/* * Macros for manipulating and testing page->flags */ #ifndef PAGE_FLAGS_H #define PAGE_FLAGS_H #include <linux/types.h> #ifndef __GENERATING_BOUNDS_H #include <linux/mm_types.h> #include <generated/bounds.h> #endif /* !__GENERATING_BOUNDS_H */ /* * Various page->flags bits: * * PG_reserved is set for special pages, which can never be swapped out. Some * of them might not even exist (eg empty_bad_page)... * * The PG_private bitflag is set on pagecache pages if they contain filesystem * specific data (which is normally at page->private). It can be used by * private allocations for its own usage. * * During initiation of disk I/O, PG_locked is set. This bit is set before I/O * and cleared when writeback _starts_ or when read _completes_. PG_writeback * is set before writeback starts and cleared when it finishes. * * PG_locked also pins a page in pagecache, and blocks truncation of the file * while it is held. * * page_waitqueue(page) is a wait queue of all tasks waiting for the page * to become unlocked. * * PG_uptodate tells whether the page's contents is valid. When a read * completes, the page becomes uptodate, unless a disk I/O error happened. * * PG_referenced, PG_reclaim are used for page reclaim for anonymous and * file-backed pagecache (see mm/vmscan.c). * * PG_error is set to indicate that an I/O error occurred on this page. * * PG_arch_1 is an architecture specific page state bit. The generic code * guarantees that this bit is cleared for a page when it first is entered into * the page cache. * * PG_highmem pages are not permanently mapped into the kernel virtual address * space, they need to be kmapped separately for doing IO on the pages. The * struct page (these bits with information) are always mapped into kernel * address space... * * PG_hwpoison indicates that a page got corrupted in hardware and contains * data with incorrect ECC bits that triggered a machine check. Accessing is * not safe since it may cause another machine check. Don't touch! */ /* * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break * locked- and dirty-page accounting. * * The page flags field is split into two parts, the main flags area * which extends from the low bits upwards, and the fields area which * extends from the high bits downwards. * * | FIELD | ... | FLAGS | * N-1 ^ 0 * (NR_PAGEFLAGS) * * The fields area is reserved for fields mapping zone, node (for NUMA) and * SPARSEMEM section (for variants of SPARSEMEM that require section ids like * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). */ enum pageflags { PG_locked, /* Page is locked. Don't touch. */ PG_error, PG_referenced, PG_uptodate, PG_dirty, PG_lru, PG_active, PG_slab, PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ PG_arch_1, PG_reserved, PG_private, /* If pagecache, has fs-private data */ PG_private_2, /* If pagecache, has fs aux data */ PG_writeback, /* Page is under writeback */ #ifdef CONFIG_PAGEFLAGS_EXTENDED PG_head, /* A head page */ PG_tail, /* A tail page */ #else PG_compound, /* A compound page */ #endif PG_swapcache, /* Swap page: swp_entry_t in private */ PG_mappedtodisk, /* Has blocks allocated on-disk */ PG_reclaim, /* To be reclaimed asap */ PG_swapbacked, /* Page is backed by RAM/swap */ PG_unevictable, /* Page is "unevictable" */ #ifdef CONFIG_MMU PG_mlocked, /* Page is vma mlocked */ #endif #ifdef CONFIG_ARCH_USES_PG_UNCACHED PG_uncached, /* Page has been mapped as uncached */ #endif #ifdef CONFIG_MEMORY_FAILURE PG_hwpoison, /* hardware poisoned page. Don't touch */ #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE PG_compound_lock, #endif __NR_PAGEFLAGS, /* Filesystems */ PG_checked = PG_owner_priv_1, /* Two page bits are conscripted by FS-Cache to maintain local caching * state. These bits are set on pages belonging to the netfs's inodes * when those inodes are being locally cached. */ PG_fscache = PG_private_2, /* page backed by cache */ /* XEN */ PG_pinned = PG_owner_priv_1, PG_savepinned = PG_dirty, /* SLOB */ PG_slob_free = PG_private, }; #ifndef __GENERATING_BOUNDS_H /* * Macros to create function definitions for page flags */ #define TESTPAGEFLAG(uname, lname) \ static inline int Page##uname(const struct page *page) \ { return test_bit(PG_##lname, &page->flags); } #define SETPAGEFLAG(uname, lname) \ static inline void SetPage##uname(struct page *page) \ { set_bit(PG_##lname, &page->flags); } #define CLEARPAGEFLAG(uname, lname) \ static inline void ClearPage##uname(struct page *page) \ { clear_bit(PG_##lname, &page->flags); } #define __SETPAGEFLAG(uname, lname) \ static inline void __SetPage##uname(struct page *page) \ { __set_bit(PG_##lname, &page->flags); } #define __CLEARPAGEFLAG(uname, lname) \ static inline void __ClearPage##uname(struct page *page) \ { __clear_bit(PG_##lname, &page->flags); } #define TESTSETFLAG(uname, lname) \ static inline int TestSetPage##uname(struct page *page) \ { return test_and_set_bit(PG_##lname, &page->flags); } #define TESTCLEARFLAG(uname, lname) \ static inline int TestClearPage##uname(struct page *page) \ { return test_and_clear_bit(PG_##lname, &page->flags); } #define __TESTCLEARFLAG(uname, lname) \ static inline int __TestClearPage##uname(struct page *page) \ { return __test_and_clear_bit(PG_##lname, &page->flags); } #define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname) #define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ __SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname) #define PAGEFLAG_FALSE(uname) \ static inline int Page##uname(const struct page *page) \ { return 0; } #define TESTSCFLAG(uname, lname) \ TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname) #define SETPAGEFLAG_NOOP(uname) \ static inline void SetPage##uname(struct page *page) { } #define CLEARPAGEFLAG_NOOP(uname) \ static inline void ClearPage##uname(struct page *page) { } #define __CLEARPAGEFLAG_NOOP(uname) \ static inline void __ClearPage##uname(struct page *page) { } #define TESTCLEARFLAG_FALSE(uname) \ static inline int TestClearPage##uname(struct page *page) { return 0; } #define __TESTCLEARFLAG_FALSE(uname) \ static inline int __TestClearPage##uname(struct page *page) { return 0; } struct page; /* forward declaration */ TESTPAGEFLAG(Locked, locked) PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error) PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced) PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty) PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru) PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active) TESTCLEARFLAG(Active, active) __PAGEFLAG(Slab, slab) PAGEFLAG(Checked, checked) /* Used by some filesystems */ PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */ PAGEFLAG(SavePinned, savepinned); /* Xen */ PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved) PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked) __PAGEFLAG(SlobFree, slob_free) /* * Private page markings that may be used by the filesystem that owns the page * for its own purposes. * - PG_private and PG_private_2 cause releasepage() and co to be invoked */ PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private) __CLEARPAGEFLAG(Private, private) PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2) PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1) /* * Only test-and-set exist for PG_writeback. The unconditional operators are * risky: they bypass page accounting. */ TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback) PAGEFLAG(MappedToDisk, mappedtodisk) /* PG_readahead is only used for file reads; PG_reclaim is only for writes */ PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim) PAGEFLAG(Readahead, reclaim) /* Reminder to do async read-ahead */ #ifdef CONFIG_HIGHMEM /* * Must use a macro here due to header dependency issues. page_zone() is not * available at this point. */ #define PageHighMem(__p) is_highmem(page_zone(__p)) #else PAGEFLAG_FALSE(HighMem) #endif #ifdef CONFIG_SWAP PAGEFLAG(SwapCache, swapcache) #else PAGEFLAG_FALSE(SwapCache) SETPAGEFLAG_NOOP(SwapCache) CLEARPAGEFLAG_NOOP(SwapCache) #endif PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable) TESTCLEARFLAG(Unevictable, unevictable) #ifdef CONFIG_MMU PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked) TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked) #else PAGEFLAG_FALSE(Mlocked) SETPAGEFLAG_NOOP(Mlocked) TESTCLEARFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked) #endif #ifdef CONFIG_ARCH_USES_PG_UNCACHED PAGEFLAG(Uncached, uncached) #else PAGEFLAG_FALSE(Uncached) #endif #ifdef CONFIG_MEMORY_FAILURE PAGEFLAG(HWPoison, hwpoison) TESTSCFLAG(HWPoison, hwpoison) #define __PG_HWPOISON (1UL << PG_hwpoison) #else PAGEFLAG_FALSE(HWPoison) #define __PG_HWPOISON 0 #endif u64 stable_page_flags(struct page *page); static inline int PageUptodate(struct page *page) { int ret = test_bit(PG_uptodate, &(page)->flags); /* * Must ensure that the data we read out of the page is loaded * _after_ we've loaded page->flags to check for PageUptodate. * We can skip the barrier if the page is not uptodate, because * we wouldn't be reading anything from it. * * See SetPageUptodate() for the other side of the story. */ if (ret) smp_rmb(); return ret; } static inline void __SetPageUptodate(struct page *page) { smp_wmb(); __set_bit(PG_uptodate, &(page)->flags); } static inline void SetPageUptodate(struct page *page) { #ifdef CONFIG_S390 if (!test_and_set_bit(PG_uptodate, &page->flags)) page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY, 0); #else /* * Memory barrier must be issued before setting the PG_uptodate bit, * so that all previous stores issued in order to bring the page * uptodate are actually visible before PageUptodate becomes true. * * s390 doesn't need an explicit smp_wmb here because the test and * set bit already provides full barriers. */ smp_wmb(); set_bit(PG_uptodate, &(page)->flags); #endif } CLEARPAGEFLAG(Uptodate, uptodate) extern void cancel_dirty_page(struct page *page, unsigned int account_size); int test_clear_page_writeback(struct page *page); int test_set_page_writeback(struct page *page); static inline void set_page_writeback(struct page *page) { test_set_page_writeback(page); } #ifdef CONFIG_PAGEFLAGS_EXTENDED /* * System with lots of page flags available. This allows separate * flags for PageHead() and PageTail() checks of compound pages so that bit * tests can be used in performance sensitive paths. PageCompound is * generally not used in hot code paths. */ __PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head) __PAGEFLAG(Tail, tail) static inline int PageCompound(struct page *page) { return page->flags & ((1L << PG_head) | (1L << PG_tail)); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void ClearPageCompound(struct page *page) { BUG_ON(!PageHead(page)); ClearPageHead(page); } #endif #else /* * Reduce page flag use as much as possible by overlapping * compound page flags with the flags used for page cache pages. Possible * because PageCompound is always set for compound pages and not for * pages on the LRU and/or pagecache. */ TESTPAGEFLAG(Compound, compound) __PAGEFLAG(Head, compound) /* * PG_reclaim is used in combination with PG_compound to mark the * head and tail of a compound page. This saves one page flag * but makes it impossible to use compound pages for the page cache. * The PG_reclaim bit would have to be used for reclaim or readahead * if compound pages enter the page cache. * * PG_compound & PG_reclaim => Tail page * PG_compound & ~PG_reclaim => Head page */ #define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim)) static inline int PageTail(struct page *page) { return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask); } static inline void __SetPageTail(struct page *page) { page->flags |= PG_head_tail_mask; } static inline void __ClearPageTail(struct page *page) { page->flags &= ~PG_head_tail_mask; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void ClearPageCompound(struct page *page) { BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound)); clear_bit(PG_compound, &page->flags); } #endif #endif /* !PAGEFLAGS_EXTENDED */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * PageHuge() only returns true for hugetlbfs pages, but not for * normal or transparent huge pages. * * PageTransHuge() returns true for both transparent huge and * hugetlbfs pages, but not normal pages. PageTransHuge() can only be * called only in the core VM paths where hugetlbfs pages can't exist. */ static inline int PageTransHuge(struct page *page) { VM_BUG_ON(PageTail(page)); return PageHead(page); } static inline int PageTransCompound(struct page *page) { return PageCompound(page); } #else static inline int PageTransHuge(struct page *page) { return 0; } static inline int PageTransCompound(struct page *page) { return 0; } #endif #ifdef CONFIG_MMU #define __PG_MLOCKED (1 << PG_mlocked) #else #define __PG_MLOCKED 0 #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define __PG_COMPOUND_LOCK (1 << PG_compound_lock) #else #define __PG_COMPOUND_LOCK 0 #endif /* * Flags checked when a page is freed. Pages being freed should not have * these flags set. It they are, there is a problem. */ #define PAGE_FLAGS_CHECK_AT_FREE \ (1 << PG_lru | 1 << PG_locked | \ 1 << PG_private | 1 << PG_private_2 | \ 1 << PG_writeback | 1 << PG_reserved | \ 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \ 1 << PG_unevictable | __PG_MLOCKED | __PG_HWPOISON | \ __PG_COMPOUND_LOCK) /* * Flags checked when a page is prepped for return by the page allocator. * Pages being prepped should not have any flags set. It they are set, * there has been a kernel bug or struct page corruption. */ #define PAGE_FLAGS_CHECK_AT_PREP ((1 << NR_PAGEFLAGS) - 1) #define PAGE_FLAGS_PRIVATE \ (1 << PG_private | 1 << PG_private_2) /** * page_has_private - Determine if page has private stuff * @page: The page to be checked * * Determine if a page has private stuff, indicating that release routines * should be invoked upon it. */ static inline int page_has_private(struct page *page) { return !!(page->flags & PAGE_FLAGS_PRIVATE); } #endif /* !__GENERATING_BOUNDS_H */ #endif /* PAGE_FLAGS_H */