/* * Basic general purpose allocator for managing special purpose * memory, for example, memory that is not managed by the regular * kmalloc/kfree interface. Uses for this includes on-device special * memory, uncached memory etc. * * It is safe to use the allocator in NMI handlers and other special * unblockable contexts that could otherwise deadlock on locks. This * is implemented by using atomic operations and retries on any * conflicts. The disadvantage is that there may be livelocks in * extreme cases. For better scalability, one allocator can be used * for each CPU. * * The lockless operation only works if there is enough memory * available. If new memory is added to the pool a lock has to be * still taken. So any user relying on locklessness has to ensure * that sufficient memory is preallocated. * * The basic atomic operation of this allocator is cmpxchg on long. * On architectures that don't have NMI-safe cmpxchg implementation, * the allocator can NOT be used in NMI handler. So code uses the * allocator in NMI handler should depend on * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. * * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org> * * This source code is licensed under the GNU General Public License, * Version 2. See the file COPYING for more details. */ #include <linux/slab.h> #include <linux/export.h> #include <linux/bitmap.h> #include <linux/rculist.h> #include <linux/interrupt.h> #include <linux/genalloc.h> #include <linux/of_address.h> #include <linux/of_device.h> static inline size_t chunk_size(const struct gen_pool_chunk *chunk) { return chunk->end_addr - chunk->start_addr + 1; } static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set) { unsigned long val, nval; nval = *addr; do { val = nval; if (val & mask_to_set) return -EBUSY; cpu_relax(); } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val); return 0; } static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear) { unsigned long val, nval; nval = *addr; do { val = nval; if ((val & mask_to_clear) != mask_to_clear) return -EBUSY; cpu_relax(); } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val); return 0; } /* * bitmap_set_ll - set the specified number of bits at the specified position * @map: pointer to a bitmap * @start: a bit position in @map * @nr: number of bits to set * * Set @nr bits start from @start in @map lock-lessly. Several users * can set/clear the same bitmap simultaneously without lock. If two * users set the same bit, one user will return remain bits, otherwise * return 0. */ static int bitmap_set_ll(unsigned long *map, int start, int nr) { unsigned long *p = map + BIT_WORD(start); const int size = start + nr; int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); while (nr - bits_to_set >= 0) { if (set_bits_ll(p, mask_to_set)) return nr; nr -= bits_to_set; bits_to_set = BITS_PER_LONG; mask_to_set = ~0UL; p++; } if (nr) { mask_to_set &= BITMAP_LAST_WORD_MASK(size); if (set_bits_ll(p, mask_to_set)) return nr; } return 0; } /* * bitmap_clear_ll - clear the specified number of bits at the specified position * @map: pointer to a bitmap * @start: a bit position in @map * @nr: number of bits to set * * Clear @nr bits start from @start in @map lock-lessly. Several users * can set/clear the same bitmap simultaneously without lock. If two * users clear the same bit, one user will return remain bits, * otherwise return 0. */ static int bitmap_clear_ll(unsigned long *map, int start, int nr) { unsigned long *p = map + BIT_WORD(start); const int size = start + nr; int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); while (nr - bits_to_clear >= 0) { if (clear_bits_ll(p, mask_to_clear)) return nr; nr -= bits_to_clear; bits_to_clear = BITS_PER_LONG; mask_to_clear = ~0UL; p++; } if (nr) { mask_to_clear &= BITMAP_LAST_WORD_MASK(size); if (clear_bits_ll(p, mask_to_clear)) return nr; } return 0; } /** * gen_pool_create - create a new special memory pool * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents * @nid: node id of the node the pool structure should be allocated on, or -1 * * Create a new special memory pool that can be used to manage special purpose * memory not managed by the regular kmalloc/kfree interface. */ struct gen_pool *gen_pool_create(int min_alloc_order, int nid) { struct gen_pool *pool; pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); if (pool != NULL) { spin_lock_init(&pool->lock); INIT_LIST_HEAD(&pool->chunks); pool->min_alloc_order = min_alloc_order; pool->algo = gen_pool_first_fit; pool->data = NULL; } return pool; } EXPORT_SYMBOL(gen_pool_create); /** * gen_pool_add_virt - add a new chunk of special memory to the pool * @pool: pool to add new memory chunk to * @virt: virtual starting address of memory chunk to add to pool * @phys: physical starting address of memory chunk to add to pool * @size: size in bytes of the memory chunk to add to pool * @nid: node id of the node the chunk structure and bitmap should be * allocated on, or -1 * * Add a new chunk of special memory to the specified pool. * * Returns 0 on success or a -ve errno on failure. */ int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys, size_t size, int nid) { struct gen_pool_chunk *chunk; int nbits = size >> pool->min_alloc_order; int nbytes = sizeof(struct gen_pool_chunk) + BITS_TO_LONGS(nbits) * sizeof(long); chunk = kzalloc_node(nbytes, GFP_KERNEL, nid); if (unlikely(chunk == NULL)) return -ENOMEM; chunk->phys_addr = phys; chunk->start_addr = virt; chunk->end_addr = virt + size - 1; atomic_set(&chunk->avail, size); spin_lock(&pool->lock); list_add_rcu(&chunk->next_chunk, &pool->chunks); spin_unlock(&pool->lock); return 0; } EXPORT_SYMBOL(gen_pool_add_virt); /** * gen_pool_virt_to_phys - return the physical address of memory * @pool: pool to allocate from * @addr: starting address of memory * * Returns the physical address on success, or -1 on error. */ phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) { struct gen_pool_chunk *chunk; phys_addr_t paddr = -1; rcu_read_lock(); list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { if (addr >= chunk->start_addr && addr <= chunk->end_addr) { paddr = chunk->phys_addr + (addr - chunk->start_addr); break; } } rcu_read_unlock(); return paddr; } EXPORT_SYMBOL(gen_pool_virt_to_phys); /** * gen_pool_destroy - destroy a special memory pool * @pool: pool to destroy * * Destroy the specified special memory pool. Verifies that there are no * outstanding allocations. */ void gen_pool_destroy(struct gen_pool *pool) { struct list_head *_chunk, *_next_chunk; struct gen_pool_chunk *chunk; int order = pool->min_alloc_order; int bit, end_bit; list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); list_del(&chunk->next_chunk); end_bit = chunk_size(chunk) >> order; bit = find_next_bit(chunk->bits, end_bit, 0); BUG_ON(bit < end_bit); kfree(chunk); } kfree(pool); return; } EXPORT_SYMBOL(gen_pool_destroy); /** * gen_pool_alloc - allocate special memory from the pool * @pool: pool to allocate from * @size: number of bytes to allocate from the pool * * Allocate the requested number of bytes from the specified pool. * Uses the pool allocation function (with first-fit algorithm by default). * Can not be used in NMI handler on architectures without * NMI-safe cmpxchg implementation. */ unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size) { struct gen_pool_chunk *chunk; unsigned long addr = 0; int order = pool->min_alloc_order; int nbits, start_bit = 0, end_bit, remain; #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG BUG_ON(in_nmi()); #endif if (size == 0) return 0; nbits = (size + (1UL << order) - 1) >> order; rcu_read_lock(); list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { if (size > atomic_read(&chunk->avail)) continue; end_bit = chunk_size(chunk) >> order; retry: start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits, pool->data); if (start_bit >= end_bit) continue; remain = bitmap_set_ll(chunk->bits, start_bit, nbits); if (remain) { remain = bitmap_clear_ll(chunk->bits, start_bit, nbits - remain); BUG_ON(remain); goto retry; } addr = chunk->start_addr + ((unsigned long)start_bit << order); size = nbits << order; atomic_sub(size, &chunk->avail); break; } rcu_read_unlock(); return addr; } EXPORT_SYMBOL(gen_pool_alloc); /** * gen_pool_free - free allocated special memory back to the pool * @pool: pool to free to * @addr: starting address of memory to free back to pool * @size: size in bytes of memory to free * * Free previously allocated special memory back to the specified * pool. Can not be used in NMI handler on architectures without * NMI-safe cmpxchg implementation. */ void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size) { struct gen_pool_chunk *chunk; int order = pool->min_alloc_order; int start_bit, nbits, remain; #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG BUG_ON(in_nmi()); #endif nbits = (size + (1UL << order) - 1) >> order; rcu_read_lock(); list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { if (addr >= chunk->start_addr && addr <= chunk->end_addr) { BUG_ON(addr + size - 1 > chunk->end_addr); start_bit = (addr - chunk->start_addr) >> order; remain = bitmap_clear_ll(chunk->bits, start_bit, nbits); BUG_ON(remain); size = nbits << order; atomic_add(size, &chunk->avail); rcu_read_unlock(); return; } } rcu_read_unlock(); BUG(); } EXPORT_SYMBOL(gen_pool_free); /** * gen_pool_for_each_chunk - call func for every chunk of generic memory pool * @pool: the generic memory pool * @func: func to call * @data: additional data used by @func * * Call @func for every chunk of generic memory pool. The @func is * called with rcu_read_lock held. */ void gen_pool_for_each_chunk(struct gen_pool *pool, void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data), void *data) { struct gen_pool_chunk *chunk; rcu_read_lock(); list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) func(pool, chunk, data); rcu_read_unlock(); } EXPORT_SYMBOL(gen_pool_for_each_chunk); /** * gen_pool_avail - get available free space of the pool * @pool: pool to get available free space * * Return available free space of the specified pool. */ size_t gen_pool_avail(struct gen_pool *pool) { struct gen_pool_chunk *chunk; size_t avail = 0; rcu_read_lock(); list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) avail += atomic_read(&chunk->avail); rcu_read_unlock(); return avail; } EXPORT_SYMBOL_GPL(gen_pool_avail); /** * gen_pool_size - get size in bytes of memory managed by the pool * @pool: pool to get size * * Return size in bytes of memory managed by the pool. */ size_t gen_pool_size(struct gen_pool *pool) { struct gen_pool_chunk *chunk; size_t size = 0; rcu_read_lock(); list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) size += chunk_size(chunk); rcu_read_unlock(); return size; } EXPORT_SYMBOL_GPL(gen_pool_size); /** * gen_pool_set_algo - set the allocation algorithm * @pool: pool to change allocation algorithm * @algo: custom algorithm function * @data: additional data used by @algo * * Call @algo for each memory allocation in the pool. * If @algo is NULL use gen_pool_first_fit as default * memory allocation function. */ void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data) { rcu_read_lock(); pool->algo = algo; if (!pool->algo) pool->algo = gen_pool_first_fit; pool->data = data; rcu_read_unlock(); } EXPORT_SYMBOL(gen_pool_set_algo); /** * gen_pool_first_fit - find the first available region * of memory matching the size requirement (no alignment constraint) * @map: The address to base the search on * @size: The bitmap size in bits * @start: The bitnumber to start searching at * @nr: The number of zeroed bits we're looking for * @data: additional data - unused */ unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, void *data) { return bitmap_find_next_zero_area(map, size, start, nr, 0); } EXPORT_SYMBOL(gen_pool_first_fit); /** * gen_pool_best_fit - find the best fitting region of memory * macthing the size requirement (no alignment constraint) * @map: The address to base the search on * @size: The bitmap size in bits * @start: The bitnumber to start searching at * @nr: The number of zeroed bits we're looking for * @data: additional data - unused * * Iterate over the bitmap to find the smallest free region * which we can allocate the memory. */ unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, void *data) { unsigned long start_bit = size; unsigned long len = size + 1; unsigned long index; index = bitmap_find_next_zero_area(map, size, start, nr, 0); while (index < size) { int next_bit = find_next_bit(map, size, index + nr); if ((next_bit - index) < len) { len = next_bit - index; start_bit = index; if (len == nr) return start_bit; } index = bitmap_find_next_zero_area(map, size, next_bit + 1, nr, 0); } return start_bit; } EXPORT_SYMBOL(gen_pool_best_fit); static void devm_gen_pool_release(struct device *dev, void *res) { gen_pool_destroy(*(struct gen_pool **)res); } /** * devm_gen_pool_create - managed gen_pool_create * @dev: device that provides the gen_pool * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents * @nid: node id of the node the pool structure should be allocated on, or -1 * * Create a new special memory pool that can be used to manage special purpose * memory not managed by the regular kmalloc/kfree interface. The pool will be * automatically destroyed by the device management code. */ struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order, int nid) { struct gen_pool **ptr, *pool; ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL); pool = gen_pool_create(min_alloc_order, nid); if (pool) { *ptr = pool; devres_add(dev, ptr); } else { devres_free(ptr); } return pool; } /** * dev_get_gen_pool - Obtain the gen_pool (if any) for a device * @dev: device to retrieve the gen_pool from * * Returns the gen_pool for the device if one is present, or NULL. */ struct gen_pool *dev_get_gen_pool(struct device *dev) { struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL, NULL); if (!p) return NULL; return *p; } EXPORT_SYMBOL_GPL(dev_get_gen_pool); #ifdef CONFIG_OF /** * of_get_named_gen_pool - find a pool by phandle property * @np: device node * @propname: property name containing phandle(s) * @index: index into the phandle array * * Returns the pool that contains the chunk starting at the physical * address of the device tree node pointed at by the phandle property, * or NULL if not found. */ struct gen_pool *of_get_named_gen_pool(struct device_node *np, const char *propname, int index) { struct platform_device *pdev; struct device_node *np_pool; np_pool = of_parse_phandle(np, propname, index); if (!np_pool) return NULL; pdev = of_find_device_by_node(np_pool); if (!pdev) return NULL; return dev_get_gen_pool(&pdev->dev); } EXPORT_SYMBOL_GPL(of_get_named_gen_pool); #endif /* CONFIG_OF */