__ */ /* * control flags in AMPR registers and TLB entries */ #define _PAGE_BIT_PRESENT xAMPRx_V_BIT #define _PAGE_BIT_WP DAMPRx_WP_BIT #define _PAGE_BIT_NOCACHE xAMPRx_C_BIT #define _PAGE_BIT_SUPER xAMPRx_S_BIT #define _PAGE_BIT_ACCESSED xAMPRx_RESERVED8_BIT #define _PAGE_BIT_DIRTY xAMPRx_M_BIT #define _PAGE_BIT_NOTGLOBAL xAMPRx_NG_BIT #define _PAGE_PRESENT xAMPRx_V #define _PAGE_WP DAMPRx_WP #define _PAGE_NOCACHE xAMPRx_C #define _PAGE_SUPER xAMPRx_S #define _PAGE_ACCESSED xAMPRx_RESERVED8 /* accessed if set */ #define _PAGE_DIRTY xAMPRx_M #define _PAGE_NOTGLOBAL xAMPRx_NG #define _PAGE_RESERVED_MASK (xAMPRx_RESERVED8 | xAMPRx_RESERVED13) #define _PAGE_FILE 0x002 /* set:pagecache unset:swap */ #define _PAGE_PROTNONE 0x000 /* If not present */ #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define __PGPROT_BASE \ (_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED) #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(__PGPROT_BASE) #define PAGE_COPY __pgprot(__PGPROT_BASE | _PAGE_WP) #define PAGE_READONLY __pgprot(__PGPROT_BASE | _PAGE_WP) #define __PAGE_KERNEL (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY) #define __PAGE_KERNEL_NOCACHE (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE) #define __PAGE_KERNEL_RO (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP) #define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL) #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL) #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO) #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE) #define _PAGE_TABLE (_PAGE_PRESENT | xAMPRx_SS_16Kb) #ifndef __ASSEMBLY__ /* * The FR451 can do execute protection by virtue of having separate TLB miss handlers for * instruction access and for data access. However, we don't have enough reserved bits to say * "execute only", so we don't bother. If you can read it, you can execute it and vice versa. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED /* * Define this to warn about kernel memory accesses that are * done without a 'access_ok(VERIFY_WRITE,..)' */ #undef TEST_ACCESS_OK #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) #define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0) #define pmd_none(x) (!pmd_val(x)) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_bad(x) (pmd_val(x) & xAMPRx_SS) #define pmd_clear(xp) do { __set_pmd(xp, 0); } while(0) #define pmd_page_vaddr(pmd) \ ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) #ifndef CONFIG_DISCONTIGMEM #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) #endif #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_dirty(pte_t pte) { return (pte).pte & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return (pte).pte & _PAGE_ACCESSED; } static inline int pte_write(pte_t pte) { return !((pte).pte & _PAGE_WP); } static inline int pte_special(pte_t pte) { return 0; } static inline pte_t pte_mkclean(pte_t pte) { (pte).pte &= ~_PAGE_DIRTY; return pte; } static inline pte_t pte_mkold(pte_t pte) { (pte).pte &= ~_PAGE_ACCESSED; return pte; } static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte |= _PAGE_WP; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte |= _PAGE_DIRTY; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte |= _PAGE_ACCESSED; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte &= ~_PAGE_WP; return pte; } static inline pte_t pte_mkspecial(pte_t pte) { return pte; } static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); asm volatile("dcf %M0" :: "U"(*ptep)); return i; } static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long x = xchg(&ptep->pte, 0); asm volatile("dcf %M0" :: "U"(*ptep)); return __pte(x); } static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { set_bit(_PAGE_BIT_WP, ptep); asm volatile("dcf %M0" :: "U"(*ptep)); } /* * Macro to mark a page protection value as "uncacheable" */ #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE)) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) #define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE) /* This takes a physical page address that is used by the remapping functions */ #define mk_pte_phys(physpage, pgprot) pfn_pte((physpage) >> PAGE_SHIFT, pgprot) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte.pte &= _PAGE_CHG_MASK; pte.pte |= pgprot_val(newprot); return pte; } /* to find an entry in a page-table-directory. */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) #define pgd_index_k(addr) pgd_index(addr) /* Find an entry in the bottom-level page table.. */ #define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) /* * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] * * this macro returns the index of the entry in the pte page which would * control the given virtual address */ #define pte_index(address) \ (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset_kernel(dir, address) \ ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) #if defined(CONFIG_HIGHPTE) #define pte_offset_map(dir, address) \ ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address)) #define pte_offset_map_nested(dir, address) \ ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address)) #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) #define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1) #else #define pte_offset_map(dir, address) \ ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) #define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address)) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) #endif /* * Handle swap and file entries * - the PTE is encoded in the following format: * bit 0: Must be 0 (!_PAGE_PRESENT) * bit 1: Type: 0 for swap, 1 for file (_PAGE_FILE) * bits 2-7: Swap type * bits 8-31: Swap offset * bits 2-31: File pgoff */ #define __swp_type(x) (((x).val >> 2) & 0x1f) #define __swp_offset(x) ((x).val >> 8) #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 8) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) static inline int pte_file(pte_t pte) { return pte.pte & _PAGE_FILE; } #define PTE_FILE_MAX_BITS 29 #define pte_to_pgoff(PTE) ((PTE).pte >> 2) #define pgoff_to_pte(off) __pte((off) << 2 | _PAGE_FILE) /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define kern_addr_valid(addr) (1) #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ remap_pfn_range(vma, vaddr, pfn, size, prot) #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define __HAVE_ARCH_PTEP_GET_AND_CLEAR #define __HAVE_ARCH_PTEP_SET_WRPROTECT #define __HAVE_ARCH_PTE_SAME #include <asm-generic/pgtable.h> /* * preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache */ static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) { struct mm_struct *mm; unsigned long ampr; mm = current->mm; if (mm) { pgd_t *pge = pgd_offset(mm, address); pud_t *pue = pud_offset(pge, address); pmd_t *pme = pmd_offset(pue, address); ampr = pme->ste[0] & 0xffffff00; ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C | xAMPRx_V; } else { address = ULONG_MAX; ampr = 0; } asm volatile("movgs %0,scr0\n" "movgs %0,scr1\n" "movgs %1,dampr4\n" "movgs %1,dampr5\n" : : "r"(address), "r"(ampr) ); } #ifdef CONFIG_PROC_FS extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer); #endif extern void __init pgtable_cache_init(void); #endif /* !__ASSEMBLY__ */ #endif /* !CONFIG_MMU */ #ifndef __ASSEMBLY__ extern void __init paging_init(void); #endif /* !__ASSEMBLY__ */ #endif /* _ASM_PGTABLE_H */