#ifndef _LINUX_MM_H #define _LINUX_MM_H #include #ifdef __KERNEL__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct mempolicy; struct anon_vma; struct anon_vma_chain; struct file_ra_state; struct user_struct; struct writeback_control; struct bdi_writeback; #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ extern unsigned long max_mapnr; static inline void set_max_mapnr(unsigned long limit) { max_mapnr = limit; } #else static inline void set_max_mapnr(unsigned long limit) { } #endif extern unsigned long totalram_pages; extern void * high_memory; extern int page_cluster; #ifdef CONFIG_SYSCTL extern int sysctl_legacy_va_layout; #else #define sysctl_legacy_va_layout 0 #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS extern const int mmap_rnd_bits_min; extern const int mmap_rnd_bits_max; extern int mmap_rnd_bits __read_mostly; #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS extern const int mmap_rnd_compat_bits_min; extern const int mmap_rnd_compat_bits_max; extern int mmap_rnd_compat_bits __read_mostly; #endif #include #include #include #ifndef __pa_symbol #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) #endif /* * To prevent common memory management code establishing * a zero page mapping on a read fault. * This macro should be defined within . * s390 does this to prevent multiplexing of hardware bits * related to the physical page in case of virtualization. */ #ifndef mm_forbids_zeropage #define mm_forbids_zeropage(X) (0) #endif extern unsigned long sysctl_user_reserve_kbytes; extern unsigned long sysctl_admin_reserve_kbytes; extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) /* to align the pointer to the (next) page boundary */ #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) /* * Linux kernel virtual memory manager primitives. * The idea being to have a "virtual" mm in the same way * we have a virtual fs - giving a cleaner interface to the * mm details, and allowing different kinds of memory mappings * (from shared memory to executable loading to arbitrary * mmap() functions). */ extern struct kmem_cache *vm_area_cachep; #ifndef CONFIG_MMU extern struct rb_root nommu_region_tree; extern struct rw_semaphore nommu_region_sem; extern unsigned int kobjsize(const void *objp); #endif /* * vm_flags in vm_area_struct, see mm_types.h. */ #define VM_NONE 0x00000000 #define VM_READ 0x00000001 /* currently active flags */ #define VM_WRITE 0x00000002 #define VM_EXEC 0x00000004 #define VM_SHARED 0x00000008 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ #define VM_MAYWRITE 0x00000020 #define VM_MAYEXEC 0x00000040 #define VM_MAYSHARE 0x00000080 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ #define VM_LOCKED 0x00002000 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ /* Used by sys_madvise() */ #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ #define VM_ARCH_2 0x02000000 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ #ifdef CONFIG_MEM_SOFT_DIRTY # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ #else # define VM_SOFTDIRTY 0 #endif #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ #if defined(CONFIG_X86) # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ #elif defined(CONFIG_PPC) # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ #elif defined(CONFIG_PARISC) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_METAG) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_IA64) # define VM_GROWSUP VM_ARCH_1 #elif !defined(CONFIG_MMU) # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ #endif #if defined(CONFIG_X86) /* MPX specific bounds table or bounds directory */ # define VM_MPX VM_ARCH_2 #endif #ifndef VM_GROWSUP # define VM_GROWSUP VM_NONE #endif /* Bits set in the VMA until the stack is in its final location */ #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS #endif #ifdef CONFIG_STACK_GROWSUP #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) #else #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) #endif /* * Special vmas that are non-mergable, non-mlock()able. * Note: mm/huge_memory.c VM_NO_THP depends on this definition. */ #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) /* This mask defines which mm->def_flags a process can inherit its parent */ #define VM_INIT_DEF_MASK VM_NOHUGEPAGE /* This mask is used to clear all the VMA flags used by mlock */ #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) /* * mapping from the currently active vm_flags protection bits (the * low four bits) to a page protection mask.. */ extern pgprot_t protection_map[16]; #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ #define FAULT_FLAG_TRIED 0x20 /* Second try */ #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ /* * vm_fault is filled by the the pagefault handler and passed to the vma's * ->fault function. The vma's ->fault is responsible for returning a bitmask * of VM_FAULT_xxx flags that give details about how the fault was handled. * * MM layer fills up gfp_mask for page allocations but fault handler might * alter it if its implementation requires a different allocation context. * * pgoff should be used in favour of virtual_address, if possible. */ struct vm_fault { unsigned int flags; /* FAULT_FLAG_xxx flags */ gfp_t gfp_mask; /* gfp mask to be used for allocations */ pgoff_t pgoff; /* Logical page offset based on vma */ void __user *virtual_address; /* Faulting virtual address */ struct page *cow_page; /* Handler may choose to COW */ struct page *page; /* ->fault handlers should return a * page here, unless VM_FAULT_NOPAGE * is set (which is also implied by * VM_FAULT_ERROR). */ /* for ->map_pages() only */ pgoff_t max_pgoff; /* map pages for offset from pgoff till * max_pgoff inclusive */ pte_t *pte; /* pte entry associated with ->pgoff */ }; /* * These are the virtual MM functions - opening of an area, closing and * unmapping it (needed to keep files on disk up-to-date etc), pointer * to the functions called when a no-page or a wp-page exception occurs. */ struct vm_operations_struct { void (*open)(struct vm_area_struct * area); void (*close)(struct vm_area_struct * area); int (*mremap)(struct vm_area_struct * area); int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); int (*pmd_fault)(struct vm_area_struct *, unsigned long address, pmd_t *, unsigned int flags); void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); /* notification that a previously read-only page is about to become * writable, if an error is returned it will cause a SIGBUS */ int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); /* called by access_process_vm when get_user_pages() fails, typically * for use by special VMAs that can switch between memory and hardware */ int (*access)(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); /* Called by the /proc/PID/maps code to ask the vma whether it * has a special name. Returning non-NULL will also cause this * vma to be dumped unconditionally. */ const char *(*name)(struct vm_area_struct *vma); #ifdef CONFIG_NUMA /* * set_policy() op must add a reference to any non-NULL @new mempolicy * to hold the policy upon return. Caller should pass NULL @new to * remove a policy and fall back to surrounding context--i.e. do not * install a MPOL_DEFAULT policy, nor the task or system default * mempolicy. */ int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); /* * get_policy() op must add reference [mpol_get()] to any policy at * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure * in mm/mempolicy.c will do this automatically. * get_policy() must NOT add a ref if the policy at (vma,addr) is not * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. * If no [shared/vma] mempolicy exists at the addr, get_policy() op * must return NULL--i.e., do not "fallback" to task or system default * policy. */ struct mempolicy *(*get_policy)(struct vm_area_struct *vma, unsigned long addr); #endif /* * Called by vm_normal_page() for special PTEs to find the * page for @addr. This is useful if the default behavior * (using pte_page()) would not find the correct page. */ struct page *(*find_special_page)(struct vm_area_struct *vma, unsigned long addr); }; struct mmu_gather; struct inode; #define page_private(page) ((page)->private) #define set_page_private(page, v) ((page)->private = (v)) /* * FIXME: take this include out, include page-flags.h in * files which need it (119 of them) */ #include #include /* * Methods to modify the page usage count. * * What counts for a page usage: * - cache mapping (page->mapping) * - private data (page->private) * - page mapped in a task's page tables, each mapping * is counted separately * * Also, many kernel routines increase the page count before a critical * routine so they can be sure the page doesn't go away from under them. */ /* * Drop a ref, return true if the refcount fell to zero (the page has no users) */ static inline int put_page_testzero(struct page *page) { VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); return atomic_dec_and_test(&page->_count); } /* * Try to grab a ref unless the page has a refcount of zero, return false if * that is the case. * This can be called when MMU is off so it must not access * any of the virtual mappings. */ static inline int get_page_unless_zero(struct page *page) { return atomic_inc_not_zero(&page->_count); } extern int page_is_ram(unsigned long pfn); enum { REGION_INTERSECTS, REGION_DISJOINT, REGION_MIXED, }; int region_intersects(resource_size_t offset, size_t size, const char *type); /* Support for virtually mapped pages */ struct page *vmalloc_to_page(const void *addr); unsigned long vmalloc_to_pfn(const void *addr); /* * Determine if an address is within the vmalloc range * * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there * is no special casing required. */ static inline int is_vmalloc_addr(const void *x) { #ifdef CONFIG_MMU unsigned long addr = (unsigned long)x; return addr >= VMALLOC_START && addr < VMALLOC_END; #else return 0; #endif } #ifdef CONFIG_MMU extern int is_vmalloc_or_module_addr(const void *x); #else static inline int is_vmalloc_or_module_addr(const void *x) { return 0; } #endif extern void kvfree(const void *addr); static inline void compound_lock(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE VM_BUG_ON_PAGE(PageSlab(page), page); bit_spin_lock(PG_compound_lock, &page->flags); #endif } static inline void compound_unlock(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE VM_BUG_ON_PAGE(PageSlab(page), page); bit_spin_unlock(PG_compound_lock, &page->flags); #endif } static inline unsigned long compound_lock_irqsave(struct page *page) { unsigned long uninitialized_var(flags); #ifdef CONFIG_TRANSPARENT_HUGEPAGE local_irq_save(flags); compound_lock(page); #endif return flags; } static inline void compound_unlock_irqrestore(struct page *page, unsigned long flags) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE compound_unlock(page); local_irq_restore(flags); #endif } /* * The atomic page->_mapcount, starts from -1: so that transitions * both from it and to it can be tracked, using atomic_inc_and_test * and atomic_add_negative(-1). */ static inline void page_mapcount_reset(struct page *page) { atomic_set(&(page)->_mapcount, -1); } static inline int page_mapcount(struct page *page) { VM_BUG_ON_PAGE(PageSlab(page), page); return atomic_read(&page->_mapcount) + 1; } static inline int page_count(struct page *page) { return atomic_read(&compound_head(page)->_count); } static inline bool __compound_tail_refcounted(struct page *page) { return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page); } /* * This takes a head page as parameter and tells if the * tail page reference counting can be skipped. * * For this to be safe, PageSlab and PageHeadHuge must remain true on * any given page where they return true here, until all tail pins * have been released. */ static inline bool compound_tail_refcounted(struct page *page) { VM_BUG_ON_PAGE(!PageHead(page), page); return __compound_tail_refcounted(page); } static inline void get_huge_page_tail(struct page *page) { /* * __split_huge_page_refcount() cannot run from under us. */ VM_BUG_ON_PAGE(!PageTail(page), page); VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); if (compound_tail_refcounted(compound_head(page))) atomic_inc(&page->_mapcount); } extern bool __get_page_tail(struct page *page); static inline void get_page(struct page *page) { if (unlikely(PageTail(page))) if (likely(__get_page_tail(page))) return; /* * Getting a normal page or the head of a compound page * requires to already have an elevated page->_count. */ VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); atomic_inc(&page->_count); } static inline struct page *virt_to_head_page(const void *x) { struct page *page = virt_to_page(x); return compound_head(page); } /* * Setup the page count before being freed into the page allocator for * the first time (boot or memory hotplug) */ static inline void init_page_count(struct page *page) { atomic_set(&page->_count, 1); } void put_page(struct page *page); void put_pages_list(struct list_head *pages); void split_page(struct page *page, unsigned int order); int split_free_page(struct page *page); /* * Compound pages have a destructor function. Provide a * prototype for that function and accessor functions. * These are _only_ valid on the head of a compound page. */ typedef void compound_page_dtor(struct page *); /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ enum compound_dtor_id { NULL_COMPOUND_DTOR, COMPOUND_PAGE_DTOR, #ifdef CONFIG_HUGETLB_PAGE HUGETLB_PAGE_DTOR, #endif NR_COMPOUND_DTORS, }; extern compound_page_dtor * const compound_page_dtors[]; static inline void set_compound_page_dtor(struct page *page, enum compound_dtor_id compound_dtor) { VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); page[1].compound_dtor = compound_dtor; } static inline compound_page_dtor *get_compound_page_dtor(struct page *page) { VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); return compound_page_dtors[page[1].compound_dtor]; } static inline unsigned int compound_order(struct page *page) { if (!PageHead(page)) return 0; return page[1].compound_order; } static inline void set_compound_order(struct page *page, unsigned int order) { page[1].compound_order = order; } #ifdef CONFIG_MMU /* * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when * servicing faults for write access. In the normal case, do always want * pte_mkwrite. But get_user_pages can cause write faults for mappings * that do not have writing enabled, when used by access_process_vm. */ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) { if (likely(vma->vm_flags & VM_WRITE)) pte = pte_mkwrite(pte); return pte; } void do_set_pte(struct vm_area_struct *vma, unsigned long address, struct page *page, pte_t *pte, bool write, bool anon); #endif /* * Multiple processes may "see" the same page. E.g. for untouched * mappings of /dev/null, all processes see the same page full of * zeroes, and text pages of executables and shared libraries have * only one copy in memory, at most, normally. * * For the non-reserved pages, page_count(page) denotes a reference count. * page_count() == 0 means the page is free. page->lru is then used for * freelist management in the buddy allocator. * page_count() > 0 means the page has been allocated. * * Pages are allocated by the slab allocator in order to provide memory * to kmalloc and kmem_cache_alloc. In this case, the management of the * page, and the fields in 'struct page' are the responsibility of mm/slab.c * unless a particular usage is carefully commented. (the responsibility of * freeing the kmalloc memory is the caller's, of course). * * A page may be used by anyone else who does a __get_free_page(). * In this case, page_count still tracks the references, and should only * be used through the normal accessor functions. The top bits of page->flags * and page->virtual store page management information, but all other fields * are unused and could be used privately, carefully. The management of this * page is the responsibility of the one who allocated it, and those who have * subsequently been given references to it. * * The other pages (we may call them "pagecache pages") are completely * managed by the Linux memory manager: I/O, buffers, swapping etc. * The following discussion applies only to them. * * A pagecache page contains an opaque `private' member, which belongs to the * page's address_space. Usually, this is the address of a circular list of * the page's disk buffers. PG_private must be set to tell the VM to call * into the filesystem to release these pages. * * A page may belong to an inode's memory mapping. In this case, page->mapping * is the pointer to the inode, and page->index is the file offset of the page, * in units of PAGE_CACHE_SIZE. * * If pagecache pages are not associated with an inode, they are said to be * anonymous pages. These may become associated with the swapcache, and in that * case PG_swapcache is set, and page->private is an offset into the swapcache. * * In either case (swapcache or inode backed), the pagecache itself holds one * reference to the page. Setting PG_private should also increment the * refcount. The each user mapping also has a reference to the page. * * The pagecache pages are stored in a per-mapping radix tree, which is * rooted at mapping->page_tree, and indexed by offset. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space * lists, we instead now tag pages as dirty/writeback in the radix tree. * * All pagecache pages may be subject to I/O: * - inode pages may need to be read from disk, * - inode pages which have been modified and are MAP_SHARED may need * to be written back to the inode on disk, * - anonymous pages (including MAP_PRIVATE file mappings) which have been * modified may need to be swapped out to swap space and (later) to be read * back into memory. */ /* * The zone field is never updated after free_area_init_core() * sets it, so none of the operations on it need to be atomic. */ /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) /* * Define the bit shifts to access each section. For non-existent * sections we define the shift as 0; that plus a 0 mask ensures * the compiler will optimise away reference to them. */ #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ #ifdef NODE_NOT_IN_PAGE_FLAGS #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ SECTIONS_PGOFF : ZONES_PGOFF) #else #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ NODES_PGOFF : ZONES_PGOFF) #endif #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS #endif #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) #define NODES_MASK ((1UL << NODES_WIDTH) - 1) #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) static inline enum zone_type page_zonenum(const struct page *page) { return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; } #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) #define SECTION_IN_PAGE_FLAGS #endif /* * The identification function is mainly used by the buddy allocator for * determining if two pages could be buddies. We are not really identifying * the zone since we could be using the section number id if we do not have * node id available in page flags. * We only guarantee that it will return the same value for two combinable * pages in a zone. */ static inline int page_zone_id(struct page *page) { return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; } static inline int zone_to_nid(struct zone *zone) { #ifdef CONFIG_NUMA return zone->node; #else return 0; #endif } #ifdef NODE_NOT_IN_PAGE_FLAGS extern int page_to_nid(const struct page *page); #else static inline int page_to_nid(const struct page *page) { return (page->flags >> NODES_PGSHIFT) & NODES_MASK; } #endif #ifdef CONFIG_NUMA_BALANCING static inline int cpu_pid_to_cpupid(int cpu, int pid) { return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); } static inline int cpupid_to_pid(int cpupid) { return cpupid & LAST__PID_MASK; } static inline int cpupid_to_cpu(int cpupid) { return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; } static inline int cpupid_to_nid(int cpupid) { return cpu_to_node(cpupid_to_cpu(cpupid)); } static inline bool cpupid_pid_unset(int cpupid) { return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); } static inline bool cpupid_cpu_unset(int cpupid) { return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); } static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) { return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); } #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); } static inline int page_cpupid_last(struct page *page) { return page->_last_cpupid; } static inline void page_cpupid_reset_last(struct page *page) { page->_last_cpupid = -1 & LAST_CPUPID_MASK; } #else static inline int page_cpupid_last(struct page *page) { return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; } extern int page_cpupid_xchg_last(struct page *page, int cpupid); static inline void page_cpupid_reset_last(struct page *page) { int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; } #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ #else /* !CONFIG_NUMA_BALANCING */ static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return page_to_nid(page); /* XXX */ } static inline int page_cpupid_last(struct page *page) { return page_to_nid(page); /* XXX */ } static inline int cpupid_to_nid(int cpupid) { return -1; } static inline int cpupid_to_pid(int cpupid) { return -1; } static inline int cpupid_to_cpu(int cpupid) { return -1; } static inline int cpu_pid_to_cpupid(int nid, int pid) { return -1; } static inline bool cpupid_pid_unset(int cpupid) { return 1; } static inline void page_cpupid_reset_last(struct page *page) { } static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) { return false; } #endif /* CONFIG_NUMA_BALANCING */ static inline struct zone *page_zone(const struct page *page) { return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; } #ifdef SECTION_IN_PAGE_FLAGS static inline void set_page_section(struct page *page, unsigned long section) { page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; } static inline unsigned long page_to_section(const struct page *page) { return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; } #endif static inline void set_page_zone(struct page *page, enum zone_type zone) { page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; } static inline void set_page_node(struct page *page, unsigned long node) { page->flags &= ~(NODES_MASK << NODES_PGSHIFT); page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; } static inline void set_page_links(struct page *page, enum zone_type zone, unsigned long node, unsigned long pfn) { set_page_zone(page, zone); set_page_node(page, node); #ifdef SECTION_IN_PAGE_FLAGS set_page_section(page, pfn_to_section_nr(pfn)); #endif } #ifdef CONFIG_MEMCG static inline struct mem_cgroup *page_memcg(struct page *page) { return page->mem_cgroup; } static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) { page->mem_cgroup = memcg; } #else static inline struct mem_cgroup *page_memcg(struct page *page) { return NULL; } static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) { } #endif /* * Some inline functions in vmstat.h depend on page_zone() */ #include static __always_inline void *lowmem_page_address(const struct page *page) { return __va(PFN_PHYS(page_to_pfn(page))); } #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) #define HASHED_PAGE_VIRTUAL #endif #if defined(WANT_PAGE_VIRTUAL) static inline void *page_address(const struct page *page) { return page->virtual; } static inline void set_page_address(struct page *page, void *address) { page->virtual = address; } #define page_address_init() do { } while(0) #endif #if defined(HASHED_PAGE_VIRTUAL) void *page_address(const struct page *page); void set_page_address(struct page *page, void *virtual); void page_address_init(void); #endif #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) #define page_address(page) lowmem_page_address(page) #define set_page_address(page, address) do { } while(0) #define page_address_init() do { } while(0) #endif extern void *page_rmapping(struct page *page); extern struct anon_vma *page_anon_vma(struct page *page); extern struct address_space *page_mapping(struct page *page); extern struct address_space *__page_file_mapping(struct page *); static inline struct address_space *page_file_mapping(struct page *page) { if (unlikely(PageSwapCache(page))) return __page_file_mapping(page); return page->mapping; } /* * Return the pagecache index of the passed page. Regular pagecache pages * use ->index whereas swapcache pages use ->private */ static inline pgoff_t page_index(struct page *page) { if (unlikely(PageSwapCache(page))) return page_private(page); return page->index; } extern pgoff_t __page_file_index(struct page *page); /* * Return the file index of the page. Regular pagecache pages use ->index * whereas swapcache pages use swp_offset(->private) */ static inline pgoff_t page_file_index(struct page *page) { if (unlikely(PageSwapCache(page))) return __page_file_index(page); return page->index; } /* * Return true if this page is mapped into pagetables. */ static inline int page_mapped(struct page *page) { return atomic_read(&(page)->_mapcount) >= 0; } /* * Return true only if the page has been allocated with * ALLOC_NO_WATERMARKS and the low watermark was not * met implying that the system is under some pressure. */ static inline bool page_is_pfmemalloc(struct page *page) { /* * Page index cannot be this large so this must be * a pfmemalloc page. */ return page->index == -1UL; } /* * Only to be called by the page allocator on a freshly allocated * page. */ static inline void set_page_pfmemalloc(struct page *page) { page->index = -1UL; } static inline void clear_page_pfmemalloc(struct page *page) { page->index = 0; } /* * Different kinds of faults, as returned by handle_mm_fault(). * Used to decide whether a process gets delivered SIGBUS or * just gets major/minor fault counters bumped up. */ #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ #define VM_FAULT_OOM 0x0001 #define VM_FAULT_SIGBUS 0x0002 #define VM_FAULT_MAJOR 0x0004 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ #define VM_FAULT_SIGSEGV 0x0040 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ VM_FAULT_FALLBACK) /* Encode hstate index for a hwpoisoned large page */ #define VM_FAULT_SET_HINDEX(x) ((x) << 12) #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) /* * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. */ extern void pagefault_out_of_memory(void); #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) /* * Flags passed to show_mem() and show_free_areas() to suppress output in * various contexts. */ #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ extern void show_free_areas(unsigned int flags); extern bool skip_free_areas_node(unsigned int flags, int nid); int shmem_zero_setup(struct vm_area_struct *); #ifdef CONFIG_SHMEM bool shmem_mapping(struct address_space *mapping); #else static inline bool shmem_mapping(struct address_space *mapping) { return false; } #endif extern int can_do_mlock(void); extern int user_shm_lock(size_t, struct user_struct *); extern void user_shm_unlock(size_t, struct user_struct *); /* * Parameter block passed down to zap_pte_range in exceptional cases. */ struct zap_details { struct address_space *check_mapping; /* Check page->mapping if set */ pgoff_t first_index; /* Lowest page->index to unmap */ pgoff_t last_index; /* Highest page->index to unmap */ }; struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte); int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size); void zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *); void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long start, unsigned long end); /** * mm_walk - callbacks for walk_page_range * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry * this handler is required to be able to handle * pmd_trans_huge() pmds. They may simply choose to * split_huge_page() instead of handling it explicitly. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry * @pte_hole: if set, called for each hole at all levels * @hugetlb_entry: if set, called for each hugetlb entry * @test_walk: caller specific callback function to determine whether * we walk over the current vma or not. A positive returned * value means "do page table walk over the current vma," * and a negative one means "abort current page table walk * right now." 0 means "skip the current vma." * @mm: mm_struct representing the target process of page table walk * @vma: vma currently walked (NULL if walking outside vmas) * @private: private data for callbacks' usage * * (see the comment on walk_page_range() for more details) */ struct mm_walk { int (*pmd_entry)(pmd_t *pmd, unsigned long addr, unsigned long next, struct mm_walk *walk); int (*pte_entry)(pte_t *pte, unsigned long addr, unsigned long next, struct mm_walk *walk); int (*pte_hole)(unsigned long addr, unsigned long next, struct mm_walk *walk); int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long next, struct mm_walk *walk); int (*test_walk)(unsigned long addr, unsigned long next, struct mm_walk *walk); struct mm_struct *mm; struct vm_area_struct *vma; void *private; }; int walk_page_range(unsigned long addr, unsigned long end, struct mm_walk *walk); int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling); int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma); void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows); int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn); int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys); int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); static inline void unmap_shared_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen) { unmap_mapping_range(mapping, holebegin, holelen, 0); } extern void truncate_pagecache(struct inode *inode, loff_t new); extern void truncate_setsize(struct inode *inode, loff_t newsize); void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); int truncate_inode_page(struct address_space *mapping, struct page *page); int generic_error_remove_page(struct address_space *mapping, struct page *page); int invalidate_inode_page(struct page *page); #ifdef CONFIG_MMU extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, unsigned int flags); extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, unsigned long address, unsigned int fault_flags); #else static inline int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, unsigned int flags) { /* should never happen if there's no MMU */ BUG(); return VM_FAULT_SIGBUS; } static inline int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, unsigned long address, unsigned int fault_flags) { /* should never happen if there's no MMU */ BUG(); return -EFAULT; } #endif extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, int write); long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int foll_flags, struct page **pages, struct vm_area_struct **vmas, int *nonblocking); long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, unsigned long nr_pages, int write, int force, struct page **pages, struct vm_area_struct **vmas); long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, unsigned long nr_pages, int write, int force, struct page **pages, int *locked); long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, unsigned long nr_pages, int write, int force, struct page **pages, unsigned int gup_flags); long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, unsigned long nr_pages, int write, int force, struct page **pages); int get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages); /* Container for pinned pfns / pages */ struct frame_vector { unsigned int nr_allocated; /* Number of frames we have space for */ unsigned int nr_frames; /* Number of frames stored in ptrs array */ bool got_ref; /* Did we pin pages by getting page ref? */ bool is_pfns; /* Does array contain pages or pfns? */ void *ptrs[0]; /* Array of pinned pfns / pages. Use * pfns_vector_pages() or pfns_vector_pfns() * for access */ }; struct frame_vector *frame_vector_create(unsigned int nr_frames); void frame_vector_destroy(struct frame_vector *vec); int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, bool write, bool force, struct frame_vector *vec); void put_vaddr_frames(struct frame_vector *vec); int frame_vector_to_pages(struct frame_vector *vec); void frame_vector_to_pfns(struct frame_vector *vec); static inline unsigned int frame_vector_count(struct frame_vector *vec) { return vec->nr_frames; } static inline struct page **frame_vector_pages(struct frame_vector *vec) { if (vec->is_pfns) { int err = frame_vector_to_pages(vec); if (err) return ERR_PTR(err); } return (struct page **)(vec->ptrs); } static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) { if (!vec->is_pfns) frame_vector_to_pfns(vec); return (unsigned long *)(vec->ptrs); } struct kvec; int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, struct page **pages); int get_kernel_page(unsigned long start, int write, struct page **pages); struct page *get_dump_page(unsigned long addr); extern int try_to_release_page(struct page * page, gfp_t gfp_mask); extern void do_invalidatepage(struct page *page, unsigned int offset, unsigned int length); int __set_page_dirty_nobuffers(struct page *page); int __set_page_dirty_no_writeback(struct page *page); int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page); void account_page_dirtied(struct page *page, struct address_space *mapping, struct mem_cgroup *memcg); void account_page_cleaned(struct page *page, struct address_space *mapping, struct mem_cgroup *memcg, struct bdi_writeback *wb); int set_page_dirty(struct page *page); int set_page_dirty_lock(struct page *page); void cancel_dirty_page(struct page *page); int clear_page_dirty_for_io(struct page *page); int get_cmdline(struct task_struct *task, char *buffer, int buflen); /* Is the vma a continuation of the stack vma above it? */ static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) { return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); } static inline bool vma_is_anonymous(struct vm_area_struct *vma) { return !vma->vm_ops; } static inline int stack_guard_page_start(struct vm_area_struct *vma, unsigned long addr) { return (vma->vm_flags & VM_GROWSDOWN) && (vma->vm_start == addr) && !vma_growsdown(vma->vm_prev, addr); } /* Is the vma a continuation of the stack vma below it? */ static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) { return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); } static inline int stack_guard_page_end(struct vm_area_struct *vma, unsigned long addr) { return (vma->vm_flags & VM_GROWSUP) && (vma->vm_end == addr) && !vma_growsup(vma->vm_next, addr); } extern struct task_struct *task_of_stack(struct task_struct *task, struct vm_area_struct *vma, bool in_group); extern unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr, struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len, bool need_rmap_locks); extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgprot_t newprot, int dirty_accountable, int prot_numa); extern int mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, unsigned long start, unsigned long end, unsigned long newflags); /* * doesn't attempt to fault and will return short. */ int __get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages); /* * per-process(per-mm_struct) statistics. */ static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) { long val = atomic_long_read(&mm->rss_stat.count[member]); #ifdef SPLIT_RSS_COUNTING /* * counter is updated in asynchronous manner and may go to minus. * But it's never be expected number for users. */ if (val < 0) val = 0; #endif return (unsigned long)val; } static inline void add_mm_counter(struct mm_struct *mm, int member, long value) { atomic_long_add(value, &mm->rss_stat.count[member]); } static inline void inc_mm_counter(struct mm_struct *mm, int member) { atomic_long_inc(&mm->rss_stat.count[member]); } static inline void dec_mm_counter(struct mm_struct *mm, int member) { atomic_long_dec(&mm->rss_stat.count[member]); } /* Optimized variant when page is already known not to be PageAnon */ static inline int mm_counter_file(struct page *page) { if (PageSwapBacked(page)) return MM_SHMEMPAGES; return MM_FILEPAGES; } static inline int mm_counter(struct page *page) { if (PageAnon(page)) return MM_ANONPAGES; return mm_counter_file(page); } static inline unsigned long get_mm_rss(struct mm_struct *mm) { return get_mm_counter(mm, MM_FILEPAGES) + get_mm_counter(mm, MM_ANONPAGES) + get_mm_counter(mm, MM_SHMEMPAGES); } static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) { return max(mm->hiwater_rss, get_mm_rss(mm)); } static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) { return max(mm->hiwater_vm, mm->total_vm); } static inline void update_hiwater_rss(struct mm_struct *mm) { unsigned long _rss = get_mm_rss(mm); if ((mm)->hiwater_rss < _rss) (mm)->hiwater_rss = _rss; } static inline void update_hiwater_vm(struct mm_struct *mm) { if (mm->hiwater_vm < mm->total_vm) mm->hiwater_vm = mm->total_vm; } static inline void reset_mm_hiwater_rss(struct mm_struct *mm) { mm->hiwater_rss = get_mm_rss(mm); } static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, struct mm_struct *mm) { unsigned long hiwater_rss = get_mm_hiwater_rss(mm); if (*maxrss < hiwater_rss) *maxrss = hiwater_rss; } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm); #else static inline void sync_mm_rss(struct mm_struct *mm) { } #endif int vma_wants_writenotify(struct vm_area_struct *vma); extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pte_t *ptep; __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); return ptep; } #ifdef __PAGETABLE_PUD_FOLDED static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return 0; } #else int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); #endif #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return 0; } static inline void mm_nr_pmds_init(struct mm_struct *mm) {} static inline unsigned long mm_nr_pmds(struct mm_struct *mm) { return 0; } static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} #else int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); static inline void mm_nr_pmds_init(struct mm_struct *mm) { atomic_long_set(&mm->nr_pmds, 0); } static inline unsigned long mm_nr_pmds(struct mm_struct *mm) { return atomic_long_read(&mm->nr_pmds); } static inline void mm_inc_nr_pmds(struct mm_struct *mm) { atomic_long_inc(&mm->nr_pmds); } static inline void mm_dec_nr_pmds(struct mm_struct *mm) { atomic_long_dec(&mm->nr_pmds); } #endif int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, pmd_t *pmd, unsigned long address); int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); /* * The following ifdef needed to get the 4level-fixup.h header to work. * Remove it when 4level-fixup.h has been removed. */ #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? NULL: pud_offset(pgd, address); } static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? NULL: pmd_offset(pud, address); } #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ #if USE_SPLIT_PTE_PTLOCKS #if ALLOC_SPLIT_PTLOCKS void __init ptlock_cache_init(void); extern bool ptlock_alloc(struct page *page); extern void ptlock_free(struct page *page); static inline spinlock_t *ptlock_ptr(struct page *page) { return page->ptl; } #else /* ALLOC_SPLIT_PTLOCKS */ static inline void ptlock_cache_init(void) { } static inline bool ptlock_alloc(struct page *page) { return true; } static inline void ptlock_free(struct page *page) { } static inline spinlock_t *ptlock_ptr(struct page *page) { return &page->ptl; } #endif /* ALLOC_SPLIT_PTLOCKS */ static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) { return ptlock_ptr(pmd_page(*pmd)); } static inline bool ptlock_init(struct page *page) { /* * prep_new_page() initialize page->private (and therefore page->ptl) * with 0. Make sure nobody took it in use in between. * * It can happen if arch try to use slab for page table allocation: * slab code uses page->slab_cache, which share storage with page->ptl. */ VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); if (!ptlock_alloc(page)) return false; spin_lock_init(ptlock_ptr(page)); return true; } /* Reset page->mapping so free_pages_check won't complain. */ static inline void pte_lock_deinit(struct page *page) { page->mapping = NULL; ptlock_free(page); } #else /* !USE_SPLIT_PTE_PTLOCKS */ /* * We use mm->page_table_lock to guard all pagetable pages of the mm. */ static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) { return &mm->page_table_lock; } static inline void ptlock_cache_init(void) {} static inline bool ptlock_init(struct page *page) { return true; } static inline void pte_lock_deinit(struct page *page) {} #endif /* USE_SPLIT_PTE_PTLOCKS */ static inline void pgtable_init(void) { ptlock_cache_init(); pgtable_cache_init(); } static inline bool pgtable_page_ctor(struct page *page) { if (!ptlock_init(page)) return false; inc_zone_page_state(page, NR_PAGETABLE); return true; } static inline void pgtable_page_dtor(struct page *page) { pte_lock_deinit(page); dec_zone_page_state(page, NR_PAGETABLE); } #define pte_offset_map_lock(mm, pmd, address, ptlp) \ ({ \ spinlock_t *__ptl = pte_lockptr(mm, pmd); \ pte_t *__pte = pte_offset_map(pmd, address); \ *(ptlp) = __ptl; \ spin_lock(__ptl); \ __pte; \ }) #define pte_unmap_unlock(pte, ptl) do { \ spin_unlock(ptl); \ pte_unmap(pte); \ } while (0) #define pte_alloc_map(mm, vma, pmd, address) \ ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ pmd, address))? \ NULL: pte_offset_map(pmd, address)) #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ pmd, address))? \ NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) #define pte_alloc_kernel(pmd, address) \ ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ NULL: pte_offset_kernel(pmd, address)) #if USE_SPLIT_PMD_PTLOCKS static struct page *pmd_to_page(pmd_t *pmd) { unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); return virt_to_page((void *)((unsigned long) pmd & mask)); } static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) { return ptlock_ptr(pmd_to_page(pmd)); } static inline bool pgtable_pmd_page_ctor(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE page->pmd_huge_pte = NULL; #endif return ptlock_init(page); } static inline void pgtable_pmd_page_dtor(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE VM_BUG_ON_PAGE(page->pmd_huge_pte, page); #endif ptlock_free(page); } #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) #else static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) { return &mm->page_table_lock; } static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } static inline void pgtable_pmd_page_dtor(struct page *page) {} #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) #endif static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) { spinlock_t *ptl = pmd_lockptr(mm, pmd); spin_lock(ptl); return ptl; } extern void free_area_init(unsigned long * zones_size); extern void free_area_init_node(int nid, unsigned long * zones_size, unsigned long zone_start_pfn, unsigned long *zholes_size); extern void free_initmem(void); /* * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) * into the buddy system. The freed pages will be poisoned with pattern * "poison" if it's within range [0, UCHAR_MAX]. * Return pages freed into the buddy system. */ extern unsigned long free_reserved_area(void *start, void *end, int poison, char *s); #ifdef CONFIG_HIGHMEM /* * Free a highmem page into the buddy system, adjusting totalhigh_pages * and totalram_pages. */ extern void free_highmem_page(struct page *page); #endif extern void adjust_managed_page_count(struct page *page, long count); extern void mem_init_print_info(const char *str); extern void reserve_bootmem_region(unsigned long start, unsigned long end); /* Free the reserved page into the buddy system, so it gets managed. */ static inline void __free_reserved_page(struct page *page) { ClearPageReserved(page); init_page_count(page); __free_page(page); } static inline void free_reserved_page(struct page *page) { __free_reserved_page(page); adjust_managed_page_count(page, 1); } static inline void mark_page_reserved(struct page *page) { SetPageReserved(page); adjust_managed_page_count(page, -1); } /* * Default method to free all the __init memory into the buddy system. * The freed pages will be poisoned with pattern "poison" if it's within * range [0, UCHAR_MAX]. * Return pages freed into the buddy system. */ static inline unsigned long free_initmem_default(int poison) { extern char __init_begin[], __init_end[]; return free_reserved_area(&__init_begin, &__init_end, poison, "unused kernel"); } static inline unsigned long get_num_physpages(void) { int nid; unsigned long phys_pages = 0; for_each_online_node(nid) phys_pages += node_present_pages(nid); return phys_pages; } #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP /* * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its * zones, allocate the backing mem_map and account for memory holes in a more * architecture independent manner. This is a substitute for creating the * zone_sizes[] and zholes_size[] arrays and passing them to * free_area_init_node() * * An architecture is expected to register range of page frames backed by * physical memory with memblock_add[_node]() before calling * free_area_init_nodes() passing in the PFN each zone ends at. At a basic * usage, an architecture is expected to do something like * * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, * max_highmem_pfn}; * for_each_valid_physical_page_range() * memblock_add_node(base, size, nid) * free_area_init_nodes(max_zone_pfns); * * free_bootmem_with_active_regions() calls free_bootmem_node() for each * registered physical page range. Similarly * sparse_memory_present_with_active_regions() calls memory_present() for * each range when SPARSEMEM is enabled. * * See mm/page_alloc.c for more information on each function exposed by * CONFIG_HAVE_MEMBLOCK_NODE_MAP. */ extern void free_area_init_nodes(unsigned long *max_zone_pfn); unsigned long node_map_pfn_alignment(void); unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, unsigned long end_pfn); extern unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn); extern void get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn); extern unsigned long find_min_pfn_with_active_regions(void); extern void free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn); extern void sparse_memory_present_with_active_regions(int nid); #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) static inline int __early_pfn_to_nid(unsigned long pfn, struct mminit_pfnnid_cache *state) { return 0; } #else /* please see mm/page_alloc.c */ extern int __meminit early_pfn_to_nid(unsigned long pfn); /* there is a per-arch backend function. */ extern int __meminit __early_pfn_to_nid(unsigned long pfn, struct mminit_pfnnid_cache *state); #endif extern void set_dma_reserve(unsigned long new_dma_reserve); extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, enum memmap_context); extern void setup_per_zone_wmarks(void); extern int __meminit init_per_zone_wmark_min(void); extern void mem_init(void); extern void __init mmap_init(void); extern void show_mem(unsigned int flags); extern void si_meminfo(struct sysinfo * val); extern void si_meminfo_node(struct sysinfo *val, int nid); extern __printf(3, 4) void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...); extern void setup_per_cpu_pageset(void); extern void zone_pcp_update(struct zone *zone); extern void zone_pcp_reset(struct zone *zone); /* page_alloc.c */ extern int min_free_kbytes; /* nommu.c */ extern atomic_long_t mmap_pages_allocated; extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); /* interval_tree.c */ void vma_interval_tree_insert(struct vm_area_struct *node, struct rb_root *root); void vma_interval_tree_insert_after(struct vm_area_struct *node, struct vm_area_struct *prev, struct rb_root *root); void vma_interval_tree_remove(struct vm_area_struct *node, struct rb_root *root); struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, unsigned long start, unsigned long last); struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, unsigned long start, unsigned long last); #define vma_interval_tree_foreach(vma, root, start, last) \ for (vma = vma_interval_tree_iter_first(root, start, last); \ vma; vma = vma_interval_tree_iter_next(vma, start, last)) void anon_vma_interval_tree_insert(struct anon_vma_chain *node, struct rb_root *root); void anon_vma_interval_tree_remove(struct anon_vma_chain *node, struct rb_root *root); struct anon_vma_chain *anon_vma_interval_tree_iter_first( struct rb_root *root, unsigned long start, unsigned long last); struct anon_vma_chain *anon_vma_interval_tree_iter_next( struct anon_vma_chain *node, unsigned long start, unsigned long last); #ifdef CONFIG_DEBUG_VM_RB void anon_vma_interval_tree_verify(struct anon_vma_chain *node); #endif #define anon_vma_interval_tree_foreach(avc, root, start, last) \ for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) /* mmap.c */ extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); extern struct vm_area_struct *vma_merge(struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, unsigned long end, unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx); extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); extern int split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, struct rb_node **, struct rb_node *); extern void unlink_file_vma(struct vm_area_struct *); extern struct vm_area_struct *copy_vma(struct vm_area_struct **, unsigned long addr, unsigned long len, pgoff_t pgoff, bool *need_rmap_locks); extern void exit_mmap(struct mm_struct *); static inline int check_data_rlimit(unsigned long rlim, unsigned long new, unsigned long start, unsigned long end_data, unsigned long start_data) { if (rlim < RLIM_INFINITY) { if (((new - start) + (end_data - start_data)) > rlim) return -ENOSPC; } return 0; } extern int mm_take_all_locks(struct mm_struct *mm); extern void mm_drop_all_locks(struct mm_struct *mm); extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); extern struct file *get_mm_exe_file(struct mm_struct *mm); extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags, const struct vm_special_mapping *spec); /* This is an obsolete alternative to _install_special_mapping. */ extern int install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags, struct page **pages); extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long mmap_region(struct file *file, unsigned long addr, unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); extern unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); extern int do_munmap(struct mm_struct *, unsigned long, size_t); static inline unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, unsigned long pgoff, unsigned long *populate) { return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); } #ifdef CONFIG_MMU extern int __mm_populate(unsigned long addr, unsigned long len, int ignore_errors); static inline void mm_populate(unsigned long addr, unsigned long len) { /* Ignore errors */ (void) __mm_populate(addr, len, 1); } #else static inline void mm_populate(unsigned long addr, unsigned long len) {} #endif /* These take the mm semaphore themselves */ extern unsigned long vm_brk(unsigned long, unsigned long); extern int vm_munmap(unsigned long, size_t); extern unsigned long vm_mmap(struct file *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); struct vm_unmapped_area_info { #define VM_UNMAPPED_AREA_TOPDOWN 1 unsigned long flags; unsigned long length; unsigned long low_limit; unsigned long high_limit; unsigned long align_mask; unsigned long align_offset; }; extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); /* * Search for an unmapped address range. * * We are looking for a range that: * - does not intersect with any VMA; * - is contained within the [low_limit, high_limit) interval; * - is at least the desired size. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) */ static inline unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) { if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) return unmapped_area_topdown(info); else return unmapped_area(info); } /* truncate.c */ extern void truncate_inode_pages(struct address_space *, loff_t); extern void truncate_inode_pages_range(struct address_space *, loff_t lstart, loff_t lend); extern void truncate_inode_pages_final(struct address_space *); /* generic vm_area_ops exported for stackable file systems */ extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); /* mm/page-writeback.c */ int write_one_page(struct page *page, int wait); void task_dirty_inc(struct task_struct *tsk); /* readahead.c */ #define VM_MAX_READAHEAD 128 /* kbytes */ #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ int force_page_cache_readahead(struct address_space *mapping, struct file *filp, pgoff_t offset, unsigned long nr_to_read); void page_cache_sync_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *filp, pgoff_t offset, unsigned long size); void page_cache_async_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *filp, struct page *pg, pgoff_t offset, unsigned long size); /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ extern int expand_stack(struct vm_area_struct *vma, unsigned long address); /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ extern int expand_downwards(struct vm_area_struct *vma, unsigned long address); #if VM_GROWSUP extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); #else #define expand_upwards(vma, address) (0) #endif /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, struct vm_area_struct **pprev); /* Look up the first VMA which intersects the interval start_addr..end_addr-1, NULL if none. Assume start_addr < end_addr. */ static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) { struct vm_area_struct * vma = find_vma(mm,start_addr); if (vma && end_addr <= vma->vm_start) vma = NULL; return vma; } static inline unsigned long vma_pages(struct vm_area_struct *vma) { return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; } /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, unsigned long vm_start, unsigned long vm_end) { struct vm_area_struct *vma = find_vma(mm, vm_start); if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) vma = NULL; return vma; } #ifdef CONFIG_MMU pgprot_t vm_get_page_prot(unsigned long vm_flags); void vma_set_page_prot(struct vm_area_struct *vma); #else static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) { return __pgprot(0); } static inline void vma_set_page_prot(struct vm_area_struct *vma) { vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); } #endif #ifdef CONFIG_NUMA_BALANCING unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long start, unsigned long end); #endif struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); int remap_pfn_range(struct vm_area_struct *, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t); int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn); int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn); int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); struct page *follow_page_mask(struct vm_area_struct *vma, unsigned long address, unsigned int foll_flags, unsigned int *page_mask); static inline struct page *follow_page(struct vm_area_struct *vma, unsigned long address, unsigned int foll_flags) { unsigned int unused_page_mask; return follow_page_mask(vma, address, foll_flags, &unused_page_mask); } #define FOLL_WRITE 0x01 /* check pte is writable */ #define FOLL_TOUCH 0x02 /* mark page accessed */ #define FOLL_GET 0x04 /* do get_page on page */ #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO * and return without waiting upon it */ #define FOLL_POPULATE 0x40 /* fault in page */ #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ #define FOLL_MLOCK 0x1000 /* lock present pages */ typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, void *data); extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn, void *data); #ifdef CONFIG_DEBUG_PAGEALLOC extern bool _debug_pagealloc_enabled; extern void __kernel_map_pages(struct page *page, int numpages, int enable); static inline bool debug_pagealloc_enabled(void) { return _debug_pagealloc_enabled; } static inline void kernel_map_pages(struct page *page, int numpages, int enable) { if (!debug_pagealloc_enabled()) return; __kernel_map_pages(page, numpages, enable); } #ifdef CONFIG_HIBERNATION extern bool kernel_page_present(struct page *page); #endif /* CONFIG_HIBERNATION */ #else static inline void kernel_map_pages(struct page *page, int numpages, int enable) {} #ifdef CONFIG_HIBERNATION static inline bool kernel_page_present(struct page *page) { return true; } #endif /* CONFIG_HIBERNATION */ #endif #ifdef __HAVE_ARCH_GATE_AREA extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); extern int in_gate_area_no_mm(unsigned long addr); extern int in_gate_area(struct mm_struct *mm, unsigned long addr); #else static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) { return NULL; } static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) { return 0; } #endif /* __HAVE_ARCH_GATE_AREA */ #ifdef CONFIG_SYSCTL extern int sysctl_drop_caches; int drop_caches_sysctl_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); #endif void drop_slab(void); void drop_slab_node(int nid); #ifndef CONFIG_MMU #define randomize_va_space 0 #else extern int randomize_va_space; #endif const char * arch_vma_name(struct vm_area_struct *vma); void print_vma_addr(char *prefix, unsigned long rip); void sparse_mem_maps_populate_node(struct page **map_map, unsigned long pnum_begin, unsigned long pnum_end, unsigned long map_count, int nodeid); struct page *sparse_mem_map_populate(unsigned long pnum, int nid); pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); void *vmemmap_alloc_block(unsigned long size, int node); void *vmemmap_alloc_block_buf(unsigned long size, int node); void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); int vmemmap_populate_basepages(unsigned long start, unsigned long end, int node); int vmemmap_populate(unsigned long start, unsigned long end, int node); void vmemmap_populate_print_last(void); #ifdef CONFIG_MEMORY_HOTPLUG void vmemmap_free(unsigned long start, unsigned long end); #endif void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, unsigned long size); enum mf_flags { MF_COUNT_INCREASED = 1 << 0, MF_ACTION_REQUIRED = 1 << 1, MF_MUST_KILL = 1 << 2, MF_SOFT_OFFLINE = 1 << 3, }; extern int memory_failure(unsigned long pfn, int trapno, int flags); extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); extern int unpoison_memory(unsigned long pfn); extern int get_hwpoison_page(struct page *page); extern void put_hwpoison_page(struct page *page); extern int sysctl_memory_failure_early_kill; extern int sysctl_memory_failure_recovery; extern void shake_page(struct page *p, int access); extern atomic_long_t num_poisoned_pages; extern int soft_offline_page(struct page *page, int flags); /* * Error handlers for various types of pages. */ enum mf_result { MF_IGNORED, /* Error: cannot be handled */ MF_FAILED, /* Error: handling failed */ MF_DELAYED, /* Will be handled later */ MF_RECOVERED, /* Successfully recovered */ }; enum mf_action_page_type { MF_MSG_KERNEL, MF_MSG_KERNEL_HIGH_ORDER, MF_MSG_SLAB, MF_MSG_DIFFERENT_COMPOUND, MF_MSG_POISONED_HUGE, MF_MSG_HUGE, MF_MSG_FREE_HUGE, MF_MSG_UNMAP_FAILED, MF_MSG_DIRTY_SWAPCACHE, MF_MSG_CLEAN_SWAPCACHE, MF_MSG_DIRTY_MLOCKED_LRU, MF_MSG_CLEAN_MLOCKED_LRU, MF_MSG_DIRTY_UNEVICTABLE_LRU, MF_MSG_CLEAN_UNEVICTABLE_LRU, MF_MSG_DIRTY_LRU, MF_MSG_CLEAN_LRU, MF_MSG_TRUNCATED_LRU, MF_MSG_BUDDY, MF_MSG_BUDDY_2ND, MF_MSG_UNKNOWN, }; #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) extern void clear_huge_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page); extern void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page); #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ extern struct page_ext_operations debug_guardpage_ops; extern struct page_ext_operations page_poisoning_ops; #ifdef CONFIG_DEBUG_PAGEALLOC extern unsigned int _debug_guardpage_minorder; extern bool _debug_guardpage_enabled; static inline unsigned int debug_guardpage_minorder(void) { return _debug_guardpage_minorder; } static inline bool debug_guardpage_enabled(void) { return _debug_guardpage_enabled; } static inline bool page_is_guard(struct page *page) { struct page_ext *page_ext; if (!debug_guardpage_enabled()) return false; page_ext = lookup_page_ext(page); return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); } #else static inline unsigned int debug_guardpage_minorder(void) { return 0; } static inline bool debug_guardpage_enabled(void) { return false; } static inline bool page_is_guard(struct page *page) { return false; } #endif /* CONFIG_DEBUG_PAGEALLOC */ #if MAX_NUMNODES > 1 void __init setup_nr_node_ids(void); #else static inline void setup_nr_node_ids(void) {} #endif #endif /* __KERNEL__ */ #endif /* _LINUX_MM_H */