// SPDX-License-Identifier: GPL-2.0 /* * Shared application/kernel submission and completion ring pairs, for * supporting fast/efficient IO. * * A note on the read/write ordering memory barriers that are matched between * the application and kernel side. * * After the application reads the CQ ring tail, it must use an * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses * before writing the tail (using smp_load_acquire to read the tail will * do). It also needs a smp_mb() before updating CQ head (ordering the * entry load(s) with the head store), pairing with an implicit barrier * through a control-dependency in io_get_cqe (smp_store_release to * store head will do). Failure to do so could lead to reading invalid * CQ entries. * * Likewise, the application must use an appropriate smp_wmb() before * writing the SQ tail (ordering SQ entry stores with the tail store), * which pairs with smp_load_acquire in io_get_sqring (smp_store_release * to store the tail will do). And it needs a barrier ordering the SQ * head load before writing new SQ entries (smp_load_acquire to read * head will do). * * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* * updating the SQ tail; a full memory barrier smp_mb() is needed * between. * * Also see the examples in the liburing library: * * git://git.kernel.dk/liburing * * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens * from data shared between the kernel and application. This is done both * for ordering purposes, but also to ensure that once a value is loaded from * data that the application could potentially modify, it remains stable. * * Copyright (C) 2018-2019 Jens Axboe * Copyright (c) 2018-2019 Christoph Hellwig */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #include #include "io-wq.h" #include "io_uring.h" #include "opdef.h" #include "refs.h" #include "tctx.h" #include "register.h" #include "sqpoll.h" #include "fdinfo.h" #include "kbuf.h" #include "rsrc.h" #include "cancel.h" #include "net.h" #include "notif.h" #include "waitid.h" #include "futex.h" #include "napi.h" #include "timeout.h" #include "poll.h" #include "rw.h" #include "alloc_cache.h" #define IORING_MAX_ENTRIES 32768 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ IOSQE_IO_HARDLINK | IOSQE_ASYNC) #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ REQ_F_ASYNC_DATA) #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ IO_REQ_CLEAN_FLAGS) #define IO_TCTX_REFS_CACHE_NR (1U << 10) #define IO_COMPL_BATCH 32 #define IO_REQ_ALLOC_BATCH 8 struct io_defer_entry { struct list_head list; struct io_kiocb *req; u32 seq; }; /* requests with any of those set should undergo io_disarm_next() */ #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) /* * No waiters. It's larger than any valid value of the tw counter * so that tests against ->cq_wait_nr would fail and skip wake_up(). */ #define IO_CQ_WAKE_INIT (-1U) /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, struct task_struct *task, bool cancel_all); static void io_queue_sqe(struct io_kiocb *req); struct kmem_cache *req_cachep; static int __read_mostly sysctl_io_uring_disabled; static int __read_mostly sysctl_io_uring_group = -1; #ifdef CONFIG_SYSCTL static struct ctl_table kernel_io_uring_disabled_table[] = { { .procname = "io_uring_disabled", .data = &sysctl_io_uring_disabled, .maxlen = sizeof(sysctl_io_uring_disabled), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_TWO, }, { .procname = "io_uring_group", .data = &sysctl_io_uring_group, .maxlen = sizeof(gid_t), .mode = 0644, .proc_handler = proc_dointvec, }, {}, }; #endif static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) { if (!wq_list_empty(&ctx->submit_state.compl_reqs) || ctx->submit_state.cqes_count) __io_submit_flush_completions(ctx); } static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) { return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); } static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) { return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); } static bool io_match_linked(struct io_kiocb *head) { struct io_kiocb *req; io_for_each_link(req, head) { if (req->flags & REQ_F_INFLIGHT) return true; } return false; } /* * As io_match_task() but protected against racing with linked timeouts. * User must not hold timeout_lock. */ bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, bool cancel_all) { bool matched; if (task && head->task != task) return false; if (cancel_all) return true; if (head->flags & REQ_F_LINK_TIMEOUT) { struct io_ring_ctx *ctx = head->ctx; /* protect against races with linked timeouts */ spin_lock_irq(&ctx->timeout_lock); matched = io_match_linked(head); spin_unlock_irq(&ctx->timeout_lock); } else { matched = io_match_linked(head); } return matched; } static inline void req_fail_link_node(struct io_kiocb *req, int res) { req_set_fail(req); io_req_set_res(req, res, 0); } static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) { wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); } static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) { struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); complete(&ctx->ref_comp); } static __cold void io_fallback_req_func(struct work_struct *work) { struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, fallback_work.work); struct llist_node *node = llist_del_all(&ctx->fallback_llist); struct io_kiocb *req, *tmp; struct io_tw_state ts = { .locked = true, }; percpu_ref_get(&ctx->refs); mutex_lock(&ctx->uring_lock); llist_for_each_entry_safe(req, tmp, node, io_task_work.node) req->io_task_work.func(req, &ts); if (WARN_ON_ONCE(!ts.locked)) return; io_submit_flush_completions(ctx); mutex_unlock(&ctx->uring_lock); percpu_ref_put(&ctx->refs); } static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) { unsigned hash_buckets = 1U << bits; size_t hash_size = hash_buckets * sizeof(table->hbs[0]); table->hbs = kmalloc(hash_size, GFP_KERNEL); if (!table->hbs) return -ENOMEM; table->hash_bits = bits; init_hash_table(table, hash_buckets); return 0; } static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) { struct io_ring_ctx *ctx; int hash_bits; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return NULL; xa_init(&ctx->io_bl_xa); /* * Use 5 bits less than the max cq entries, that should give us around * 32 entries per hash list if totally full and uniformly spread, but * don't keep too many buckets to not overconsume memory. */ hash_bits = ilog2(p->cq_entries) - 5; hash_bits = clamp(hash_bits, 1, 8); if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) goto err; if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) goto err; if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 0, GFP_KERNEL)) goto err; ctx->flags = p->flags; atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); init_waitqueue_head(&ctx->sqo_sq_wait); INIT_LIST_HEAD(&ctx->sqd_list); INIT_LIST_HEAD(&ctx->cq_overflow_list); INIT_LIST_HEAD(&ctx->io_buffers_cache); INIT_HLIST_HEAD(&ctx->io_buf_list); io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, sizeof(struct io_rsrc_node)); io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, sizeof(struct async_poll)); io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, sizeof(struct io_async_msghdr)); io_futex_cache_init(ctx); init_completion(&ctx->ref_comp); xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); mutex_init(&ctx->uring_lock); init_waitqueue_head(&ctx->cq_wait); init_waitqueue_head(&ctx->poll_wq); init_waitqueue_head(&ctx->rsrc_quiesce_wq); spin_lock_init(&ctx->completion_lock); spin_lock_init(&ctx->timeout_lock); INIT_WQ_LIST(&ctx->iopoll_list); INIT_LIST_HEAD(&ctx->io_buffers_comp); INIT_LIST_HEAD(&ctx->defer_list); INIT_LIST_HEAD(&ctx->timeout_list); INIT_LIST_HEAD(&ctx->ltimeout_list); INIT_LIST_HEAD(&ctx->rsrc_ref_list); init_llist_head(&ctx->work_llist); INIT_LIST_HEAD(&ctx->tctx_list); ctx->submit_state.free_list.next = NULL; INIT_WQ_LIST(&ctx->locked_free_list); INIT_HLIST_HEAD(&ctx->waitid_list); #ifdef CONFIG_FUTEX INIT_HLIST_HEAD(&ctx->futex_list); #endif INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); INIT_WQ_LIST(&ctx->submit_state.compl_reqs); INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); io_napi_init(ctx); return ctx; err: kfree(ctx->cancel_table.hbs); kfree(ctx->cancel_table_locked.hbs); kfree(ctx->io_bl); xa_destroy(&ctx->io_bl_xa); kfree(ctx); return NULL; } static void io_account_cq_overflow(struct io_ring_ctx *ctx) { struct io_rings *r = ctx->rings; WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); ctx->cq_extra--; } static bool req_need_defer(struct io_kiocb *req, u32 seq) { if (unlikely(req->flags & REQ_F_IO_DRAIN)) { struct io_ring_ctx *ctx = req->ctx; return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; } return false; } static void io_clean_op(struct io_kiocb *req) { if (req->flags & REQ_F_BUFFER_SELECTED) { spin_lock(&req->ctx->completion_lock); io_put_kbuf_comp(req); spin_unlock(&req->ctx->completion_lock); } if (req->flags & REQ_F_NEED_CLEANUP) { const struct io_cold_def *def = &io_cold_defs[req->opcode]; if (def->cleanup) def->cleanup(req); } if ((req->flags & REQ_F_POLLED) && req->apoll) { kfree(req->apoll->double_poll); kfree(req->apoll); req->apoll = NULL; } if (req->flags & REQ_F_INFLIGHT) { struct io_uring_task *tctx = req->task->io_uring; atomic_dec(&tctx->inflight_tracked); } if (req->flags & REQ_F_CREDS) put_cred(req->creds); if (req->flags & REQ_F_ASYNC_DATA) { kfree(req->async_data); req->async_data = NULL; } req->flags &= ~IO_REQ_CLEAN_FLAGS; } static inline void io_req_track_inflight(struct io_kiocb *req) { if (!(req->flags & REQ_F_INFLIGHT)) { req->flags |= REQ_F_INFLIGHT; atomic_inc(&req->task->io_uring->inflight_tracked); } } static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) { if (WARN_ON_ONCE(!req->link)) return NULL; req->flags &= ~REQ_F_ARM_LTIMEOUT; req->flags |= REQ_F_LINK_TIMEOUT; /* linked timeouts should have two refs once prep'ed */ io_req_set_refcount(req); __io_req_set_refcount(req->link, 2); return req->link; } static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) { if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) return NULL; return __io_prep_linked_timeout(req); } static noinline void __io_arm_ltimeout(struct io_kiocb *req) { io_queue_linked_timeout(__io_prep_linked_timeout(req)); } static inline void io_arm_ltimeout(struct io_kiocb *req) { if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) __io_arm_ltimeout(req); } static void io_prep_async_work(struct io_kiocb *req) { const struct io_issue_def *def = &io_issue_defs[req->opcode]; struct io_ring_ctx *ctx = req->ctx; if (!(req->flags & REQ_F_CREDS)) { req->flags |= REQ_F_CREDS; req->creds = get_current_cred(); } req->work.list.next = NULL; req->work.flags = 0; if (req->flags & REQ_F_FORCE_ASYNC) req->work.flags |= IO_WQ_WORK_CONCURRENT; if (req->file && !(req->flags & REQ_F_FIXED_FILE)) req->flags |= io_file_get_flags(req->file); if (req->file && (req->flags & REQ_F_ISREG)) { bool should_hash = def->hash_reg_file; /* don't serialize this request if the fs doesn't need it */ if (should_hash && (req->file->f_flags & O_DIRECT) && (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) should_hash = false; if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) io_wq_hash_work(&req->work, file_inode(req->file)); } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { if (def->unbound_nonreg_file) req->work.flags |= IO_WQ_WORK_UNBOUND; } } static void io_prep_async_link(struct io_kiocb *req) { struct io_kiocb *cur; if (req->flags & REQ_F_LINK_TIMEOUT) { struct io_ring_ctx *ctx = req->ctx; spin_lock_irq(&ctx->timeout_lock); io_for_each_link(cur, req) io_prep_async_work(cur); spin_unlock_irq(&ctx->timeout_lock); } else { io_for_each_link(cur, req) io_prep_async_work(cur); } } void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) { struct io_kiocb *link = io_prep_linked_timeout(req); struct io_uring_task *tctx = req->task->io_uring; BUG_ON(!tctx); BUG_ON(!tctx->io_wq); /* init ->work of the whole link before punting */ io_prep_async_link(req); /* * Not expected to happen, but if we do have a bug where this _can_ * happen, catch it here and ensure the request is marked as * canceled. That will make io-wq go through the usual work cancel * procedure rather than attempt to run this request (or create a new * worker for it). */ if (WARN_ON_ONCE(!same_thread_group(req->task, current))) req->work.flags |= IO_WQ_WORK_CANCEL; trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); io_wq_enqueue(tctx->io_wq, &req->work); if (link) io_queue_linked_timeout(link); } static __cold void io_queue_deferred(struct io_ring_ctx *ctx) { while (!list_empty(&ctx->defer_list)) { struct io_defer_entry *de = list_first_entry(&ctx->defer_list, struct io_defer_entry, list); if (req_need_defer(de->req, de->seq)) break; list_del_init(&de->list); io_req_task_queue(de->req); kfree(de); } } void io_eventfd_ops(struct rcu_head *rcu) { struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); int ops = atomic_xchg(&ev_fd->ops, 0); if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE); /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback * ordering in a race but if references are 0 we know we have to free * it regardless. */ if (atomic_dec_and_test(&ev_fd->refs)) { eventfd_ctx_put(ev_fd->cq_ev_fd); kfree(ev_fd); } } static void io_eventfd_signal(struct io_ring_ctx *ctx) { struct io_ev_fd *ev_fd = NULL; rcu_read_lock(); /* * rcu_dereference ctx->io_ev_fd once and use it for both for checking * and eventfd_signal */ ev_fd = rcu_dereference(ctx->io_ev_fd); /* * Check again if ev_fd exists incase an io_eventfd_unregister call * completed between the NULL check of ctx->io_ev_fd at the start of * the function and rcu_read_lock. */ if (unlikely(!ev_fd)) goto out; if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) goto out; if (ev_fd->eventfd_async && !io_wq_current_is_worker()) goto out; if (likely(eventfd_signal_allowed())) { eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE); } else { atomic_inc(&ev_fd->refs); if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); else atomic_dec(&ev_fd->refs); } out: rcu_read_unlock(); } static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) { bool skip; spin_lock(&ctx->completion_lock); /* * Eventfd should only get triggered when at least one event has been * posted. Some applications rely on the eventfd notification count * only changing IFF a new CQE has been added to the CQ ring. There's * no depedency on 1:1 relationship between how many times this * function is called (and hence the eventfd count) and number of CQEs * posted to the CQ ring. */ skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; ctx->evfd_last_cq_tail = ctx->cached_cq_tail; spin_unlock(&ctx->completion_lock); if (skip) return; io_eventfd_signal(ctx); } void __io_commit_cqring_flush(struct io_ring_ctx *ctx) { if (ctx->poll_activated) io_poll_wq_wake(ctx); if (ctx->off_timeout_used) io_flush_timeouts(ctx); if (ctx->drain_active) { spin_lock(&ctx->completion_lock); io_queue_deferred(ctx); spin_unlock(&ctx->completion_lock); } if (ctx->has_evfd) io_eventfd_flush_signal(ctx); } static inline void __io_cq_lock(struct io_ring_ctx *ctx) { if (!ctx->lockless_cq) spin_lock(&ctx->completion_lock); } static inline void io_cq_lock(struct io_ring_ctx *ctx) __acquires(ctx->completion_lock) { spin_lock(&ctx->completion_lock); } static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) { io_commit_cqring(ctx); if (!ctx->task_complete) { if (!ctx->lockless_cq) spin_unlock(&ctx->completion_lock); /* IOPOLL rings only need to wake up if it's also SQPOLL */ if (!ctx->syscall_iopoll) io_cqring_wake(ctx); } io_commit_cqring_flush(ctx); } static void io_cq_unlock_post(struct io_ring_ctx *ctx) __releases(ctx->completion_lock) { io_commit_cqring(ctx); spin_unlock(&ctx->completion_lock); io_cqring_wake(ctx); io_commit_cqring_flush(ctx); } static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) { struct io_overflow_cqe *ocqe; LIST_HEAD(list); spin_lock(&ctx->completion_lock); list_splice_init(&ctx->cq_overflow_list, &list); clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); spin_unlock(&ctx->completion_lock); while (!list_empty(&list)) { ocqe = list_first_entry(&list, struct io_overflow_cqe, list); list_del(&ocqe->list); kfree(ocqe); } } static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) { size_t cqe_size = sizeof(struct io_uring_cqe); if (__io_cqring_events(ctx) == ctx->cq_entries) return; if (ctx->flags & IORING_SETUP_CQE32) cqe_size <<= 1; io_cq_lock(ctx); while (!list_empty(&ctx->cq_overflow_list)) { struct io_uring_cqe *cqe; struct io_overflow_cqe *ocqe; if (!io_get_cqe_overflow(ctx, &cqe, true)) break; ocqe = list_first_entry(&ctx->cq_overflow_list, struct io_overflow_cqe, list); memcpy(cqe, &ocqe->cqe, cqe_size); list_del(&ocqe->list); kfree(ocqe); } if (list_empty(&ctx->cq_overflow_list)) { clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); } io_cq_unlock_post(ctx); } static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) { /* iopoll syncs against uring_lock, not completion_lock */ if (ctx->flags & IORING_SETUP_IOPOLL) mutex_lock(&ctx->uring_lock); __io_cqring_overflow_flush(ctx); if (ctx->flags & IORING_SETUP_IOPOLL) mutex_unlock(&ctx->uring_lock); } static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) { if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) io_cqring_do_overflow_flush(ctx); } /* can be called by any task */ static void io_put_task_remote(struct task_struct *task) { struct io_uring_task *tctx = task->io_uring; percpu_counter_sub(&tctx->inflight, 1); if (unlikely(atomic_read(&tctx->in_cancel))) wake_up(&tctx->wait); put_task_struct(task); } /* used by a task to put its own references */ static void io_put_task_local(struct task_struct *task) { task->io_uring->cached_refs++; } /* must to be called somewhat shortly after putting a request */ static inline void io_put_task(struct task_struct *task) { if (likely(task == current)) io_put_task_local(task); else io_put_task_remote(task); } void io_task_refs_refill(struct io_uring_task *tctx) { unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; percpu_counter_add(&tctx->inflight, refill); refcount_add(refill, ¤t->usage); tctx->cached_refs += refill; } static __cold void io_uring_drop_tctx_refs(struct task_struct *task) { struct io_uring_task *tctx = task->io_uring; unsigned int refs = tctx->cached_refs; if (refs) { tctx->cached_refs = 0; percpu_counter_sub(&tctx->inflight, refs); put_task_struct_many(task, refs); } } static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, u64 extra1, u64 extra2) { struct io_overflow_cqe *ocqe; size_t ocq_size = sizeof(struct io_overflow_cqe); bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); lockdep_assert_held(&ctx->completion_lock); if (is_cqe32) ocq_size += sizeof(struct io_uring_cqe); ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); if (!ocqe) { /* * If we're in ring overflow flush mode, or in task cancel mode, * or cannot allocate an overflow entry, then we need to drop it * on the floor. */ io_account_cq_overflow(ctx); set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); return false; } if (list_empty(&ctx->cq_overflow_list)) { set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); } ocqe->cqe.user_data = user_data; ocqe->cqe.res = res; ocqe->cqe.flags = cflags; if (is_cqe32) { ocqe->cqe.big_cqe[0] = extra1; ocqe->cqe.big_cqe[1] = extra2; } list_add_tail(&ocqe->list, &ctx->cq_overflow_list); return true; } void io_req_cqe_overflow(struct io_kiocb *req) { io_cqring_event_overflow(req->ctx, req->cqe.user_data, req->cqe.res, req->cqe.flags, req->big_cqe.extra1, req->big_cqe.extra2); memset(&req->big_cqe, 0, sizeof(req->big_cqe)); } /* * writes to the cq entry need to come after reading head; the * control dependency is enough as we're using WRITE_ONCE to * fill the cq entry */ bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) { struct io_rings *rings = ctx->rings; unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); unsigned int free, queued, len; /* * Posting into the CQ when there are pending overflowed CQEs may break * ordering guarantees, which will affect links, F_MORE users and more. * Force overflow the completion. */ if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) return false; /* userspace may cheat modifying the tail, be safe and do min */ queued = min(__io_cqring_events(ctx), ctx->cq_entries); free = ctx->cq_entries - queued; /* we need a contiguous range, limit based on the current array offset */ len = min(free, ctx->cq_entries - off); if (!len) return false; if (ctx->flags & IORING_SETUP_CQE32) { off <<= 1; len <<= 1; } ctx->cqe_cached = &rings->cqes[off]; ctx->cqe_sentinel = ctx->cqe_cached + len; return true; } static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) { struct io_uring_cqe *cqe; ctx->cq_extra++; /* * If we can't get a cq entry, userspace overflowed the * submission (by quite a lot). Increment the overflow count in * the ring. */ if (likely(io_get_cqe(ctx, &cqe))) { trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); WRITE_ONCE(cqe->user_data, user_data); WRITE_ONCE(cqe->res, res); WRITE_ONCE(cqe->flags, cflags); if (ctx->flags & IORING_SETUP_CQE32) { WRITE_ONCE(cqe->big_cqe[0], 0); WRITE_ONCE(cqe->big_cqe[1], 0); } return true; } return false; } static void __io_flush_post_cqes(struct io_ring_ctx *ctx) __must_hold(&ctx->uring_lock) { struct io_submit_state *state = &ctx->submit_state; unsigned int i; lockdep_assert_held(&ctx->uring_lock); for (i = 0; i < state->cqes_count; i++) { struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { if (ctx->lockless_cq) { spin_lock(&ctx->completion_lock); io_cqring_event_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, 0, 0); spin_unlock(&ctx->completion_lock); } else { io_cqring_event_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, 0, 0); } } } state->cqes_count = 0; } static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, bool allow_overflow) { bool filled; io_cq_lock(ctx); filled = io_fill_cqe_aux(ctx, user_data, res, cflags); if (!filled && allow_overflow) filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); io_cq_unlock_post(ctx); return filled; } bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) { return __io_post_aux_cqe(ctx, user_data, res, cflags, true); } /* * A helper for multishot requests posting additional CQEs. * Should only be used from a task_work including IO_URING_F_MULTISHOT. */ bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) { struct io_ring_ctx *ctx = req->ctx; u64 user_data = req->cqe.user_data; struct io_uring_cqe *cqe; lockdep_assert(!io_wq_current_is_worker()); if (!defer) return __io_post_aux_cqe(ctx, user_data, res, cflags, false); lockdep_assert_held(&ctx->uring_lock); if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { __io_cq_lock(ctx); __io_flush_post_cqes(ctx); /* no need to flush - flush is deferred */ __io_cq_unlock_post(ctx); } /* For defered completions this is not as strict as it is otherwise, * however it's main job is to prevent unbounded posted completions, * and in that it works just as well. */ if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) return false; cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; cqe->user_data = user_data; cqe->res = res; cqe->flags = cflags; return true; } static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) { struct io_ring_ctx *ctx = req->ctx; struct io_rsrc_node *rsrc_node = NULL; io_cq_lock(ctx); if (!(req->flags & REQ_F_CQE_SKIP)) { if (!io_fill_cqe_req(ctx, req)) io_req_cqe_overflow(req); } /* * If we're the last reference to this request, add to our locked * free_list cache. */ if (req_ref_put_and_test(req)) { if (req->flags & IO_REQ_LINK_FLAGS) { if (req->flags & IO_DISARM_MASK) io_disarm_next(req); if (req->link) { io_req_task_queue(req->link); req->link = NULL; } } io_put_kbuf_comp(req); if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) io_clean_op(req); io_put_file(req); rsrc_node = req->rsrc_node; /* * Selected buffer deallocation in io_clean_op() assumes that * we don't hold ->completion_lock. Clean them here to avoid * deadlocks. */ io_put_task_remote(req->task); wq_list_add_head(&req->comp_list, &ctx->locked_free_list); ctx->locked_free_nr++; } io_cq_unlock_post(ctx); if (rsrc_node) { io_ring_submit_lock(ctx, issue_flags); io_put_rsrc_node(ctx, rsrc_node); io_ring_submit_unlock(ctx, issue_flags); } } void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) { struct io_ring_ctx *ctx = req->ctx; if (ctx->task_complete && ctx->submitter_task != current) { req->io_task_work.func = io_req_task_complete; io_req_task_work_add(req); } else if (!(issue_flags & IO_URING_F_UNLOCKED) || !(ctx->flags & IORING_SETUP_IOPOLL)) { __io_req_complete_post(req, issue_flags); } else { mutex_lock(&ctx->uring_lock); __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); mutex_unlock(&ctx->uring_lock); } } void io_req_defer_failed(struct io_kiocb *req, s32 res) __must_hold(&ctx->uring_lock) { const struct io_cold_def *def = &io_cold_defs[req->opcode]; lockdep_assert_held(&req->ctx->uring_lock); req_set_fail(req); io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); if (def->fail) def->fail(req); io_req_complete_defer(req); } /* * Don't initialise the fields below on every allocation, but do that in * advance and keep them valid across allocations. */ static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) { req->ctx = ctx; req->link = NULL; req->async_data = NULL; /* not necessary, but safer to zero */ memset(&req->cqe, 0, sizeof(req->cqe)); memset(&req->big_cqe, 0, sizeof(req->big_cqe)); } static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, struct io_submit_state *state) { spin_lock(&ctx->completion_lock); wq_list_splice(&ctx->locked_free_list, &state->free_list); ctx->locked_free_nr = 0; spin_unlock(&ctx->completion_lock); } /* * A request might get retired back into the request caches even before opcode * handlers and io_issue_sqe() are done with it, e.g. inline completion path. * Because of that, io_alloc_req() should be called only under ->uring_lock * and with extra caution to not get a request that is still worked on. */ __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) __must_hold(&ctx->uring_lock) { gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; void *reqs[IO_REQ_ALLOC_BATCH]; int ret, i; /* * If we have more than a batch's worth of requests in our IRQ side * locked cache, grab the lock and move them over to our submission * side cache. */ if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { io_flush_cached_locked_reqs(ctx, &ctx->submit_state); if (!io_req_cache_empty(ctx)) return true; } ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); /* * Bulk alloc is all-or-nothing. If we fail to get a batch, * retry single alloc to be on the safe side. */ if (unlikely(ret <= 0)) { reqs[0] = kmem_cache_alloc(req_cachep, gfp); if (!reqs[0]) return false; ret = 1; } percpu_ref_get_many(&ctx->refs, ret); for (i = 0; i < ret; i++) { struct io_kiocb *req = reqs[i]; io_preinit_req(req, ctx); io_req_add_to_cache(req, ctx); } return true; } __cold void io_free_req(struct io_kiocb *req) { /* refs were already put, restore them for io_req_task_complete() */ req->flags &= ~REQ_F_REFCOUNT; /* we only want to free it, don't post CQEs */ req->flags |= REQ_F_CQE_SKIP; req->io_task_work.func = io_req_task_complete; io_req_task_work_add(req); } static void __io_req_find_next_prep(struct io_kiocb *req) { struct io_ring_ctx *ctx = req->ctx; spin_lock(&ctx->completion_lock); io_disarm_next(req); spin_unlock(&ctx->completion_lock); } static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) { struct io_kiocb *nxt; /* * If LINK is set, we have dependent requests in this chain. If we * didn't fail this request, queue the first one up, moving any other * dependencies to the next request. In case of failure, fail the rest * of the chain. */ if (unlikely(req->flags & IO_DISARM_MASK)) __io_req_find_next_prep(req); nxt = req->link; req->link = NULL; return nxt; } static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) { if (!ctx) return; if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); if (ts->locked) { io_submit_flush_completions(ctx); mutex_unlock(&ctx->uring_lock); ts->locked = false; } percpu_ref_put(&ctx->refs); } /* * Run queued task_work, returning the number of entries processed in *count. * If more entries than max_entries are available, stop processing once this * is reached and return the rest of the list. */ struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries) { struct io_ring_ctx *ctx = NULL; struct io_tw_state ts = { }; do { struct llist_node *next = node->next; struct io_kiocb *req = container_of(node, struct io_kiocb, io_task_work.node); if (req->ctx != ctx) { ctx_flush_and_put(ctx, &ts); ctx = req->ctx; /* if not contended, grab and improve batching */ ts.locked = mutex_trylock(&ctx->uring_lock); percpu_ref_get(&ctx->refs); } INDIRECT_CALL_2(req->io_task_work.func, io_poll_task_func, io_req_rw_complete, req, &ts); node = next; (*count)++; if (unlikely(need_resched())) { ctx_flush_and_put(ctx, &ts); ctx = NULL; cond_resched(); } } while (node && *count < max_entries); ctx_flush_and_put(ctx, &ts); return node; } /** * io_llist_xchg - swap all entries in a lock-less list * @head: the head of lock-less list to delete all entries * @new: new entry as the head of the list * * If list is empty, return NULL, otherwise, return the pointer to the first entry. * The order of entries returned is from the newest to the oldest added one. */ static inline struct llist_node *io_llist_xchg(struct llist_head *head, struct llist_node *new) { return xchg(&head->first, new); } static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) { struct llist_node *node = llist_del_all(&tctx->task_list); struct io_ring_ctx *last_ctx = NULL; struct io_kiocb *req; while (node) { req = container_of(node, struct io_kiocb, io_task_work.node); node = node->next; if (sync && last_ctx != req->ctx) { if (last_ctx) { flush_delayed_work(&last_ctx->fallback_work); percpu_ref_put(&last_ctx->refs); } last_ctx = req->ctx; percpu_ref_get(&last_ctx->refs); } if (llist_add(&req->io_task_work.node, &req->ctx->fallback_llist)) schedule_delayed_work(&req->ctx->fallback_work, 1); } if (last_ctx) { flush_delayed_work(&last_ctx->fallback_work); percpu_ref_put(&last_ctx->refs); } } struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count) { struct llist_node *node; if (unlikely(current->flags & PF_EXITING)) { io_fallback_tw(tctx, true); return NULL; } node = llist_del_all(&tctx->task_list); if (node) { node = llist_reverse_order(node); node = io_handle_tw_list(node, count, max_entries); } /* relaxed read is enough as only the task itself sets ->in_cancel */ if (unlikely(atomic_read(&tctx->in_cancel))) io_uring_drop_tctx_refs(current); trace_io_uring_task_work_run(tctx, *count); return node; } void tctx_task_work(struct callback_head *cb) { struct io_uring_task *tctx; struct llist_node *ret; unsigned int count = 0; tctx = container_of(cb, struct io_uring_task, task_work); ret = tctx_task_work_run(tctx, UINT_MAX, &count); /* can't happen */ WARN_ON_ONCE(ret); } static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) { struct io_ring_ctx *ctx = req->ctx; unsigned nr_wait, nr_tw, nr_tw_prev; struct llist_node *head; /* See comment above IO_CQ_WAKE_INIT */ BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); /* * We don't know how many reuqests is there in the link and whether * they can even be queued lazily, fall back to non-lazy. */ if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) flags &= ~IOU_F_TWQ_LAZY_WAKE; head = READ_ONCE(ctx->work_llist.first); do { nr_tw_prev = 0; if (head) { struct io_kiocb *first_req = container_of(head, struct io_kiocb, io_task_work.node); /* * Might be executed at any moment, rely on * SLAB_TYPESAFE_BY_RCU to keep it alive. */ nr_tw_prev = READ_ONCE(first_req->nr_tw); } /* * Theoretically, it can overflow, but that's fine as one of * previous adds should've tried to wake the task. */ nr_tw = nr_tw_prev + 1; if (!(flags & IOU_F_TWQ_LAZY_WAKE)) nr_tw = IO_CQ_WAKE_FORCE; req->nr_tw = nr_tw; req->io_task_work.node.next = head; } while (!try_cmpxchg(&ctx->work_llist.first, &head, &req->io_task_work.node)); /* * cmpxchg implies a full barrier, which pairs with the barrier * in set_current_state() on the io_cqring_wait() side. It's used * to ensure that either we see updated ->cq_wait_nr, or waiters * going to sleep will observe the work added to the list, which * is similar to the wait/wawke task state sync. */ if (!head) { if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); if (ctx->has_evfd) io_eventfd_signal(ctx); } nr_wait = atomic_read(&ctx->cq_wait_nr); /* not enough or no one is waiting */ if (nr_tw < nr_wait) return; /* the previous add has already woken it up */ if (nr_tw_prev >= nr_wait) return; wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); } static void io_req_normal_work_add(struct io_kiocb *req) { struct io_uring_task *tctx = req->task->io_uring; struct io_ring_ctx *ctx = req->ctx; /* task_work already pending, we're done */ if (!llist_add(&req->io_task_work.node, &tctx->task_list)) return; if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); /* SQPOLL doesn't need the task_work added, it'll run it itself */ if (ctx->flags & IORING_SETUP_SQPOLL) { struct io_sq_data *sqd = ctx->sq_data; if (wq_has_sleeper(&sqd->wait)) wake_up(&sqd->wait); return; } if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) return; io_fallback_tw(tctx, false); } void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) { if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { rcu_read_lock(); io_req_local_work_add(req, flags); rcu_read_unlock(); } else { io_req_normal_work_add(req); } } static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) { struct llist_node *node; node = llist_del_all(&ctx->work_llist); while (node) { struct io_kiocb *req = container_of(node, struct io_kiocb, io_task_work.node); node = node->next; io_req_normal_work_add(req); } } static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, int min_events) { if (llist_empty(&ctx->work_llist)) return false; if (events < min_events) return true; if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); return false; } static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, int min_events) { struct llist_node *node; unsigned int loops = 0; int ret = 0; if (WARN_ON_ONCE(ctx->submitter_task != current)) return -EEXIST; if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); again: /* * llists are in reverse order, flip it back the right way before * running the pending items. */ node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); while (node) { struct llist_node *next = node->next; struct io_kiocb *req = container_of(node, struct io_kiocb, io_task_work.node); INDIRECT_CALL_2(req->io_task_work.func, io_poll_task_func, io_req_rw_complete, req, ts); ret++; node = next; } loops++; if (io_run_local_work_continue(ctx, ret, min_events)) goto again; if (ts->locked) { io_submit_flush_completions(ctx); if (io_run_local_work_continue(ctx, ret, min_events)) goto again; } trace_io_uring_local_work_run(ctx, ret, loops); return ret; } static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, int min_events) { struct io_tw_state ts = { .locked = true, }; int ret; if (llist_empty(&ctx->work_llist)) return 0; ret = __io_run_local_work(ctx, &ts, min_events); /* shouldn't happen! */ if (WARN_ON_ONCE(!ts.locked)) mutex_lock(&ctx->uring_lock); return ret; } static int io_run_local_work(struct io_ring_ctx *ctx, int min_events) { struct io_tw_state ts = {}; int ret; ts.locked = mutex_trylock(&ctx->uring_lock); ret = __io_run_local_work(ctx, &ts, min_events); if (ts.locked) mutex_unlock(&ctx->uring_lock); return ret; } static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) { io_tw_lock(req->ctx, ts); io_req_defer_failed(req, req->cqe.res); } void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) { io_tw_lock(req->ctx, ts); /* req->task == current here, checking PF_EXITING is safe */ if (unlikely(req->task->flags & PF_EXITING)) io_req_defer_failed(req, -EFAULT); else if (req->flags & REQ_F_FORCE_ASYNC) io_queue_iowq(req, ts); else io_queue_sqe(req); } void io_req_task_queue_fail(struct io_kiocb *req, int ret) { io_req_set_res(req, ret, 0); req->io_task_work.func = io_req_task_cancel; io_req_task_work_add(req); } void io_req_task_queue(struct io_kiocb *req) { req->io_task_work.func = io_req_task_submit; io_req_task_work_add(req); } void io_queue_next(struct io_kiocb *req) { struct io_kiocb *nxt = io_req_find_next(req); if (nxt) io_req_task_queue(nxt); } static void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) __must_hold(&ctx->uring_lock) { do { struct io_kiocb *req = container_of(node, struct io_kiocb, comp_list); if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { if (req->flags & REQ_F_REFCOUNT) { node = req->comp_list.next; if (!req_ref_put_and_test(req)) continue; } if ((req->flags & REQ_F_POLLED) && req->apoll) { struct async_poll *apoll = req->apoll; if (apoll->double_poll) kfree(apoll->double_poll); if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) kfree(apoll); req->flags &= ~REQ_F_POLLED; } if (req->flags & IO_REQ_LINK_FLAGS) io_queue_next(req); if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) io_clean_op(req); } io_put_file(req); io_req_put_rsrc_locked(req, ctx); io_put_task(req->task); node = req->comp_list.next; io_req_add_to_cache(req, ctx); } while (node); } void __io_submit_flush_completions(struct io_ring_ctx *ctx) __must_hold(&ctx->uring_lock) { struct io_submit_state *state = &ctx->submit_state; struct io_wq_work_node *node; __io_cq_lock(ctx); /* must come first to preserve CQE ordering in failure cases */ if (state->cqes_count) __io_flush_post_cqes(ctx); __wq_list_for_each(node, &state->compl_reqs) { struct io_kiocb *req = container_of(node, struct io_kiocb, comp_list); if (!(req->flags & REQ_F_CQE_SKIP) && unlikely(!io_fill_cqe_req(ctx, req))) { if (ctx->lockless_cq) { spin_lock(&ctx->completion_lock); io_req_cqe_overflow(req); spin_unlock(&ctx->completion_lock); } else { io_req_cqe_overflow(req); } } } __io_cq_unlock_post(ctx); if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { io_free_batch_list(ctx, state->compl_reqs.first); INIT_WQ_LIST(&state->compl_reqs); } } static unsigned io_cqring_events(struct io_ring_ctx *ctx) { /* See comment at the top of this file */ smp_rmb(); return __io_cqring_events(ctx); } /* * We can't just wait for polled events to come to us, we have to actively * find and complete them. */ static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) { if (!(ctx->flags & IORING_SETUP_IOPOLL)) return; mutex_lock(&ctx->uring_lock); while (!wq_list_empty(&ctx->iopoll_list)) { /* let it sleep and repeat later if can't complete a request */ if (io_do_iopoll(ctx, true) == 0) break; /* * Ensure we allow local-to-the-cpu processing to take place, * in this case we need to ensure that we reap all events. * Also let task_work, etc. to progress by releasing the mutex */ if (need_resched()) { mutex_unlock(&ctx->uring_lock); cond_resched(); mutex_lock(&ctx->uring_lock); } } mutex_unlock(&ctx->uring_lock); } static int io_iopoll_check(struct io_ring_ctx *ctx, long min) { unsigned int nr_events = 0; unsigned long check_cq; if (!io_allowed_run_tw(ctx)) return -EEXIST; check_cq = READ_ONCE(ctx->check_cq); if (unlikely(check_cq)) { if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) __io_cqring_overflow_flush(ctx); /* * Similarly do not spin if we have not informed the user of any * dropped CQE. */ if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) return -EBADR; } /* * Don't enter poll loop if we already have events pending. * If we do, we can potentially be spinning for commands that * already triggered a CQE (eg in error). */ if (io_cqring_events(ctx)) return 0; do { int ret = 0; /* * If a submit got punted to a workqueue, we can have the * application entering polling for a command before it gets * issued. That app will hold the uring_lock for the duration * of the poll right here, so we need to take a breather every * now and then to ensure that the issue has a chance to add * the poll to the issued list. Otherwise we can spin here * forever, while the workqueue is stuck trying to acquire the * very same mutex. */ if (wq_list_empty(&ctx->iopoll_list) || io_task_work_pending(ctx)) { u32 tail = ctx->cached_cq_tail; (void) io_run_local_work_locked(ctx, min); if (task_work_pending(current) || wq_list_empty(&ctx->iopoll_list)) { mutex_unlock(&ctx->uring_lock); io_run_task_work(); mutex_lock(&ctx->uring_lock); } /* some requests don't go through iopoll_list */ if (tail != ctx->cached_cq_tail || wq_list_empty(&ctx->iopoll_list)) break; } ret = io_do_iopoll(ctx, !min); if (unlikely(ret < 0)) return ret; if (task_sigpending(current)) return -EINTR; if (need_resched()) break; nr_events += ret; } while (nr_events < min); return 0; } void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) { if (ts->locked) io_req_complete_defer(req); else io_req_complete_post(req, IO_URING_F_UNLOCKED); } /* * After the iocb has been issued, it's safe to be found on the poll list. * Adding the kiocb to the list AFTER submission ensures that we don't * find it from a io_do_iopoll() thread before the issuer is done * accessing the kiocb cookie. */ static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) { struct io_ring_ctx *ctx = req->ctx; const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; /* workqueue context doesn't hold uring_lock, grab it now */ if (unlikely(needs_lock)) mutex_lock(&ctx->uring_lock); /* * Track whether we have multiple files in our lists. This will impact * how we do polling eventually, not spinning if we're on potentially * different devices. */ if (wq_list_empty(&ctx->iopoll_list)) { ctx->poll_multi_queue = false; } else if (!ctx->poll_multi_queue) { struct io_kiocb *list_req; list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, comp_list); if (list_req->file != req->file) ctx->poll_multi_queue = true; } /* * For fast devices, IO may have already completed. If it has, add * it to the front so we find it first. */ if (READ_ONCE(req->iopoll_completed)) wq_list_add_head(&req->comp_list, &ctx->iopoll_list); else wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); if (unlikely(needs_lock)) { /* * If IORING_SETUP_SQPOLL is enabled, sqes are either handle * in sq thread task context or in io worker task context. If * current task context is sq thread, we don't need to check * whether should wake up sq thread. */ if ((ctx->flags & IORING_SETUP_SQPOLL) && wq_has_sleeper(&ctx->sq_data->wait)) wake_up(&ctx->sq_data->wait); mutex_unlock(&ctx->uring_lock); } } io_req_flags_t io_file_get_flags(struct file *file) { io_req_flags_t res = 0; if (S_ISREG(file_inode(file)->i_mode)) res |= REQ_F_ISREG; if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) res |= REQ_F_SUPPORT_NOWAIT; return res; } bool io_alloc_async_data(struct io_kiocb *req) { WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); if (req->async_data) { req->flags |= REQ_F_ASYNC_DATA; return false; } return true; } int io_req_prep_async(struct io_kiocb *req) { const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; const struct io_issue_def *def = &io_issue_defs[req->opcode]; /* assign early for deferred execution for non-fixed file */ if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) req->file = io_file_get_normal(req, req->cqe.fd); if (!cdef->prep_async) return 0; if (WARN_ON_ONCE(req_has_async_data(req))) return -EFAULT; if (!def->manual_alloc) { if (io_alloc_async_data(req)) return -EAGAIN; } return cdef->prep_async(req); } static u32 io_get_sequence(struct io_kiocb *req) { u32 seq = req->ctx->cached_sq_head; struct io_kiocb *cur; /* need original cached_sq_head, but it was increased for each req */ io_for_each_link(cur, req) seq--; return seq; } static __cold void io_drain_req(struct io_kiocb *req) __must_hold(&ctx->uring_lock) { struct io_ring_ctx *ctx = req->ctx; struct io_defer_entry *de; int ret; u32 seq = io_get_sequence(req); /* Still need defer if there is pending req in defer list. */ spin_lock(&ctx->completion_lock); if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { spin_unlock(&ctx->completion_lock); queue: ctx->drain_active = false; io_req_task_queue(req); return; } spin_unlock(&ctx->completion_lock); io_prep_async_link(req); de = kmalloc(sizeof(*de), GFP_KERNEL); if (!de) { ret = -ENOMEM; io_req_defer_failed(req, ret); return; } spin_lock(&ctx->completion_lock); if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { spin_unlock(&ctx->completion_lock); kfree(de); goto queue; } trace_io_uring_defer(req); de->req = req; de->seq = seq; list_add_tail(&de->list, &ctx->defer_list); spin_unlock(&ctx->completion_lock); } static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, unsigned int issue_flags) { if (req->file || !def->needs_file) return true; if (req->flags & REQ_F_FIXED_FILE) req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); else req->file = io_file_get_normal(req, req->cqe.fd); return !!req->file; } static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) { const struct io_issue_def *def = &io_issue_defs[req->opcode]; const struct cred *creds = NULL; int ret; if (unlikely(!io_assign_file(req, def, issue_flags))) return -EBADF; if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) creds = override_creds(req->creds); if (!def->audit_skip) audit_uring_entry(req->opcode); ret = def->issue(req, issue_flags); if (!def->audit_skip) audit_uring_exit(!ret, ret); if (creds) revert_creds(creds); if (ret == IOU_OK) { if (issue_flags & IO_URING_F_COMPLETE_DEFER) io_req_complete_defer(req); else io_req_complete_post(req, issue_flags); return 0; } if (ret == IOU_ISSUE_SKIP_COMPLETE) { ret = 0; io_arm_ltimeout(req); /* If the op doesn't have a file, we're not polling for it */ if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) io_iopoll_req_issued(req, issue_flags); } return ret; } int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) { io_tw_lock(req->ctx, ts); return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| IO_URING_F_COMPLETE_DEFER); } struct io_wq_work *io_wq_free_work(struct io_wq_work *work) { struct io_kiocb *req = container_of(work, struct io_kiocb, work); struct io_kiocb *nxt = NULL; if (req_ref_put_and_test(req)) { if (req->flags & IO_REQ_LINK_FLAGS) nxt = io_req_find_next(req); io_free_req(req); } return nxt ? &nxt->work : NULL; } void io_wq_submit_work(struct io_wq_work *work) { struct io_kiocb *req = container_of(work, struct io_kiocb, work); const struct io_issue_def *def = &io_issue_defs[req->opcode]; unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; bool needs_poll = false; int ret = 0, err = -ECANCELED; /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ if (!(req->flags & REQ_F_REFCOUNT)) __io_req_set_refcount(req, 2); else req_ref_get(req); io_arm_ltimeout(req); /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ if (work->flags & IO_WQ_WORK_CANCEL) { fail: io_req_task_queue_fail(req, err); return; } if (!io_assign_file(req, def, issue_flags)) { err = -EBADF; work->flags |= IO_WQ_WORK_CANCEL; goto fail; } /* * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the * submitter task context. Final request completions are handed to the * right context, however this is not the case of auxiliary CQEs, * which is the main mean of operation for multishot requests. * Don't allow any multishot execution from io-wq. It's more restrictive * than necessary and also cleaner. */ if (req->flags & REQ_F_APOLL_MULTISHOT) { err = -EBADFD; if (!io_file_can_poll(req)) goto fail; err = -ECANCELED; if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) goto fail; return; } if (req->flags & REQ_F_FORCE_ASYNC) { bool opcode_poll = def->pollin || def->pollout; if (opcode_poll && io_file_can_poll(req)) { needs_poll = true; issue_flags |= IO_URING_F_NONBLOCK; } } do { ret = io_issue_sqe(req, issue_flags); if (ret != -EAGAIN) break; /* * If REQ_F_NOWAIT is set, then don't wait or retry with * poll. -EAGAIN is final for that case. */ if (req->flags & REQ_F_NOWAIT) break; /* * We can get EAGAIN for iopolled IO even though we're * forcing a sync submission from here, since we can't * wait for request slots on the block side. */ if (!needs_poll) { if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) break; if (io_wq_worker_stopped()) break; cond_resched(); continue; } if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) return; /* aborted or ready, in either case retry blocking */ needs_poll = false; issue_flags &= ~IO_URING_F_NONBLOCK; } while (1); /* avoid locking problems by failing it from a clean context */ if (ret < 0) io_req_task_queue_fail(req, ret); } inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, unsigned int issue_flags) { struct io_ring_ctx *ctx = req->ctx; struct io_fixed_file *slot; struct file *file = NULL; io_ring_submit_lock(ctx, issue_flags); if (unlikely((unsigned int)fd >= ctx->nr_user_files)) goto out; fd = array_index_nospec(fd, ctx->nr_user_files); slot = io_fixed_file_slot(&ctx->file_table, fd); if (!req->rsrc_node) __io_req_set_rsrc_node(req, ctx); req->flags |= io_slot_flags(slot); file = io_slot_file(slot); out: io_ring_submit_unlock(ctx, issue_flags); return file; } struct file *io_file_get_normal(struct io_kiocb *req, int fd) { struct file *file = fget(fd); trace_io_uring_file_get(req, fd); /* we don't allow fixed io_uring files */ if (file && io_is_uring_fops(file)) io_req_track_inflight(req); return file; } static void io_queue_async(struct io_kiocb *req, int ret) __must_hold(&req->ctx->uring_lock) { struct io_kiocb *linked_timeout; if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { io_req_defer_failed(req, ret); return; } linked_timeout = io_prep_linked_timeout(req); switch (io_arm_poll_handler(req, 0)) { case IO_APOLL_READY: io_kbuf_recycle(req, 0); io_req_task_queue(req); break; case IO_APOLL_ABORTED: io_kbuf_recycle(req, 0); io_queue_iowq(req, NULL); break; case IO_APOLL_OK: break; } if (linked_timeout) io_queue_linked_timeout(linked_timeout); } static inline void io_queue_sqe(struct io_kiocb *req) __must_hold(&req->ctx->uring_lock) { int ret; ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); /* * We async punt it if the file wasn't marked NOWAIT, or if the file * doesn't support non-blocking read/write attempts */ if (unlikely(ret)) io_queue_async(req, ret); } static void io_queue_sqe_fallback(struct io_kiocb *req) __must_hold(&req->ctx->uring_lock) { if (unlikely(req->flags & REQ_F_FAIL)) { /* * We don't submit, fail them all, for that replace hardlinks * with normal links. Extra REQ_F_LINK is tolerated. */ req->flags &= ~REQ_F_HARDLINK; req->flags |= REQ_F_LINK; io_req_defer_failed(req, req->cqe.res); } else { int ret = io_req_prep_async(req); if (unlikely(ret)) { io_req_defer_failed(req, ret); return; } if (unlikely(req->ctx->drain_active)) io_drain_req(req); else io_queue_iowq(req, NULL); } } /* * Check SQE restrictions (opcode and flags). * * Returns 'true' if SQE is allowed, 'false' otherwise. */ static inline bool io_check_restriction(struct io_ring_ctx *ctx, struct io_kiocb *req, unsigned int sqe_flags) { if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) return false; if ((sqe_flags & ctx->restrictions.sqe_flags_required) != ctx->restrictions.sqe_flags_required) return false; if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | ctx->restrictions.sqe_flags_required)) return false; return true; } static void io_init_req_drain(struct io_kiocb *req) { struct io_ring_ctx *ctx = req->ctx; struct io_kiocb *head = ctx->submit_state.link.head; ctx->drain_active = true; if (head) { /* * If we need to drain a request in the middle of a link, drain * the head request and the next request/link after the current * link. Considering sequential execution of links, * REQ_F_IO_DRAIN will be maintained for every request of our * link. */ head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; ctx->drain_next = true; } } static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, const struct io_uring_sqe *sqe) __must_hold(&ctx->uring_lock) { const struct io_issue_def *def; unsigned int sqe_flags; int personality; u8 opcode; /* req is partially pre-initialised, see io_preinit_req() */ req->opcode = opcode = READ_ONCE(sqe->opcode); /* same numerical values with corresponding REQ_F_*, safe to copy */ sqe_flags = READ_ONCE(sqe->flags); req->flags = (io_req_flags_t) sqe_flags; req->cqe.user_data = READ_ONCE(sqe->user_data); req->file = NULL; req->rsrc_node = NULL; req->task = current; if (unlikely(opcode >= IORING_OP_LAST)) { req->opcode = 0; return -EINVAL; } def = &io_issue_defs[opcode]; if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { /* enforce forwards compatibility on users */ if (sqe_flags & ~SQE_VALID_FLAGS) return -EINVAL; if (sqe_flags & IOSQE_BUFFER_SELECT) { if (!def->buffer_select) return -EOPNOTSUPP; req->buf_index = READ_ONCE(sqe->buf_group); } if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) ctx->drain_disabled = true; if (sqe_flags & IOSQE_IO_DRAIN) { if (ctx->drain_disabled) return -EOPNOTSUPP; io_init_req_drain(req); } } if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) return -EACCES; /* knock it to the slow queue path, will be drained there */ if (ctx->drain_active) req->flags |= REQ_F_FORCE_ASYNC; /* if there is no link, we're at "next" request and need to drain */ if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { ctx->drain_next = false; ctx->drain_active = true; req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; } } if (!def->ioprio && sqe->ioprio) return -EINVAL; if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (def->needs_file) { struct io_submit_state *state = &ctx->submit_state; req->cqe.fd = READ_ONCE(sqe->fd); /* * Plug now if we have more than 2 IO left after this, and the * target is potentially a read/write to block based storage. */ if (state->need_plug && def->plug) { state->plug_started = true; state->need_plug = false; blk_start_plug_nr_ios(&state->plug, state->submit_nr); } } personality = READ_ONCE(sqe->personality); if (personality) { int ret; req->creds = xa_load(&ctx->personalities, personality); if (!req->creds) return -EINVAL; get_cred(req->creds); ret = security_uring_override_creds(req->creds); if (ret) { put_cred(req->creds); return ret; } req->flags |= REQ_F_CREDS; } return def->prep(req, sqe); } static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, struct io_kiocb *req, int ret) { struct io_ring_ctx *ctx = req->ctx; struct io_submit_link *link = &ctx->submit_state.link; struct io_kiocb *head = link->head; trace_io_uring_req_failed(sqe, req, ret); /* * Avoid breaking links in the middle as it renders links with SQPOLL * unusable. Instead of failing eagerly, continue assembling the link if * applicable and mark the head with REQ_F_FAIL. The link flushing code * should find the flag and handle the rest. */ req_fail_link_node(req, ret); if (head && !(head->flags & REQ_F_FAIL)) req_fail_link_node(head, -ECANCELED); if (!(req->flags & IO_REQ_LINK_FLAGS)) { if (head) { link->last->link = req; link->head = NULL; req = head; } io_queue_sqe_fallback(req); return ret; } if (head) link->last->link = req; else link->head = req; link->last = req; return 0; } static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, const struct io_uring_sqe *sqe) __must_hold(&ctx->uring_lock) { struct io_submit_link *link = &ctx->submit_state.link; int ret; ret = io_init_req(ctx, req, sqe); if (unlikely(ret)) return io_submit_fail_init(sqe, req, ret); trace_io_uring_submit_req(req); /* * If we already have a head request, queue this one for async * submittal once the head completes. If we don't have a head but * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be * submitted sync once the chain is complete. If none of those * conditions are true (normal request), then just queue it. */ if (unlikely(link->head)) { ret = io_req_prep_async(req); if (unlikely(ret)) return io_submit_fail_init(sqe, req, ret); trace_io_uring_link(req, link->head); link->last->link = req; link->last = req; if (req->flags & IO_REQ_LINK_FLAGS) return 0; /* last request of the link, flush it */ req = link->head; link->head = NULL; if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) goto fallback; } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { if (req->flags & IO_REQ_LINK_FLAGS) { link->head = req; link->last = req; } else { fallback: io_queue_sqe_fallback(req); } return 0; } io_queue_sqe(req); return 0; } /* * Batched submission is done, ensure local IO is flushed out. */ static void io_submit_state_end(struct io_ring_ctx *ctx) { struct io_submit_state *state = &ctx->submit_state; if (unlikely(state->link.head)) io_queue_sqe_fallback(state->link.head); /* flush only after queuing links as they can generate completions */ io_submit_flush_completions(ctx); if (state->plug_started) blk_finish_plug(&state->plug); } /* * Start submission side cache. */ static void io_submit_state_start(struct io_submit_state *state, unsigned int max_ios) { state->plug_started = false; state->need_plug = max_ios > 2; state->submit_nr = max_ios; /* set only head, no need to init link_last in advance */ state->link.head = NULL; } static void io_commit_sqring(struct io_ring_ctx *ctx) { struct io_rings *rings = ctx->rings; /* * Ensure any loads from the SQEs are done at this point, * since once we write the new head, the application could * write new data to them. */ smp_store_release(&rings->sq.head, ctx->cached_sq_head); } /* * Fetch an sqe, if one is available. Note this returns a pointer to memory * that is mapped by userspace. This means that care needs to be taken to * ensure that reads are stable, as we cannot rely on userspace always * being a good citizen. If members of the sqe are validated and then later * used, it's important that those reads are done through READ_ONCE() to * prevent a re-load down the line. */ static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) { unsigned mask = ctx->sq_entries - 1; unsigned head = ctx->cached_sq_head++ & mask; if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { head = READ_ONCE(ctx->sq_array[head]); if (unlikely(head >= ctx->sq_entries)) { /* drop invalid entries */ spin_lock(&ctx->completion_lock); ctx->cq_extra--; spin_unlock(&ctx->completion_lock); WRITE_ONCE(ctx->rings->sq_dropped, READ_ONCE(ctx->rings->sq_dropped) + 1); return false; } } /* * The cached sq head (or cq tail) serves two purposes: * * 1) allows us to batch the cost of updating the user visible * head updates. * 2) allows the kernel side to track the head on its own, even * though the application is the one updating it. */ /* double index for 128-byte SQEs, twice as long */ if (ctx->flags & IORING_SETUP_SQE128) head <<= 1; *sqe = &ctx->sq_sqes[head]; return true; } int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) __must_hold(&ctx->uring_lock) { unsigned int entries = io_sqring_entries(ctx); unsigned int left; int ret; if (unlikely(!entries)) return 0; /* make sure SQ entry isn't read before tail */ ret = left = min(nr, entries); io_get_task_refs(left); io_submit_state_start(&ctx->submit_state, left); do { const struct io_uring_sqe *sqe; struct io_kiocb *req; if (unlikely(!io_alloc_req(ctx, &req))) break; if (unlikely(!io_get_sqe(ctx, &sqe))) { io_req_add_to_cache(req, ctx); break; } /* * Continue submitting even for sqe failure if the * ring was setup with IORING_SETUP_SUBMIT_ALL */ if (unlikely(io_submit_sqe(ctx, req, sqe)) && !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { left--; break; } } while (--left); if (unlikely(left)) { ret -= left; /* try again if it submitted nothing and can't allocate a req */ if (!ret && io_req_cache_empty(ctx)) ret = -EAGAIN; current->io_uring->cached_refs += left; } io_submit_state_end(ctx); /* Commit SQ ring head once we've consumed and submitted all SQEs */ io_commit_sqring(ctx); return ret; } static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, int wake_flags, void *key) { struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); /* * Cannot safely flush overflowed CQEs from here, ensure we wake up * the task, and the next invocation will do it. */ if (io_should_wake(iowq) || io_has_work(iowq->ctx)) return autoremove_wake_function(curr, mode, wake_flags, key); return -1; } int io_run_task_work_sig(struct io_ring_ctx *ctx) { if (!llist_empty(&ctx->work_llist)) { __set_current_state(TASK_RUNNING); if (io_run_local_work(ctx, INT_MAX) > 0) return 0; } if (io_run_task_work() > 0) return 0; if (task_sigpending(current)) return -EINTR; return 0; } static bool current_pending_io(void) { struct io_uring_task *tctx = current->io_uring; if (!tctx) return false; return percpu_counter_read_positive(&tctx->inflight); } /* when returns >0, the caller should retry */ static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, struct io_wait_queue *iowq) { int ret; if (unlikely(READ_ONCE(ctx->check_cq))) return 1; if (unlikely(!llist_empty(&ctx->work_llist))) return 1; if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) return 1; if (unlikely(task_sigpending(current))) return -EINTR; if (unlikely(io_should_wake(iowq))) return 0; /* * Mark us as being in io_wait if we have pending requests, so cpufreq * can take into account that the task is waiting for IO - turns out * to be important for low QD IO. */ if (current_pending_io()) current->in_iowait = 1; ret = 0; if (iowq->timeout == KTIME_MAX) schedule(); else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) ret = -ETIME; current->in_iowait = 0; return ret; } /* * Wait until events become available, if we don't already have some. The * application must reap them itself, as they reside on the shared cq ring. */ static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, const sigset_t __user *sig, size_t sigsz, struct __kernel_timespec __user *uts) { struct io_wait_queue iowq; struct io_rings *rings = ctx->rings; int ret; if (!io_allowed_run_tw(ctx)) return -EEXIST; if (!llist_empty(&ctx->work_llist)) io_run_local_work(ctx, min_events); io_run_task_work(); io_cqring_overflow_flush(ctx); /* if user messes with these they will just get an early return */ if (__io_cqring_events_user(ctx) >= min_events) return 0; if (sig) { #ifdef CONFIG_COMPAT if (in_compat_syscall()) ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, sigsz); else #endif ret = set_user_sigmask(sig, sigsz); if (ret) return ret; } init_waitqueue_func_entry(&iowq.wq, io_wake_function); iowq.wq.private = current; INIT_LIST_HEAD(&iowq.wq.entry); iowq.ctx = ctx; iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; iowq.timeout = KTIME_MAX; if (uts) { struct timespec64 ts; if (get_timespec64(&ts, uts)) return -EFAULT; iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); io_napi_adjust_timeout(ctx, &iowq, &ts); } io_napi_busy_loop(ctx, &iowq); trace_io_uring_cqring_wait(ctx, min_events); do { int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); unsigned long check_cq; if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { atomic_set(&ctx->cq_wait_nr, nr_wait); set_current_state(TASK_INTERRUPTIBLE); } else { prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, TASK_INTERRUPTIBLE); } ret = io_cqring_wait_schedule(ctx, &iowq); __set_current_state(TASK_RUNNING); atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); /* * Run task_work after scheduling and before io_should_wake(). * If we got woken because of task_work being processed, run it * now rather than let the caller do another wait loop. */ io_run_task_work(); if (!llist_empty(&ctx->work_llist)) io_run_local_work(ctx, nr_wait); /* * Non-local task_work will be run on exit to userspace, but * if we're using DEFER_TASKRUN, then we could have waited * with a timeout for a number of requests. If the timeout * hits, we could have some requests ready to process. Ensure * this break is _after_ we have run task_work, to avoid * deferring running potentially pending requests until the * next time we wait for events. */ if (ret < 0) break; check_cq = READ_ONCE(ctx->check_cq); if (unlikely(check_cq)) { /* let the caller flush overflows, retry */ if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) io_cqring_do_overflow_flush(ctx); if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { ret = -EBADR; break; } } if (io_should_wake(&iowq)) { ret = 0; break; } cond_resched(); } while (1); if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) finish_wait(&ctx->cq_wait, &iowq.wq); restore_saved_sigmask_unless(ret == -EINTR); return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; } void io_mem_free(void *ptr) { if (!ptr) return; folio_put(virt_to_folio(ptr)); } static void io_pages_free(struct page ***pages, int npages) { struct page **page_array = *pages; int i; if (!page_array) return; for (i = 0; i < npages; i++) unpin_user_page(page_array[i]); kvfree(page_array); *pages = NULL; } static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, unsigned long uaddr, size_t size) { struct page **page_array; unsigned int nr_pages; void *page_addr; int ret, i; *npages = 0; if (uaddr & (PAGE_SIZE - 1) || !size) return ERR_PTR(-EINVAL); nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; if (nr_pages > USHRT_MAX) return ERR_PTR(-EINVAL); page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); if (!page_array) return ERR_PTR(-ENOMEM); ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, page_array); if (ret != nr_pages) { err: io_pages_free(&page_array, ret > 0 ? ret : 0); return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); } page_addr = page_address(page_array[0]); for (i = 0; i < nr_pages; i++) { ret = -EINVAL; /* * Can't support mapping user allocated ring memory on 32-bit * archs where it could potentially reside in highmem. Just * fail those with -EINVAL, just like we did on kernels that * didn't support this feature. */ if (PageHighMem(page_array[i])) goto err; /* * No support for discontig pages for now, should either be a * single normal page, or a huge page. Later on we can add * support for remapping discontig pages, for now we will * just fail them with EINVAL. */ if (page_address(page_array[i]) != page_addr) goto err; page_addr += PAGE_SIZE; } *pages = page_array; *npages = nr_pages; return page_to_virt(page_array[0]); } static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, size_t size) { return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, size); } static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, size_t size) { return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, size); } static void io_rings_free(struct io_ring_ctx *ctx) { if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { io_mem_free(ctx->rings); io_mem_free(ctx->sq_sqes); } else { io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); ctx->n_ring_pages = 0; io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); ctx->n_sqe_pages = 0; } ctx->rings = NULL; ctx->sq_sqes = NULL; } void *io_mem_alloc(size_t size) { gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; void *ret; ret = (void *) __get_free_pages(gfp, get_order(size)); if (ret) return ret; return ERR_PTR(-ENOMEM); } static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, unsigned int cq_entries, size_t *sq_offset) { struct io_rings *rings; size_t off, sq_array_size; off = struct_size(rings, cqes, cq_entries); if (off == SIZE_MAX) return SIZE_MAX; if (ctx->flags & IORING_SETUP_CQE32) { if (check_shl_overflow(off, 1, &off)) return SIZE_MAX; } #ifdef CONFIG_SMP off = ALIGN(off, SMP_CACHE_BYTES); if (off == 0) return SIZE_MAX; #endif if (ctx->flags & IORING_SETUP_NO_SQARRAY) { if (sq_offset) *sq_offset = SIZE_MAX; return off; } if (sq_offset) *sq_offset = off; sq_array_size = array_size(sizeof(u32), sq_entries); if (sq_array_size == SIZE_MAX) return SIZE_MAX; if (check_add_overflow(off, sq_array_size, &off)) return SIZE_MAX; return off; } static void io_req_caches_free(struct io_ring_ctx *ctx) { struct io_kiocb *req; int nr = 0; mutex_lock(&ctx->uring_lock); io_flush_cached_locked_reqs(ctx, &ctx->submit_state); while (!io_req_cache_empty(ctx)) { req = io_extract_req(ctx); kmem_cache_free(req_cachep, req); nr++; } if (nr) percpu_ref_put_many(&ctx->refs, nr); mutex_unlock(&ctx->uring_lock); } static void io_rsrc_node_cache_free(struct io_cache_entry *entry) { kfree(container_of(entry, struct io_rsrc_node, cache)); } static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) { io_sq_thread_finish(ctx); /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) return; mutex_lock(&ctx->uring_lock); if (ctx->buf_data) __io_sqe_buffers_unregister(ctx); if (ctx->file_data) __io_sqe_files_unregister(ctx); io_cqring_overflow_kill(ctx); io_eventfd_unregister(ctx); io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); io_futex_cache_free(ctx); io_destroy_buffers(ctx); mutex_unlock(&ctx->uring_lock); if (ctx->sq_creds) put_cred(ctx->sq_creds); if (ctx->submitter_task) put_task_struct(ctx->submitter_task); /* there are no registered resources left, nobody uses it */ if (ctx->rsrc_node) io_rsrc_node_destroy(ctx, ctx->rsrc_node); WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); if (ctx->mm_account) { mmdrop(ctx->mm_account); ctx->mm_account = NULL; } io_rings_free(ctx); io_kbuf_mmap_list_free(ctx); percpu_ref_exit(&ctx->refs); free_uid(ctx->user); io_req_caches_free(ctx); if (ctx->hash_map) io_wq_put_hash(ctx->hash_map); io_napi_free(ctx); kfree(ctx->cancel_table.hbs); kfree(ctx->cancel_table_locked.hbs); kfree(ctx->io_bl); xa_destroy(&ctx->io_bl_xa); kfree(ctx); } static __cold void io_activate_pollwq_cb(struct callback_head *cb) { struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, poll_wq_task_work); mutex_lock(&ctx->uring_lock); ctx->poll_activated = true; mutex_unlock(&ctx->uring_lock); /* * Wake ups for some events between start of polling and activation * might've been lost due to loose synchronisation. */ wake_up_all(&ctx->poll_wq); percpu_ref_put(&ctx->refs); } __cold void io_activate_pollwq(struct io_ring_ctx *ctx) { spin_lock(&ctx->completion_lock); /* already activated or in progress */ if (ctx->poll_activated || ctx->poll_wq_task_work.func) goto out; if (WARN_ON_ONCE(!ctx->task_complete)) goto out; if (!ctx->submitter_task) goto out; /* * with ->submitter_task only the submitter task completes requests, we * only need to sync with it, which is done by injecting a tw */ init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); percpu_ref_get(&ctx->refs); if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) percpu_ref_put(&ctx->refs); out: spin_unlock(&ctx->completion_lock); } static __poll_t io_uring_poll(struct file *file, poll_table *wait) { struct io_ring_ctx *ctx = file->private_data; __poll_t mask = 0; if (unlikely(!ctx->poll_activated)) io_activate_pollwq(ctx); poll_wait(file, &ctx->poll_wq, wait); /* * synchronizes with barrier from wq_has_sleeper call in * io_commit_cqring */ smp_rmb(); if (!io_sqring_full(ctx)) mask |= EPOLLOUT | EPOLLWRNORM; /* * Don't flush cqring overflow list here, just do a simple check. * Otherwise there could possible be ABBA deadlock: * CPU0 CPU1 * ---- ---- * lock(&ctx->uring_lock); * lock(&ep->mtx); * lock(&ctx->uring_lock); * lock(&ep->mtx); * * Users may get EPOLLIN meanwhile seeing nothing in cqring, this * pushes them to do the flush. */ if (__io_cqring_events_user(ctx) || io_has_work(ctx)) mask |= EPOLLIN | EPOLLRDNORM; return mask; } struct io_tctx_exit { struct callback_head task_work; struct completion completion; struct io_ring_ctx *ctx; }; static __cold void io_tctx_exit_cb(struct callback_head *cb) { struct io_uring_task *tctx = current->io_uring; struct io_tctx_exit *work; work = container_of(cb, struct io_tctx_exit, task_work); /* * When @in_cancel, we're in cancellation and it's racy to remove the * node. It'll be removed by the end of cancellation, just ignore it. * tctx can be NULL if the queueing of this task_work raced with * work cancelation off the exec path. */ if (tctx && !atomic_read(&tctx->in_cancel)) io_uring_del_tctx_node((unsigned long)work->ctx); complete(&work->completion); } static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) { struct io_kiocb *req = container_of(work, struct io_kiocb, work); return req->ctx == data; } static __cold void io_ring_exit_work(struct work_struct *work) { struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); unsigned long timeout = jiffies + HZ * 60 * 5; unsigned long interval = HZ / 20; struct io_tctx_exit exit; struct io_tctx_node *node; int ret; /* * If we're doing polled IO and end up having requests being * submitted async (out-of-line), then completions can come in while * we're waiting for refs to drop. We need to reap these manually, * as nobody else will be looking for them. */ do { if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { mutex_lock(&ctx->uring_lock); io_cqring_overflow_kill(ctx); mutex_unlock(&ctx->uring_lock); } if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) io_move_task_work_from_local(ctx); while (io_uring_try_cancel_requests(ctx, NULL, true)) cond_resched(); if (ctx->sq_data) { struct io_sq_data *sqd = ctx->sq_data; struct task_struct *tsk; io_sq_thread_park(sqd); tsk = sqd->thread; if (tsk && tsk->io_uring && tsk->io_uring->io_wq) io_wq_cancel_cb(tsk->io_uring->io_wq, io_cancel_ctx_cb, ctx, true); io_sq_thread_unpark(sqd); } io_req_caches_free(ctx); if (WARN_ON_ONCE(time_after(jiffies, timeout))) { /* there is little hope left, don't run it too often */ interval = HZ * 60; } /* * This is really an uninterruptible wait, as it has to be * complete. But it's also run from a kworker, which doesn't * take signals, so it's fine to make it interruptible. This * avoids scenarios where we knowingly can wait much longer * on completions, for example if someone does a SIGSTOP on * a task that needs to finish task_work to make this loop * complete. That's a synthetic situation that should not * cause a stuck task backtrace, and hence a potential panic * on stuck tasks if that is enabled. */ } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); init_completion(&exit.completion); init_task_work(&exit.task_work, io_tctx_exit_cb); exit.ctx = ctx; mutex_lock(&ctx->uring_lock); while (!list_empty(&ctx->tctx_list)) { WARN_ON_ONCE(time_after(jiffies, timeout)); node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, ctx_node); /* don't spin on a single task if cancellation failed */ list_rotate_left(&ctx->tctx_list); ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); if (WARN_ON_ONCE(ret)) continue; mutex_unlock(&ctx->uring_lock); /* * See comment above for * wait_for_completion_interruptible_timeout() on why this * wait is marked as interruptible. */ wait_for_completion_interruptible(&exit.completion); mutex_lock(&ctx->uring_lock); } mutex_unlock(&ctx->uring_lock); spin_lock(&ctx->completion_lock); spin_unlock(&ctx->completion_lock); /* pairs with RCU read section in io_req_local_work_add() */ if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) synchronize_rcu(); io_ring_ctx_free(ctx); } static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) { unsigned long index; struct creds *creds; mutex_lock(&ctx->uring_lock); percpu_ref_kill(&ctx->refs); xa_for_each(&ctx->personalities, index, creds) io_unregister_personality(ctx, index); if (ctx->rings) io_poll_remove_all(ctx, NULL, true); mutex_unlock(&ctx->uring_lock); /* * If we failed setting up the ctx, we might not have any rings * and therefore did not submit any requests */ if (ctx->rings) io_kill_timeouts(ctx, NULL, true); flush_delayed_work(&ctx->fallback_work); INIT_WORK(&ctx->exit_work, io_ring_exit_work); /* * Use system_unbound_wq to avoid spawning tons of event kworkers * if we're exiting a ton of rings at the same time. It just adds * noise and overhead, there's no discernable change in runtime * over using system_wq. */ queue_work(system_unbound_wq, &ctx->exit_work); } static int io_uring_release(struct inode *inode, struct file *file) { struct io_ring_ctx *ctx = file->private_data; file->private_data = NULL; io_ring_ctx_wait_and_kill(ctx); return 0; } struct io_task_cancel { struct task_struct *task; bool all; }; static bool io_cancel_task_cb(struct io_wq_work *work, void *data) { struct io_kiocb *req = container_of(work, struct io_kiocb, work); struct io_task_cancel *cancel = data; return io_match_task_safe(req, cancel->task, cancel->all); } static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, struct task_struct *task, bool cancel_all) { struct io_defer_entry *de; LIST_HEAD(list); spin_lock(&ctx->completion_lock); list_for_each_entry_reverse(de, &ctx->defer_list, list) { if (io_match_task_safe(de->req, task, cancel_all)) { list_cut_position(&list, &ctx->defer_list, &de->list); break; } } spin_unlock(&ctx->completion_lock); if (list_empty(&list)) return false; while (!list_empty(&list)) { de = list_first_entry(&list, struct io_defer_entry, list); list_del_init(&de->list); io_req_task_queue_fail(de->req, -ECANCELED); kfree(de); } return true; } static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) { struct io_tctx_node *node; enum io_wq_cancel cret; bool ret = false; mutex_lock(&ctx->uring_lock); list_for_each_entry(node, &ctx->tctx_list, ctx_node) { struct io_uring_task *tctx = node->task->io_uring; /* * io_wq will stay alive while we hold uring_lock, because it's * killed after ctx nodes, which requires to take the lock. */ if (!tctx || !tctx->io_wq) continue; cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); ret |= (cret != IO_WQ_CANCEL_NOTFOUND); } mutex_unlock(&ctx->uring_lock); return ret; } static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx, struct task_struct *task, bool cancel_all) { struct hlist_node *tmp; struct io_kiocb *req; bool ret = false; lockdep_assert_held(&ctx->uring_lock); hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd, hash_node) { struct io_uring_cmd *cmd = io_kiocb_to_cmd(req, struct io_uring_cmd); struct file *file = req->file; if (!cancel_all && req->task != task) continue; if (cmd->flags & IORING_URING_CMD_CANCELABLE) { /* ->sqe isn't available if no async data */ if (!req_has_async_data(req)) cmd->sqe = NULL; file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL); ret = true; } } io_submit_flush_completions(ctx); return ret; } static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, struct task_struct *task, bool cancel_all) { struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; struct io_uring_task *tctx = task ? task->io_uring : NULL; enum io_wq_cancel cret; bool ret = false; /* set it so io_req_local_work_add() would wake us up */ if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { atomic_set(&ctx->cq_wait_nr, 1); smp_mb(); } /* failed during ring init, it couldn't have issued any requests */ if (!ctx->rings) return false; if (!task) { ret |= io_uring_try_cancel_iowq(ctx); } else if (tctx && tctx->io_wq) { /* * Cancels requests of all rings, not only @ctx, but * it's fine as the task is in exit/exec. */ cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, &cancel, true); ret |= (cret != IO_WQ_CANCEL_NOTFOUND); } /* SQPOLL thread does its own polling */ if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || (ctx->sq_data && ctx->sq_data->thread == current)) { while (!wq_list_empty(&ctx->iopoll_list)) { io_iopoll_try_reap_events(ctx); ret = true; cond_resched(); } } if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && io_allowed_defer_tw_run(ctx)) ret |= io_run_local_work(ctx, INT_MAX) > 0; ret |= io_cancel_defer_files(ctx, task, cancel_all); mutex_lock(&ctx->uring_lock); ret |= io_poll_remove_all(ctx, task, cancel_all); ret |= io_waitid_remove_all(ctx, task, cancel_all); ret |= io_futex_remove_all(ctx, task, cancel_all); ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); mutex_unlock(&ctx->uring_lock); ret |= io_kill_timeouts(ctx, task, cancel_all); if (task) ret |= io_run_task_work() > 0; return ret; } static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) { if (tracked) return atomic_read(&tctx->inflight_tracked); return percpu_counter_sum(&tctx->inflight); } /* * Find any io_uring ctx that this task has registered or done IO on, and cancel * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. */ __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) { struct io_uring_task *tctx = current->io_uring; struct io_ring_ctx *ctx; struct io_tctx_node *node; unsigned long index; s64 inflight; DEFINE_WAIT(wait); WARN_ON_ONCE(sqd && sqd->thread != current); if (!current->io_uring) return; if (tctx->io_wq) io_wq_exit_start(tctx->io_wq); atomic_inc(&tctx->in_cancel); do { bool loop = false; io_uring_drop_tctx_refs(current); /* read completions before cancelations */ inflight = tctx_inflight(tctx, !cancel_all); if (!inflight) break; if (!sqd) { xa_for_each(&tctx->xa, index, node) { /* sqpoll task will cancel all its requests */ if (node->ctx->sq_data) continue; loop |= io_uring_try_cancel_requests(node->ctx, current, cancel_all); } } else { list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) loop |= io_uring_try_cancel_requests(ctx, current, cancel_all); } if (loop) { cond_resched(); continue; } prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); io_run_task_work(); io_uring_drop_tctx_refs(current); xa_for_each(&tctx->xa, index, node) { if (!llist_empty(&node->ctx->work_llist)) { WARN_ON_ONCE(node->ctx->submitter_task && node->ctx->submitter_task != current); goto end_wait; } } /* * If we've seen completions, retry without waiting. This * avoids a race where a completion comes in before we did * prepare_to_wait(). */ if (inflight == tctx_inflight(tctx, !cancel_all)) schedule(); end_wait: finish_wait(&tctx->wait, &wait); } while (1); io_uring_clean_tctx(tctx); if (cancel_all) { /* * We shouldn't run task_works after cancel, so just leave * ->in_cancel set for normal exit. */ atomic_dec(&tctx->in_cancel); /* for exec all current's requests should be gone, kill tctx */ __io_uring_free(current); } } void __io_uring_cancel(bool cancel_all) { io_uring_cancel_generic(cancel_all, NULL); } static void *io_uring_validate_mmap_request(struct file *file, loff_t pgoff, size_t sz) { struct io_ring_ctx *ctx = file->private_data; loff_t offset = pgoff << PAGE_SHIFT; struct page *page; void *ptr; switch (offset & IORING_OFF_MMAP_MASK) { case IORING_OFF_SQ_RING: case IORING_OFF_CQ_RING: /* Don't allow mmap if the ring was setup without it */ if (ctx->flags & IORING_SETUP_NO_MMAP) return ERR_PTR(-EINVAL); ptr = ctx->rings; break; case IORING_OFF_SQES: /* Don't allow mmap if the ring was setup without it */ if (ctx->flags & IORING_SETUP_NO_MMAP) return ERR_PTR(-EINVAL); ptr = ctx->sq_sqes; break; case IORING_OFF_PBUF_RING: { unsigned int bgid; bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; rcu_read_lock(); ptr = io_pbuf_get_address(ctx, bgid); rcu_read_unlock(); if (!ptr) return ERR_PTR(-EINVAL); break; } default: return ERR_PTR(-EINVAL); } page = virt_to_head_page(ptr); if (sz > page_size(page)) return ERR_PTR(-EINVAL); return ptr; } #ifdef CONFIG_MMU static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) { size_t sz = vma->vm_end - vma->vm_start; unsigned long pfn; void *ptr; ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); if (IS_ERR(ptr)) return PTR_ERR(ptr); pfn = virt_to_phys(ptr) >> PAGE_SHIFT; return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); } static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { void *ptr; /* * Do not allow to map to user-provided address to avoid breaking the * aliasing rules. Userspace is not able to guess the offset address of * kernel kmalloc()ed memory area. */ if (addr) return -EINVAL; ptr = io_uring_validate_mmap_request(filp, pgoff, len); if (IS_ERR(ptr)) return -ENOMEM; /* * Some architectures have strong cache aliasing requirements. * For such architectures we need a coherent mapping which aliases * kernel memory *and* userspace memory. To achieve that: * - use a NULL file pointer to reference physical memory, and * - use the kernel virtual address of the shared io_uring context * (instead of the userspace-provided address, which has to be 0UL * anyway). * - use the same pgoff which the get_unmapped_area() uses to * calculate the page colouring. * For architectures without such aliasing requirements, the * architecture will return any suitable mapping because addr is 0. */ filp = NULL; flags |= MAP_SHARED; pgoff = 0; /* has been translated to ptr above */ #ifdef SHM_COLOUR addr = (uintptr_t) ptr; pgoff = addr >> PAGE_SHIFT; #else addr = 0UL; #endif return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); } #else /* !CONFIG_MMU */ static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) { return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; } static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) { return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; } static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { void *ptr; ptr = io_uring_validate_mmap_request(file, pgoff, len); if (IS_ERR(ptr)) return PTR_ERR(ptr); return (unsigned long) ptr; } #endif /* !CONFIG_MMU */ static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) { if (flags & IORING_ENTER_EXT_ARG) { struct io_uring_getevents_arg arg; if (argsz != sizeof(arg)) return -EINVAL; if (copy_from_user(&arg, argp, sizeof(arg))) return -EFAULT; } return 0; } static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, struct __kernel_timespec __user **ts, const sigset_t __user **sig) { struct io_uring_getevents_arg arg; /* * If EXT_ARG isn't set, then we have no timespec and the argp pointer * is just a pointer to the sigset_t. */ if (!(flags & IORING_ENTER_EXT_ARG)) { *sig = (const sigset_t __user *) argp; *ts = NULL; return 0; } /* * EXT_ARG is set - ensure we agree on the size of it and copy in our * timespec and sigset_t pointers if good. */ if (*argsz != sizeof(arg)) return -EINVAL; if (copy_from_user(&arg, argp, sizeof(arg))) return -EFAULT; if (arg.pad) return -EINVAL; *sig = u64_to_user_ptr(arg.sigmask); *argsz = arg.sigmask_sz; *ts = u64_to_user_ptr(arg.ts); return 0; } SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, u32, min_complete, u32, flags, const void __user *, argp, size_t, argsz) { struct io_ring_ctx *ctx; struct file *file; long ret; if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | IORING_ENTER_REGISTERED_RING))) return -EINVAL; /* * Ring fd has been registered via IORING_REGISTER_RING_FDS, we * need only dereference our task private array to find it. */ if (flags & IORING_ENTER_REGISTERED_RING) { struct io_uring_task *tctx = current->io_uring; if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) return -EINVAL; fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); file = tctx->registered_rings[fd]; if (unlikely(!file)) return -EBADF; } else { file = fget(fd); if (unlikely(!file)) return -EBADF; ret = -EOPNOTSUPP; if (unlikely(!io_is_uring_fops(file))) goto out; } ctx = file->private_data; ret = -EBADFD; if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) goto out; /* * For SQ polling, the thread will do all submissions and completions. * Just return the requested submit count, and wake the thread if * we were asked to. */ ret = 0; if (ctx->flags & IORING_SETUP_SQPOLL) { io_cqring_overflow_flush(ctx); if (unlikely(ctx->sq_data->thread == NULL)) { ret = -EOWNERDEAD; goto out; } if (flags & IORING_ENTER_SQ_WAKEUP) wake_up(&ctx->sq_data->wait); if (flags & IORING_ENTER_SQ_WAIT) io_sqpoll_wait_sq(ctx); ret = to_submit; } else if (to_submit) { ret = io_uring_add_tctx_node(ctx); if (unlikely(ret)) goto out; mutex_lock(&ctx->uring_lock); ret = io_submit_sqes(ctx, to_submit); if (ret != to_submit) { mutex_unlock(&ctx->uring_lock); goto out; } if (flags & IORING_ENTER_GETEVENTS) { if (ctx->syscall_iopoll) goto iopoll_locked; /* * Ignore errors, we'll soon call io_cqring_wait() and * it should handle ownership problems if any. */ if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) (void)io_run_local_work_locked(ctx, min_complete); } mutex_unlock(&ctx->uring_lock); } if (flags & IORING_ENTER_GETEVENTS) { int ret2; if (ctx->syscall_iopoll) { /* * We disallow the app entering submit/complete with * polling, but we still need to lock the ring to * prevent racing with polled issue that got punted to * a workqueue. */ mutex_lock(&ctx->uring_lock); iopoll_locked: ret2 = io_validate_ext_arg(flags, argp, argsz); if (likely(!ret2)) { min_complete = min(min_complete, ctx->cq_entries); ret2 = io_iopoll_check(ctx, min_complete); } mutex_unlock(&ctx->uring_lock); } else { const sigset_t __user *sig; struct __kernel_timespec __user *ts; ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); if (likely(!ret2)) { min_complete = min(min_complete, ctx->cq_entries); ret2 = io_cqring_wait(ctx, min_complete, sig, argsz, ts); } } if (!ret) { ret = ret2; /* * EBADR indicates that one or more CQE were dropped. * Once the user has been informed we can clear the bit * as they are obviously ok with those drops. */ if (unlikely(ret2 == -EBADR)) clear_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); } } out: if (!(flags & IORING_ENTER_REGISTERED_RING)) fput(file); return ret; } static const struct file_operations io_uring_fops = { .release = io_uring_release, .mmap = io_uring_mmap, #ifndef CONFIG_MMU .get_unmapped_area = io_uring_nommu_get_unmapped_area, .mmap_capabilities = io_uring_nommu_mmap_capabilities, #else .get_unmapped_area = io_uring_mmu_get_unmapped_area, #endif .poll = io_uring_poll, #ifdef CONFIG_PROC_FS .show_fdinfo = io_uring_show_fdinfo, #endif }; bool io_is_uring_fops(struct file *file) { return file->f_op == &io_uring_fops; } static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, struct io_uring_params *p) { struct io_rings *rings; size_t size, sq_array_offset; void *ptr; /* make sure these are sane, as we already accounted them */ ctx->sq_entries = p->sq_entries; ctx->cq_entries = p->cq_entries; size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); if (size == SIZE_MAX) return -EOVERFLOW; if (!(ctx->flags & IORING_SETUP_NO_MMAP)) rings = io_mem_alloc(size); else rings = io_rings_map(ctx, p->cq_off.user_addr, size); if (IS_ERR(rings)) return PTR_ERR(rings); ctx->rings = rings; if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); rings->sq_ring_mask = p->sq_entries - 1; rings->cq_ring_mask = p->cq_entries - 1; rings->sq_ring_entries = p->sq_entries; rings->cq_ring_entries = p->cq_entries; if (p->flags & IORING_SETUP_SQE128) size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); else size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); if (size == SIZE_MAX) { io_rings_free(ctx); return -EOVERFLOW; } if (!(ctx->flags & IORING_SETUP_NO_MMAP)) ptr = io_mem_alloc(size); else ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); if (IS_ERR(ptr)) { io_rings_free(ctx); return PTR_ERR(ptr); } ctx->sq_sqes = ptr; return 0; } static int io_uring_install_fd(struct file *file) { int fd; fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); if (fd < 0) return fd; fd_install(fd, file); return fd; } /* * Allocate an anonymous fd, this is what constitutes the application * visible backing of an io_uring instance. The application mmaps this * fd to gain access to the SQ/CQ ring details. */ static struct file *io_uring_get_file(struct io_ring_ctx *ctx) { /* Create a new inode so that the LSM can block the creation. */ return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, O_RDWR | O_CLOEXEC, NULL); } static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, struct io_uring_params __user *params) { struct io_ring_ctx *ctx; struct io_uring_task *tctx; struct file *file; int ret; if (!entries) return -EINVAL; if (entries > IORING_MAX_ENTRIES) { if (!(p->flags & IORING_SETUP_CLAMP)) return -EINVAL; entries = IORING_MAX_ENTRIES; } if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) && !(p->flags & IORING_SETUP_NO_MMAP)) return -EINVAL; /* * Use twice as many entries for the CQ ring. It's possible for the * application to drive a higher depth than the size of the SQ ring, * since the sqes are only used at submission time. This allows for * some flexibility in overcommitting a bit. If the application has * set IORING_SETUP_CQSIZE, it will have passed in the desired number * of CQ ring entries manually. */ p->sq_entries = roundup_pow_of_two(entries); if (p->flags & IORING_SETUP_CQSIZE) { /* * If IORING_SETUP_CQSIZE is set, we do the same roundup * to a power-of-two, if it isn't already. We do NOT impose * any cq vs sq ring sizing. */ if (!p->cq_entries) return -EINVAL; if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { if (!(p->flags & IORING_SETUP_CLAMP)) return -EINVAL; p->cq_entries = IORING_MAX_CQ_ENTRIES; } p->cq_entries = roundup_pow_of_two(p->cq_entries); if (p->cq_entries < p->sq_entries) return -EINVAL; } else { p->cq_entries = 2 * p->sq_entries; } ctx = io_ring_ctx_alloc(p); if (!ctx) return -ENOMEM; if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && !(ctx->flags & IORING_SETUP_IOPOLL) && !(ctx->flags & IORING_SETUP_SQPOLL)) ctx->task_complete = true; if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) ctx->lockless_cq = true; /* * lazy poll_wq activation relies on ->task_complete for synchronisation * purposes, see io_activate_pollwq() */ if (!ctx->task_complete) ctx->poll_activated = true; /* * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user * space applications don't need to do io completion events * polling again, they can rely on io_sq_thread to do polling * work, which can reduce cpu usage and uring_lock contention. */ if (ctx->flags & IORING_SETUP_IOPOLL && !(ctx->flags & IORING_SETUP_SQPOLL)) ctx->syscall_iopoll = 1; ctx->compat = in_compat_syscall(); if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) ctx->user = get_uid(current_user()); /* * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if * COOP_TASKRUN is set, then IPIs are never needed by the app. */ ret = -EINVAL; if (ctx->flags & IORING_SETUP_SQPOLL) { /* IPI related flags don't make sense with SQPOLL */ if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | IORING_SETUP_DEFER_TASKRUN)) goto err; ctx->notify_method = TWA_SIGNAL_NO_IPI; } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { ctx->notify_method = TWA_SIGNAL_NO_IPI; } else { if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) goto err; ctx->notify_method = TWA_SIGNAL; } /* * For DEFER_TASKRUN we require the completion task to be the same as the * submission task. This implies that there is only one submitter, so enforce * that. */ if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { goto err; } /* * This is just grabbed for accounting purposes. When a process exits, * the mm is exited and dropped before the files, hence we need to hang * on to this mm purely for the purposes of being able to unaccount * memory (locked/pinned vm). It's not used for anything else. */ mmgrab(current->mm); ctx->mm_account = current->mm; ret = io_allocate_scq_urings(ctx, p); if (ret) goto err; ret = io_sq_offload_create(ctx, p); if (ret) goto err; ret = io_rsrc_init(ctx); if (ret) goto err; p->sq_off.head = offsetof(struct io_rings, sq.head); p->sq_off.tail = offsetof(struct io_rings, sq.tail); p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); p->sq_off.flags = offsetof(struct io_rings, sq_flags); p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; p->sq_off.resv1 = 0; if (!(ctx->flags & IORING_SETUP_NO_MMAP)) p->sq_off.user_addr = 0; p->cq_off.head = offsetof(struct io_rings, cq.head); p->cq_off.tail = offsetof(struct io_rings, cq.tail); p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); p->cq_off.cqes = offsetof(struct io_rings, cqes); p->cq_off.flags = offsetof(struct io_rings, cq_flags); p->cq_off.resv1 = 0; if (!(ctx->flags & IORING_SETUP_NO_MMAP)) p->cq_off.user_addr = 0; p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; if (copy_to_user(params, p, sizeof(*p))) { ret = -EFAULT; goto err; } if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !(ctx->flags & IORING_SETUP_R_DISABLED)) WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); file = io_uring_get_file(ctx); if (IS_ERR(file)) { ret = PTR_ERR(file); goto err; } ret = __io_uring_add_tctx_node(ctx); if (ret) goto err_fput; tctx = current->io_uring; /* * Install ring fd as the very last thing, so we don't risk someone * having closed it before we finish setup */ if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); else ret = io_uring_install_fd(file); if (ret < 0) goto err_fput; trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); return ret; err: io_ring_ctx_wait_and_kill(ctx); return ret; err_fput: fput(file); return ret; } /* * Sets up an aio uring context, and returns the fd. Applications asks for a * ring size, we return the actual sq/cq ring sizes (among other things) in the * params structure passed in. */ static long io_uring_setup(u32 entries, struct io_uring_params __user *params) { struct io_uring_params p; int i; if (copy_from_user(&p, params, sizeof(p))) return -EFAULT; for (i = 0; i < ARRAY_SIZE(p.resv); i++) { if (p.resv[i]) return -EINVAL; } if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | IORING_SETUP_NO_SQARRAY)) return -EINVAL; return io_uring_create(entries, &p, params); } static inline bool io_uring_allowed(void) { int disabled = READ_ONCE(sysctl_io_uring_disabled); kgid_t io_uring_group; if (disabled == 2) return false; if (disabled == 0 || capable(CAP_SYS_ADMIN)) return true; io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); if (!gid_valid(io_uring_group)) return false; return in_group_p(io_uring_group); } SYSCALL_DEFINE2(io_uring_setup, u32, entries, struct io_uring_params __user *, params) { if (!io_uring_allowed()) return -EPERM; return io_uring_setup(entries, params); } static int __init io_uring_init(void) { #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ } while (0) #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); BUILD_BUG_SQE_ELEM(0, __u8, opcode); BUILD_BUG_SQE_ELEM(1, __u8, flags); BUILD_BUG_SQE_ELEM(2, __u16, ioprio); BUILD_BUG_SQE_ELEM(4, __s32, fd); BUILD_BUG_SQE_ELEM(8, __u64, off); BUILD_BUG_SQE_ELEM(8, __u64, addr2); BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); BUILD_BUG_SQE_ELEM(12, __u32, __pad1); BUILD_BUG_SQE_ELEM(16, __u64, addr); BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); BUILD_BUG_SQE_ELEM(24, __u32, len); BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); BUILD_BUG_SQE_ELEM(28, __u32, open_flags); BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); BUILD_BUG_SQE_ELEM(32, __u64, user_data); BUILD_BUG_SQE_ELEM(40, __u16, buf_index); BUILD_BUG_SQE_ELEM(40, __u16, buf_group); BUILD_BUG_SQE_ELEM(42, __u16, personality); BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); BUILD_BUG_SQE_ELEM(44, __u32, file_index); BUILD_BUG_SQE_ELEM(44, __u16, addr_len); BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); BUILD_BUG_SQE_ELEM(48, __u64, addr3); BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); BUILD_BUG_SQE_ELEM(56, __u64, __pad2); BUILD_BUG_ON(sizeof(struct io_uring_files_update) != sizeof(struct io_uring_rsrc_update)); BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > sizeof(struct io_uring_rsrc_update2)); /* ->buf_index is u16 */ BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != offsetof(struct io_uring_buf_ring, tail)); /* should fit into one byte */ BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); /* top 8bits are for internal use */ BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); io_uring_optable_init(); /* * Allow user copy in the per-command field, which starts after the * file in io_kiocb and until the opcode field. The openat2 handling * requires copying in user memory into the io_kiocb object in that * range, and HARDENED_USERCOPY will complain if we haven't * correctly annotated this range. */ req_cachep = kmem_cache_create_usercopy("io_kiocb", sizeof(struct io_kiocb), 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, offsetof(struct io_kiocb, cmd.data), sizeof_field(struct io_kiocb, cmd.data), NULL); io_buf_cachep = KMEM_CACHE(io_buffer, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); #ifdef CONFIG_SYSCTL register_sysctl_init("kernel", kernel_io_uring_disabled_table); #endif return 0; }; __initcall(io_uring_init);