// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Test cases for arithmetic overflow checks. See: * "Running tests with kunit_tool" at Documentation/dev-tools/kunit/start.rst * ./tools/testing/kunit/kunit.py run overflow [--raw_output] */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #define SKIP(cond, reason) do { \ if (cond) { \ kunit_skip(test, reason); \ return; \ } \ } while (0) /* * Clang 11 and earlier generate unwanted libcalls for signed output * on unsigned input. */ #if defined(CONFIG_CC_IS_CLANG) && __clang_major__ <= 11 # define SKIP_SIGN_MISMATCH(t) SKIP(t, "Clang 11 unwanted libcalls") #else # define SKIP_SIGN_MISMATCH(t) do { } while (0) #endif /* * Clang 13 and earlier generate unwanted libcalls for 64-bit tests on * 32-bit hosts. */ #if defined(CONFIG_CC_IS_CLANG) && __clang_major__ <= 13 && \ BITS_PER_LONG != 64 # define SKIP_64_ON_32(t) SKIP(t, "Clang 13 unwanted libcalls") #else # define SKIP_64_ON_32(t) do { } while (0) #endif #define DEFINE_TEST_ARRAY_TYPED(t1, t2, t) \ static const struct test_ ## t1 ## _ ## t2 ## __ ## t { \ t1 a; \ t2 b; \ t sum, diff, prod; \ bool s_of, d_of, p_of; \ } t1 ## _ ## t2 ## __ ## t ## _tests[] #define DEFINE_TEST_ARRAY(t) DEFINE_TEST_ARRAY_TYPED(t, t, t) DEFINE_TEST_ARRAY(u8) = { {0, 0, 0, 0, 0, false, false, false}, {1, 1, 2, 0, 1, false, false, false}, {0, 1, 1, U8_MAX, 0, false, true, false}, {1, 0, 1, 1, 0, false, false, false}, {0, U8_MAX, U8_MAX, 1, 0, false, true, false}, {U8_MAX, 0, U8_MAX, U8_MAX, 0, false, false, false}, {1, U8_MAX, 0, 2, U8_MAX, true, true, false}, {U8_MAX, 1, 0, U8_MAX-1, U8_MAX, true, false, false}, {U8_MAX, U8_MAX, U8_MAX-1, 0, 1, true, false, true}, {U8_MAX, U8_MAX-1, U8_MAX-2, 1, 2, true, false, true}, {U8_MAX-1, U8_MAX, U8_MAX-2, U8_MAX, 2, true, true, true}, {1U << 3, 1U << 3, 1U << 4, 0, 1U << 6, false, false, false}, {1U << 4, 1U << 4, 1U << 5, 0, 0, false, false, true}, {1U << 4, 1U << 3, 3*(1U << 3), 1U << 3, 1U << 7, false, false, false}, {1U << 7, 1U << 7, 0, 0, 0, true, false, true}, {48, 32, 80, 16, 0, false, false, true}, {128, 128, 0, 0, 0, true, false, true}, {123, 234, 101, 145, 110, true, true, true}, }; DEFINE_TEST_ARRAY(u16) = { {0, 0, 0, 0, 0, false, false, false}, {1, 1, 2, 0, 1, false, false, false}, {0, 1, 1, U16_MAX, 0, false, true, false}, {1, 0, 1, 1, 0, false, false, false}, {0, U16_MAX, U16_MAX, 1, 0, false, true, false}, {U16_MAX, 0, U16_MAX, U16_MAX, 0, false, false, false}, {1, U16_MAX, 0, 2, U16_MAX, true, true, false}, {U16_MAX, 1, 0, U16_MAX-1, U16_MAX, true, false, false}, {U16_MAX, U16_MAX, U16_MAX-1, 0, 1, true, false, true}, {U16_MAX, U16_MAX-1, U16_MAX-2, 1, 2, true, false, true}, {U16_MAX-1, U16_MAX, U16_MAX-2, U16_MAX, 2, true, true, true}, {1U << 7, 1U << 7, 1U << 8, 0, 1U << 14, false, false, false}, {1U << 8, 1U << 8, 1U << 9, 0, 0, false, false, true}, {1U << 8, 1U << 7, 3*(1U << 7), 1U << 7, 1U << 15, false, false, false}, {1U << 15, 1U << 15, 0, 0, 0, true, false, true}, {123, 234, 357, 65425, 28782, false, true, false}, {1234, 2345, 3579, 64425, 10146, false, true, true}, }; DEFINE_TEST_ARRAY(u32) = { {0, 0, 0, 0, 0, false, false, false}, {1, 1, 2, 0, 1, false, false, false}, {0, 1, 1, U32_MAX, 0, false, true, false}, {1, 0, 1, 1, 0, false, false, false}, {0, U32_MAX, U32_MAX, 1, 0, false, true, false}, {U32_MAX, 0, U32_MAX, U32_MAX, 0, false, false, false}, {1, U32_MAX, 0, 2, U32_MAX, true, true, false}, {U32_MAX, 1, 0, U32_MAX-1, U32_MAX, true, false, false}, {U32_MAX, U32_MAX, U32_MAX-1, 0, 1, true, false, true}, {U32_MAX, U32_MAX-1, U32_MAX-2, 1, 2, true, false, true}, {U32_MAX-1, U32_MAX, U32_MAX-2, U32_MAX, 2, true, true, true}, {1U << 15, 1U << 15, 1U << 16, 0, 1U << 30, false, false, false}, {1U << 16, 1U << 16, 1U << 17, 0, 0, false, false, true}, {1U << 16, 1U << 15, 3*(1U << 15), 1U << 15, 1U << 31, false, false, false}, {1U << 31, 1U << 31, 0, 0, 0, true, false, true}, {-2U, 1U, -1U, -3U, -2U, false, false, false}, {-4U, 5U, 1U, -9U, -20U, true, false, true}, }; DEFINE_TEST_ARRAY(u64) = { {0, 0, 0, 0, 0, false, false, false}, {1, 1, 2, 0, 1, false, false, false}, {0, 1, 1, U64_MAX, 0, false, true, false}, {1, 0, 1, 1, 0, false, false, false}, {0, U64_MAX, U64_MAX, 1, 0, false, true, false}, {U64_MAX, 0, U64_MAX, U64_MAX, 0, false, false, false}, {1, U64_MAX, 0, 2, U64_MAX, true, true, false}, {U64_MAX, 1, 0, U64_MAX-1, U64_MAX, true, false, false}, {U64_MAX, U64_MAX, U64_MAX-1, 0, 1, true, false, true}, {U64_MAX, U64_MAX-1, U64_MAX-2, 1, 2, true, false, true}, {U64_MAX-1, U64_MAX, U64_MAX-2, U64_MAX, 2, true, true, true}, {1ULL << 31, 1ULL << 31, 1ULL << 32, 0, 1ULL << 62, false, false, false}, {1ULL << 32, 1ULL << 32, 1ULL << 33, 0, 0, false, false, true}, {1ULL << 32, 1ULL << 31, 3*(1ULL << 31), 1ULL << 31, 1ULL << 63, false, false, false}, {1ULL << 63, 1ULL << 63, 0, 0, 0, true, false, true}, {1000000000ULL /* 10^9 */, 10000000000ULL /* 10^10 */, 11000000000ULL, 18446744064709551616ULL, 10000000000000000000ULL, false, true, false}, {-15ULL, 10ULL, -5ULL, -25ULL, -150ULL, false, false, true}, }; DEFINE_TEST_ARRAY(s8) = { {0, 0, 0, 0, 0, false, false, false}, {0, S8_MAX, S8_MAX, -S8_MAX, 0, false, false, false}, {S8_MAX, 0, S8_MAX, S8_MAX, 0, false, false, false}, {0, S8_MIN, S8_MIN, S8_MIN, 0, false, true, false}, {S8_MIN, 0, S8_MIN, S8_MIN, 0, false, false, false}, {-1, S8_MIN, S8_MAX, S8_MAX, S8_MIN, true, false, true}, {S8_MIN, -1, S8_MAX, -S8_MAX, S8_MIN, true, false, true}, {-1, S8_MAX, S8_MAX-1, S8_MIN, -S8_MAX, false, false, false}, {S8_MAX, -1, S8_MAX-1, S8_MIN, -S8_MAX, false, true, false}, {-1, -S8_MAX, S8_MIN, S8_MAX-1, S8_MAX, false, false, false}, {-S8_MAX, -1, S8_MIN, S8_MIN+2, S8_MAX, false, false, false}, {1, S8_MIN, -S8_MAX, -S8_MAX, S8_MIN, false, true, false}, {S8_MIN, 1, -S8_MAX, S8_MAX, S8_MIN, false, true, false}, {1, S8_MAX, S8_MIN, S8_MIN+2, S8_MAX, true, false, false}, {S8_MAX, 1, S8_MIN, S8_MAX-1, S8_MAX, true, false, false}, {S8_MIN, S8_MIN, 0, 0, 0, true, false, true}, {S8_MAX, S8_MAX, -2, 0, 1, true, false, true}, {-4, -32, -36, 28, -128, false, false, true}, {-4, 32, 28, -36, -128, false, false, false}, }; DEFINE_TEST_ARRAY(s16) = { {0, 0, 0, 0, 0, false, false, false}, {0, S16_MAX, S16_MAX, -S16_MAX, 0, false, false, false}, {S16_MAX, 0, S16_MAX, S16_MAX, 0, false, false, false}, {0, S16_MIN, S16_MIN, S16_MIN, 0, false, true, false}, {S16_MIN, 0, S16_MIN, S16_MIN, 0, false, false, false}, {-1, S16_MIN, S16_MAX, S16_MAX, S16_MIN, true, false, true}, {S16_MIN, -1, S16_MAX, -S16_MAX, S16_MIN, true, false, true}, {-1, S16_MAX, S16_MAX-1, S16_MIN, -S16_MAX, false, false, false}, {S16_MAX, -1, S16_MAX-1, S16_MIN, -S16_MAX, false, true, false}, {-1, -S16_MAX, S16_MIN, S16_MAX-1, S16_MAX, false, false, false}, {-S16_MAX, -1, S16_MIN, S16_MIN+2, S16_MAX, false, false, false}, {1, S16_MIN, -S16_MAX, -S16_MAX, S16_MIN, false, true, false}, {S16_MIN, 1, -S16_MAX, S16_MAX, S16_MIN, false, true, false}, {1, S16_MAX, S16_MIN, S16_MIN+2, S16_MAX, true, false, false}, {S16_MAX, 1, S16_MIN, S16_MAX-1, S16_MAX, true, false, false}, {S16_MIN, S16_MIN, 0, 0, 0, true, false, true}, {S16_MAX, S16_MAX, -2, 0, 1, true, false, true}, }; DEFINE_TEST_ARRAY(s32) = { {0, 0, 0, 0, 0, false, false, false}, {0, S32_MAX, S32_MAX, -S32_MAX, 0, false, false, false}, {S32_MAX, 0, S32_MAX, S32_MAX, 0, false, false, false}, {0, S32_MIN, S32_MIN, S32_MIN, 0, false, true, false}, {S32_MIN, 0, S32_MIN, S32_MIN, 0, false, false, false}, {-1, S32_MIN, S32_MAX, S32_MAX, S32_MIN, true, false, true}, {S32_MIN, -1, S32_MAX, -S32_MAX, S32_MIN, true, false, true}, {-1, S32_MAX, S32_MAX-1, S32_MIN, -S32_MAX, false, false, false}, {S32_MAX, -1, S32_MAX-1, S32_MIN, -S32_MAX, false, true, false}, {-1, -S32_MAX, S32_MIN, S32_MAX-1, S32_MAX, false, false, false}, {-S32_MAX, -1, S32_MIN, S32_MIN+2, S32_MAX, false, false, false}, {1, S32_MIN, -S32_MAX, -S32_MAX, S32_MIN, false, true, false}, {S32_MIN, 1, -S32_MAX, S32_MAX, S32_MIN, false, true, false}, {1, S32_MAX, S32_MIN, S32_MIN+2, S32_MAX, true, false, false}, {S32_MAX, 1, S32_MIN, S32_MAX-1, S32_MAX, true, false, false}, {S32_MIN, S32_MIN, 0, 0, 0, true, false, true}, {S32_MAX, S32_MAX, -2, 0, 1, true, false, true}, }; DEFINE_TEST_ARRAY(s64) = { {0, 0, 0, 0, 0, false, false, false}, {0, S64_MAX, S64_MAX, -S64_MAX, 0, false, false, false}, {S64_MAX, 0, S64_MAX, S64_MAX, 0, false, false, false}, {0, S64_MIN, S64_MIN, S64_MIN, 0, false, true, false}, {S64_MIN, 0, S64_MIN, S64_MIN, 0, false, false, false}, {-1, S64_MIN, S64_MAX, S64_MAX, S64_MIN, true, false, true}, {S64_MIN, -1, S64_MAX, -S64_MAX, S64_MIN, true, false, true}, {-1, S64_MAX, S64_MAX-1, S64_MIN, -S64_MAX, false, false, false}, {S64_MAX, -1, S64_MAX-1, S64_MIN, -S64_MAX, false, true, false}, {-1, -S64_MAX, S64_MIN, S64_MAX-1, S64_MAX, false, false, false}, {-S64_MAX, -1, S64_MIN, S64_MIN+2, S64_MAX, false, false, false}, {1, S64_MIN, -S64_MAX, -S64_MAX, S64_MIN, false, true, false}, {S64_MIN, 1, -S64_MAX, S64_MAX, S64_MIN, false, true, false}, {1, S64_MAX, S64_MIN, S64_MIN+2, S64_MAX, true, false, false}, {S64_MAX, 1, S64_MIN, S64_MAX-1, S64_MAX, true, false, false}, {S64_MIN, S64_MIN, 0, 0, 0, true, false, true}, {S64_MAX, S64_MAX, -2, 0, 1, true, false, true}, {-1, -1, -2, 0, 1, false, false, false}, {-1, -128, -129, 127, 128, false, false, false}, {-128, -1, -129, -127, 128, false, false, false}, {0, -S64_MAX, -S64_MAX, S64_MAX, 0, false, false, false}, }; #define check_one_op(t, fmt, op, sym, a, b, r, of) do { \ int _a_orig = a, _a_bump = a + 1; \ int _b_orig = b, _b_bump = b + 1; \ bool _of; \ t _r; \ \ _of = check_ ## op ## _overflow(a, b, &_r); \ KUNIT_EXPECT_EQ_MSG(test, _of, of, \ "expected check "fmt" "sym" "fmt" to%s overflow (type %s)\n", \ a, b, of ? "" : " not", #t); \ KUNIT_EXPECT_EQ_MSG(test, _r, r, \ "expected check "fmt" "sym" "fmt" == "fmt", got "fmt" (type %s)\n", \ a, b, r, _r, #t); \ /* Check for internal macro side-effects. */ \ _of = check_ ## op ## _overflow(_a_orig++, _b_orig++, &_r); \ KUNIT_EXPECT_EQ_MSG(test, _a_orig, _a_bump, \ "Unexpected check " #op " macro side-effect!\n"); \ KUNIT_EXPECT_EQ_MSG(test, _b_orig, _b_bump, \ "Unexpected check " #op " macro side-effect!\n"); \ \ _r = wrapping_ ## op(t, a, b); \ KUNIT_EXPECT_TRUE_MSG(test, _r == r, \ "expected wrap "fmt" "sym" "fmt" == "fmt", got "fmt" (type %s)\n", \ a, b, r, _r, #t); \ /* Check for internal macro side-effects. */ \ _a_orig = a; \ _b_orig = b; \ _r = wrapping_ ## op(t, _a_orig++, _b_orig++); \ KUNIT_EXPECT_EQ_MSG(test, _a_orig, _a_bump, \ "Unexpected wrap " #op " macro side-effect!\n"); \ KUNIT_EXPECT_EQ_MSG(test, _b_orig, _b_bump, \ "Unexpected wrap " #op " macro side-effect!\n"); \ } while (0) static int global_counter; static void bump_counter(void) { global_counter++; } static int get_index(void) { volatile int index = 0; bump_counter(); return index; } #define check_self_op(fmt, op, sym, a, b) do { \ typeof(a + 0) _a = a; \ typeof(b + 0) _b = b; \ typeof(a + 0) _a_sym = a; \ typeof(a + 0) _a_orig[1] = { a }; \ typeof(b + 0) _b_orig = b; \ typeof(b + 0) _b_bump = b + 1; \ typeof(a + 0) _r; \ \ _a_sym sym _b; \ _r = wrapping_ ## op(_a, _b); \ KUNIT_EXPECT_TRUE_MSG(test, _r == _a_sym, \ "expected "fmt" "#op" "fmt" == "fmt", got "fmt"\n", \ a, b, _a_sym, _r); \ KUNIT_EXPECT_TRUE_MSG(test, _a == _a_sym, \ "expected "fmt" "#op" "fmt" == "fmt", got "fmt"\n", \ a, b, _a_sym, _a); \ /* Check for internal macro side-effects. */ \ global_counter = 0; \ wrapping_ ## op(_a_orig[get_index()], _b_orig++); \ KUNIT_EXPECT_EQ_MSG(test, global_counter, 1, \ "Unexpected wrapping_" #op " macro side-effect on arg1!\n"); \ KUNIT_EXPECT_EQ_MSG(test, _b_orig, _b_bump, \ "Unexpected wrapping_" #op " macro side-effect on arg2!\n"); \ } while (0) #define DEFINE_TEST_FUNC_TYPED(n, t, fmt) \ static void do_test_ ## n(struct kunit *test, const struct test_ ## n *p) \ { \ /* check_{add,sub,mul}_overflow() and wrapping_{add,sub,mul} */ \ check_one_op(t, fmt, add, "+", p->a, p->b, p->sum, p->s_of); \ check_one_op(t, fmt, add, "+", p->b, p->a, p->sum, p->s_of); \ check_one_op(t, fmt, sub, "-", p->a, p->b, p->diff, p->d_of); \ check_one_op(t, fmt, mul, "*", p->a, p->b, p->prod, p->p_of); \ check_one_op(t, fmt, mul, "*", p->b, p->a, p->prod, p->p_of); \ /* wrapping_assign_{add,sub}() */ \ check_self_op(fmt, assign_add, +=, p->a, p->b); \ check_self_op(fmt, assign_add, +=, p->b, p->a); \ check_self_op(fmt, assign_sub, -=, p->a, p->b); \ } \ \ static void n ## _overflow_test(struct kunit *test) { \ unsigned i; \ \ SKIP_64_ON_32(__same_type(t, u64)); \ SKIP_64_ON_32(__same_type(t, s64)); \ SKIP_SIGN_MISMATCH(__same_type(n ## _tests[0].a, u32) && \ __same_type(n ## _tests[0].b, u32) && \ __same_type(n ## _tests[0].sum, int)); \ \ for (i = 0; i < ARRAY_SIZE(n ## _tests); ++i) \ do_test_ ## n(test, &n ## _tests[i]); \ kunit_info(test, "%zu %s arithmetic tests finished\n", \ ARRAY_SIZE(n ## _tests), #n); \ } #define DEFINE_TEST_FUNC(t, fmt) \ DEFINE_TEST_FUNC_TYPED(t ## _ ## t ## __ ## t, t, fmt) DEFINE_TEST_FUNC(u8, "%d"); DEFINE_TEST_FUNC(s8, "%d"); DEFINE_TEST_FUNC(u16, "%d"); DEFINE_TEST_FUNC(s16, "%d"); DEFINE_TEST_FUNC(u32, "%u"); DEFINE_TEST_FUNC(s32, "%d"); DEFINE_TEST_FUNC(u64, "%llu"); DEFINE_TEST_FUNC(s64, "%lld"); DEFINE_TEST_ARRAY_TYPED(u32, u32, u8) = { {0, 0, 0, 0, 0, false, false, false}, {U8_MAX, 2, 1, U8_MAX - 2, U8_MAX - 1, true, false, true}, {U8_MAX + 1, 0, 0, 0, 0, true, true, false}, }; DEFINE_TEST_FUNC_TYPED(u32_u32__u8, u8, "%d"); DEFINE_TEST_ARRAY_TYPED(u32, u32, int) = { {0, 0, 0, 0, 0, false, false, false}, {U32_MAX, 0, -1, -1, 0, true, true, false}, }; DEFINE_TEST_FUNC_TYPED(u32_u32__int, int, "%d"); DEFINE_TEST_ARRAY_TYPED(u8, u8, int) = { {0, 0, 0, 0, 0, false, false, false}, {U8_MAX, U8_MAX, 2 * U8_MAX, 0, U8_MAX * U8_MAX, false, false, false}, {1, 2, 3, -1, 2, false, false, false}, }; DEFINE_TEST_FUNC_TYPED(u8_u8__int, int, "%d"); DEFINE_TEST_ARRAY_TYPED(int, int, u8) = { {0, 0, 0, 0, 0, false, false, false}, {1, 2, 3, U8_MAX, 2, false, true, false}, {-1, 0, U8_MAX, U8_MAX, 0, true, true, false}, }; DEFINE_TEST_FUNC_TYPED(int_int__u8, u8, "%d"); /* Args are: value, shift, type, expected result, overflow expected */ #define TEST_ONE_SHIFT(a, s, t, expect, of) do { \ typeof(a) __a = (a); \ typeof(s) __s = (s); \ t __e = (expect); \ t __d; \ bool __of = check_shl_overflow(__a, __s, &__d); \ if (__of != of) { \ KUNIT_EXPECT_EQ_MSG(test, __of, of, \ "expected (%s)(%s << %s) to%s overflow\n", \ #t, #a, #s, of ? "" : " not"); \ } else if (!__of && __d != __e) { \ KUNIT_EXPECT_EQ_MSG(test, __d, __e, \ "expected (%s)(%s << %s) == %s\n", \ #t, #a, #s, #expect); \ if ((t)-1 < 0) \ kunit_info(test, "got %lld\n", (s64)__d); \ else \ kunit_info(test, "got %llu\n", (u64)__d); \ } \ count++; \ } while (0) static void shift_sane_test(struct kunit *test) { int count = 0; /* Sane shifts. */ TEST_ONE_SHIFT(1, 0, u8, 1 << 0, false); TEST_ONE_SHIFT(1, 4, u8, 1 << 4, false); TEST_ONE_SHIFT(1, 7, u8, 1 << 7, false); TEST_ONE_SHIFT(0xF, 4, u8, 0xF << 4, false); TEST_ONE_SHIFT(1, 0, u16, 1 << 0, false); TEST_ONE_SHIFT(1, 10, u16, 1 << 10, false); TEST_ONE_SHIFT(1, 15, u16, 1 << 15, false); TEST_ONE_SHIFT(0xFF, 8, u16, 0xFF << 8, false); TEST_ONE_SHIFT(1, 0, int, 1 << 0, false); TEST_ONE_SHIFT(1, 16, int, 1 << 16, false); TEST_ONE_SHIFT(1, 30, int, 1 << 30, false); TEST_ONE_SHIFT(1, 0, s32, 1 << 0, false); TEST_ONE_SHIFT(1, 16, s32, 1 << 16, false); TEST_ONE_SHIFT(1, 30, s32, 1 << 30, false); TEST_ONE_SHIFT(1, 0, unsigned int, 1U << 0, false); TEST_ONE_SHIFT(1, 20, unsigned int, 1U << 20, false); TEST_ONE_SHIFT(1, 31, unsigned int, 1U << 31, false); TEST_ONE_SHIFT(0xFFFFU, 16, unsigned int, 0xFFFFU << 16, false); TEST_ONE_SHIFT(1, 0, u32, 1U << 0, false); TEST_ONE_SHIFT(1, 20, u32, 1U << 20, false); TEST_ONE_SHIFT(1, 31, u32, 1U << 31, false); TEST_ONE_SHIFT(0xFFFFU, 16, u32, 0xFFFFU << 16, false); TEST_ONE_SHIFT(1, 0, u64, 1ULL << 0, false); TEST_ONE_SHIFT(1, 40, u64, 1ULL << 40, false); TEST_ONE_SHIFT(1, 63, u64, 1ULL << 63, false); TEST_ONE_SHIFT(0xFFFFFFFFULL, 32, u64, 0xFFFFFFFFULL << 32, false); /* Sane shift: start and end with 0, without a too-wide shift. */ TEST_ONE_SHIFT(0, 7, u8, 0, false); TEST_ONE_SHIFT(0, 15, u16, 0, false); TEST_ONE_SHIFT(0, 31, unsigned int, 0, false); TEST_ONE_SHIFT(0, 31, u32, 0, false); TEST_ONE_SHIFT(0, 63, u64, 0, false); /* Sane shift: start and end with 0, without reaching signed bit. */ TEST_ONE_SHIFT(0, 6, s8, 0, false); TEST_ONE_SHIFT(0, 14, s16, 0, false); TEST_ONE_SHIFT(0, 30, int, 0, false); TEST_ONE_SHIFT(0, 30, s32, 0, false); TEST_ONE_SHIFT(0, 62, s64, 0, false); kunit_info(test, "%d sane shift tests finished\n", count); } static void shift_overflow_test(struct kunit *test) { int count = 0; /* Overflow: shifted the bit off the end. */ TEST_ONE_SHIFT(1, 8, u8, 0, true); TEST_ONE_SHIFT(1, 16, u16, 0, true); TEST_ONE_SHIFT(1, 32, unsigned int, 0, true); TEST_ONE_SHIFT(1, 32, u32, 0, true); TEST_ONE_SHIFT(1, 64, u64, 0, true); /* Overflow: shifted into the signed bit. */ TEST_ONE_SHIFT(1, 7, s8, 0, true); TEST_ONE_SHIFT(1, 15, s16, 0, true); TEST_ONE_SHIFT(1, 31, int, 0, true); TEST_ONE_SHIFT(1, 31, s32, 0, true); TEST_ONE_SHIFT(1, 63, s64, 0, true); /* Overflow: high bit falls off unsigned types. */ /* 10010110 */ TEST_ONE_SHIFT(150, 1, u8, 0, true); /* 1000100010010110 */ TEST_ONE_SHIFT(34966, 1, u16, 0, true); /* 10000100000010001000100010010110 */ TEST_ONE_SHIFT(2215151766U, 1, u32, 0, true); TEST_ONE_SHIFT(2215151766U, 1, unsigned int, 0, true); /* 1000001000010000010000000100000010000100000010001000100010010110 */ TEST_ONE_SHIFT(9372061470395238550ULL, 1, u64, 0, true); /* Overflow: bit shifted into signed bit on signed types. */ /* 01001011 */ TEST_ONE_SHIFT(75, 1, s8, 0, true); /* 0100010001001011 */ TEST_ONE_SHIFT(17483, 1, s16, 0, true); /* 01000010000001000100010001001011 */ TEST_ONE_SHIFT(1107575883, 1, s32, 0, true); TEST_ONE_SHIFT(1107575883, 1, int, 0, true); /* 0100000100001000001000000010000001000010000001000100010001001011 */ TEST_ONE_SHIFT(4686030735197619275LL, 1, s64, 0, true); /* Overflow: bit shifted past signed bit on signed types. */ /* 01001011 */ TEST_ONE_SHIFT(75, 2, s8, 0, true); /* 0100010001001011 */ TEST_ONE_SHIFT(17483, 2, s16, 0, true); /* 01000010000001000100010001001011 */ TEST_ONE_SHIFT(1107575883, 2, s32, 0, true); TEST_ONE_SHIFT(1107575883, 2, int, 0, true); /* 0100000100001000001000000010000001000010000001000100010001001011 */ TEST_ONE_SHIFT(4686030735197619275LL, 2, s64, 0, true); kunit_info(test, "%d overflow shift tests finished\n", count); } static void shift_truncate_test(struct kunit *test) { int count = 0; /* Overflow: values larger than destination type. */ TEST_ONE_SHIFT(0x100, 0, u8, 0, true); TEST_ONE_SHIFT(0xFF, 0, s8, 0, true); TEST_ONE_SHIFT(0x10000U, 0, u16, 0, true); TEST_ONE_SHIFT(0xFFFFU, 0, s16, 0, true); TEST_ONE_SHIFT(0x100000000ULL, 0, u32, 0, true); TEST_ONE_SHIFT(0x100000000ULL, 0, unsigned int, 0, true); TEST_ONE_SHIFT(0xFFFFFFFFUL, 0, s32, 0, true); TEST_ONE_SHIFT(0xFFFFFFFFUL, 0, int, 0, true); TEST_ONE_SHIFT(0xFFFFFFFFFFFFFFFFULL, 0, s64, 0, true); /* Overflow: shifted at or beyond entire type's bit width. */ TEST_ONE_SHIFT(0, 8, u8, 0, true); TEST_ONE_SHIFT(0, 9, u8, 0, true); TEST_ONE_SHIFT(0, 8, s8, 0, true); TEST_ONE_SHIFT(0, 9, s8, 0, true); TEST_ONE_SHIFT(0, 16, u16, 0, true); TEST_ONE_SHIFT(0, 17, u16, 0, true); TEST_ONE_SHIFT(0, 16, s16, 0, true); TEST_ONE_SHIFT(0, 17, s16, 0, true); TEST_ONE_SHIFT(0, 32, u32, 0, true); TEST_ONE_SHIFT(0, 33, u32, 0, true); TEST_ONE_SHIFT(0, 32, int, 0, true); TEST_ONE_SHIFT(0, 33, int, 0, true); TEST_ONE_SHIFT(0, 32, s32, 0, true); TEST_ONE_SHIFT(0, 33, s32, 0, true); TEST_ONE_SHIFT(0, 64, u64, 0, true); TEST_ONE_SHIFT(0, 65, u64, 0, true); TEST_ONE_SHIFT(0, 64, s64, 0, true); TEST_ONE_SHIFT(0, 65, s64, 0, true); kunit_info(test, "%d truncate shift tests finished\n", count); } static void shift_nonsense_test(struct kunit *test) { int count = 0; /* Nonsense: negative initial value. */ TEST_ONE_SHIFT(-1, 0, s8, 0, true); TEST_ONE_SHIFT(-1, 0, u8, 0, true); TEST_ONE_SHIFT(-5, 0, s16, 0, true); TEST_ONE_SHIFT(-5, 0, u16, 0, true); TEST_ONE_SHIFT(-10, 0, int, 0, true); TEST_ONE_SHIFT(-10, 0, unsigned int, 0, true); TEST_ONE_SHIFT(-100, 0, s32, 0, true); TEST_ONE_SHIFT(-100, 0, u32, 0, true); TEST_ONE_SHIFT(-10000, 0, s64, 0, true); TEST_ONE_SHIFT(-10000, 0, u64, 0, true); /* Nonsense: negative shift values. */ TEST_ONE_SHIFT(0, -5, s8, 0, true); TEST_ONE_SHIFT(0, -5, u8, 0, true); TEST_ONE_SHIFT(0, -10, s16, 0, true); TEST_ONE_SHIFT(0, -10, u16, 0, true); TEST_ONE_SHIFT(0, -15, int, 0, true); TEST_ONE_SHIFT(0, -15, unsigned int, 0, true); TEST_ONE_SHIFT(0, -20, s32, 0, true); TEST_ONE_SHIFT(0, -20, u32, 0, true); TEST_ONE_SHIFT(0, -30, s64, 0, true); TEST_ONE_SHIFT(0, -30, u64, 0, true); /* * Corner case: for unsigned types, we fail when we've shifted * through the entire width of bits. For signed types, we might * want to match this behavior, but that would mean noticing if * we shift through all but the signed bit, and this is not * currently detected (but we'll notice an overflow into the * signed bit). So, for now, we will test this condition but * mark it as not expected to overflow. */ TEST_ONE_SHIFT(0, 7, s8, 0, false); TEST_ONE_SHIFT(0, 15, s16, 0, false); TEST_ONE_SHIFT(0, 31, int, 0, false); TEST_ONE_SHIFT(0, 31, s32, 0, false); TEST_ONE_SHIFT(0, 63, s64, 0, false); kunit_info(test, "%d nonsense shift tests finished\n", count); } #undef TEST_ONE_SHIFT /* * Deal with the various forms of allocator arguments. See comments above * the DEFINE_TEST_ALLOC() instances for mapping of the "bits". */ #define alloc_GFP (GFP_KERNEL | __GFP_NOWARN) #define alloc010(alloc, arg, sz) alloc(sz, alloc_GFP) #define alloc011(alloc, arg, sz) alloc(sz, alloc_GFP, NUMA_NO_NODE) #define alloc000(alloc, arg, sz) alloc(sz) #define alloc001(alloc, arg, sz) alloc(sz, NUMA_NO_NODE) #define alloc110(alloc, arg, sz) alloc(arg, sz, alloc_GFP) #define free0(free, arg, ptr) free(ptr) #define free1(free, arg, ptr) free(arg, ptr) /* Wrap around to 16K */ #define TEST_SIZE (5 * 4096) #define DEFINE_TEST_ALLOC(func, free_func, want_arg, want_gfp, want_node)\ static void test_ ## func (struct kunit *test, void *arg) \ { \ volatile size_t a = TEST_SIZE; \ volatile size_t b = (SIZE_MAX / TEST_SIZE) + 1; \ void *ptr; \ \ /* Tiny allocation test. */ \ ptr = alloc ## want_arg ## want_gfp ## want_node (func, arg, 1);\ KUNIT_ASSERT_NOT_ERR_OR_NULL_MSG(test, ptr, \ #func " failed regular allocation?!\n"); \ free ## want_arg (free_func, arg, ptr); \ \ /* Wrapped allocation test. */ \ ptr = alloc ## want_arg ## want_gfp ## want_node (func, arg, \ a * b); \ KUNIT_ASSERT_NOT_ERR_OR_NULL_MSG(test, ptr, \ #func " unexpectedly failed bad wrapping?!\n"); \ free ## want_arg (free_func, arg, ptr); \ \ /* Saturated allocation test. */ \ ptr = alloc ## want_arg ## want_gfp ## want_node (func, arg, \ array_size(a, b)); \ if (ptr) { \ KUNIT_FAIL(test, #func " missed saturation!\n"); \ free ## want_arg (free_func, arg, ptr); \ } \ } /* * Allocator uses a trailing node argument --------+ (e.g. kmalloc_node()) * Allocator uses the gfp_t argument -----------+ | (e.g. kmalloc()) * Allocator uses a special leading argument + | | (e.g. devm_kmalloc()) * | | | */ DEFINE_TEST_ALLOC(kmalloc, kfree, 0, 1, 0); DEFINE_TEST_ALLOC(kmalloc_node, kfree, 0, 1, 1); DEFINE_TEST_ALLOC(kzalloc, kfree, 0, 1, 0); DEFINE_TEST_ALLOC(kzalloc_node, kfree, 0, 1, 1); DEFINE_TEST_ALLOC(__vmalloc, vfree, 0, 1, 0); DEFINE_TEST_ALLOC(kvmalloc, kvfree, 0, 1, 0); DEFINE_TEST_ALLOC(kvmalloc_node, kvfree, 0, 1, 1); DEFINE_TEST_ALLOC(kvzalloc, kvfree, 0, 1, 0); DEFINE_TEST_ALLOC(kvzalloc_node, kvfree, 0, 1, 1); DEFINE_TEST_ALLOC(devm_kmalloc, devm_kfree, 1, 1, 0); DEFINE_TEST_ALLOC(devm_kzalloc, devm_kfree, 1, 1, 0); static void overflow_allocation_test(struct kunit *test) { const char device_name[] = "overflow-test"; struct device *dev; int count = 0; #define check_allocation_overflow(alloc) do { \ count++; \ test_ ## alloc(test, dev); \ } while (0) /* Create dummy device for devm_kmalloc()-family tests. */ dev = kunit_device_register(test, device_name); KUNIT_ASSERT_FALSE_MSG(test, IS_ERR(dev), "Cannot register test device\n"); check_allocation_overflow(kmalloc); check_allocation_overflow(kmalloc_node); check_allocation_overflow(kzalloc); check_allocation_overflow(kzalloc_node); check_allocation_overflow(__vmalloc); check_allocation_overflow(kvmalloc); check_allocation_overflow(kvmalloc_node); check_allocation_overflow(kvzalloc); check_allocation_overflow(kvzalloc_node); check_allocation_overflow(devm_kmalloc); check_allocation_overflow(devm_kzalloc); kunit_info(test, "%d allocation overflow tests finished\n", count); #undef check_allocation_overflow } struct __test_flex_array { unsigned long flags; size_t count; unsigned long data[]; }; static void overflow_size_helpers_test(struct kunit *test) { /* Make sure struct_size() can be used in a constant expression. */ u8 ce_array[struct_size_t(struct __test_flex_array, data, 55)]; struct __test_flex_array *obj; int count = 0; int var; volatile int unconst = 0; /* Verify constant expression against runtime version. */ var = 55; OPTIMIZER_HIDE_VAR(var); KUNIT_EXPECT_EQ(test, sizeof(ce_array), struct_size(obj, data, var)); #define check_one_size_helper(expected, func, args...) do { \ size_t _r = func(args); \ KUNIT_EXPECT_EQ_MSG(test, _r, expected, \ "expected " #func "(" #args ") to return %zu but got %zu instead\n", \ (size_t)(expected), _r); \ count++; \ } while (0) var = 4; check_one_size_helper(20, size_mul, var++, 5); check_one_size_helper(20, size_mul, 4, var++); check_one_size_helper(0, size_mul, 0, 3); check_one_size_helper(0, size_mul, 3, 0); check_one_size_helper(6, size_mul, 2, 3); check_one_size_helper(SIZE_MAX, size_mul, SIZE_MAX, 1); check_one_size_helper(SIZE_MAX, size_mul, SIZE_MAX, 3); check_one_size_helper(SIZE_MAX, size_mul, SIZE_MAX, -3); var = 4; check_one_size_helper(9, size_add, var++, 5); check_one_size_helper(9, size_add, 4, var++); check_one_size_helper(9, size_add, 9, 0); check_one_size_helper(9, size_add, 0, 9); check_one_size_helper(5, size_add, 2, 3); check_one_size_helper(SIZE_MAX, size_add, SIZE_MAX, 1); check_one_size_helper(SIZE_MAX, size_add, SIZE_MAX, 3); check_one_size_helper(SIZE_MAX, size_add, SIZE_MAX, -3); var = 4; check_one_size_helper(1, size_sub, var--, 3); check_one_size_helper(1, size_sub, 4, var--); check_one_size_helper(1, size_sub, 3, 2); check_one_size_helper(9, size_sub, 9, 0); check_one_size_helper(SIZE_MAX, size_sub, 9, -3); check_one_size_helper(SIZE_MAX, size_sub, 0, 9); check_one_size_helper(SIZE_MAX, size_sub, 2, 3); check_one_size_helper(SIZE_MAX, size_sub, SIZE_MAX, 0); check_one_size_helper(SIZE_MAX, size_sub, SIZE_MAX, 10); check_one_size_helper(SIZE_MAX, size_sub, 0, SIZE_MAX); check_one_size_helper(SIZE_MAX, size_sub, 14, SIZE_MAX); check_one_size_helper(SIZE_MAX - 2, size_sub, SIZE_MAX - 1, 1); check_one_size_helper(SIZE_MAX - 4, size_sub, SIZE_MAX - 1, 3); check_one_size_helper(1, size_sub, SIZE_MAX - 1, -3); var = 4; check_one_size_helper(4 * sizeof(*obj->data), flex_array_size, obj, data, var++); check_one_size_helper(5 * sizeof(*obj->data), flex_array_size, obj, data, var++); check_one_size_helper(0, flex_array_size, obj, data, 0 + unconst); check_one_size_helper(sizeof(*obj->data), flex_array_size, obj, data, 1 + unconst); check_one_size_helper(7 * sizeof(*obj->data), flex_array_size, obj, data, 7 + unconst); check_one_size_helper(SIZE_MAX, flex_array_size, obj, data, -1 + unconst); check_one_size_helper(SIZE_MAX, flex_array_size, obj, data, SIZE_MAX - 4 + unconst); var = 4; check_one_size_helper(sizeof(*obj) + (4 * sizeof(*obj->data)), struct_size, obj, data, var++); check_one_size_helper(sizeof(*obj) + (5 * sizeof(*obj->data)), struct_size, obj, data, var++); check_one_size_helper(sizeof(*obj), struct_size, obj, data, 0 + unconst); check_one_size_helper(sizeof(*obj) + sizeof(*obj->data), struct_size, obj, data, 1 + unconst); check_one_size_helper(SIZE_MAX, struct_size, obj, data, -3 + unconst); check_one_size_helper(SIZE_MAX, struct_size, obj, data, SIZE_MAX - 3 + unconst); kunit_info(test, "%d overflow size helper tests finished\n", count); #undef check_one_size_helper } static void overflows_type_test(struct kunit *test) { int count = 0; unsigned int var; #define __TEST_OVERFLOWS_TYPE(func, arg1, arg2, of) do { \ bool __of = func(arg1, arg2); \ KUNIT_EXPECT_EQ_MSG(test, __of, of, \ "expected " #func "(" #arg1 ", " #arg2 " to%s overflow\n",\ of ? "" : " not"); \ count++; \ } while (0) /* Args are: first type, second type, value, overflow expected */ #define TEST_OVERFLOWS_TYPE(__t1, __t2, v, of) do { \ __t1 t1 = (v); \ __t2 t2; \ __TEST_OVERFLOWS_TYPE(__overflows_type, t1, t2, of); \ __TEST_OVERFLOWS_TYPE(__overflows_type, t1, __t2, of); \ __TEST_OVERFLOWS_TYPE(__overflows_type_constexpr, t1, t2, of); \ __TEST_OVERFLOWS_TYPE(__overflows_type_constexpr, t1, __t2, of);\ } while (0) TEST_OVERFLOWS_TYPE(u8, u8, U8_MAX, false); TEST_OVERFLOWS_TYPE(u8, u16, U8_MAX, false); TEST_OVERFLOWS_TYPE(u8, s8, U8_MAX, true); TEST_OVERFLOWS_TYPE(u8, s8, S8_MAX, false); TEST_OVERFLOWS_TYPE(u8, s8, (u8)S8_MAX + 1, true); TEST_OVERFLOWS_TYPE(u8, s16, U8_MAX, false); TEST_OVERFLOWS_TYPE(s8, u8, S8_MAX, false); TEST_OVERFLOWS_TYPE(s8, u8, -1, true); TEST_OVERFLOWS_TYPE(s8, u8, S8_MIN, true); TEST_OVERFLOWS_TYPE(s8, u16, S8_MAX, false); TEST_OVERFLOWS_TYPE(s8, u16, -1, true); TEST_OVERFLOWS_TYPE(s8, u16, S8_MIN, true); TEST_OVERFLOWS_TYPE(s8, u32, S8_MAX, false); TEST_OVERFLOWS_TYPE(s8, u32, -1, true); TEST_OVERFLOWS_TYPE(s8, u32, S8_MIN, true); #if BITS_PER_LONG == 64 TEST_OVERFLOWS_TYPE(s8, u64, S8_MAX, false); TEST_OVERFLOWS_TYPE(s8, u64, -1, true); TEST_OVERFLOWS_TYPE(s8, u64, S8_MIN, true); #endif TEST_OVERFLOWS_TYPE(s8, s8, S8_MAX, false); TEST_OVERFLOWS_TYPE(s8, s8, S8_MIN, false); TEST_OVERFLOWS_TYPE(s8, s16, S8_MAX, false); TEST_OVERFLOWS_TYPE(s8, s16, S8_MIN, false); TEST_OVERFLOWS_TYPE(u16, u8, U8_MAX, false); TEST_OVERFLOWS_TYPE(u16, u8, (u16)U8_MAX + 1, true); TEST_OVERFLOWS_TYPE(u16, u8, U16_MAX, true); TEST_OVERFLOWS_TYPE(u16, s8, S8_MAX, false); TEST_OVERFLOWS_TYPE(u16, s8, (u16)S8_MAX + 1, true); TEST_OVERFLOWS_TYPE(u16, s8, U16_MAX, true); TEST_OVERFLOWS_TYPE(u16, s16, S16_MAX, false); TEST_OVERFLOWS_TYPE(u16, s16, (u16)S16_MAX + 1, true); TEST_OVERFLOWS_TYPE(u16, s16, U16_MAX, true); TEST_OVERFLOWS_TYPE(u16, u32, U16_MAX, false); TEST_OVERFLOWS_TYPE(u16, s32, U16_MAX, false); TEST_OVERFLOWS_TYPE(s16, u8, U8_MAX, false); TEST_OVERFLOWS_TYPE(s16, u8, (s16)U8_MAX + 1, true); TEST_OVERFLOWS_TYPE(s16, u8, -1, true); TEST_OVERFLOWS_TYPE(s16, u8, S16_MIN, true); TEST_OVERFLOWS_TYPE(s16, u16, S16_MAX, false); TEST_OVERFLOWS_TYPE(s16, u16, -1, true); TEST_OVERFLOWS_TYPE(s16, u16, S16_MIN, true); TEST_OVERFLOWS_TYPE(s16, u32, S16_MAX, false); TEST_OVERFLOWS_TYPE(s16, u32, -1, true); TEST_OVERFLOWS_TYPE(s16, u32, S16_MIN, true); #if BITS_PER_LONG == 64 TEST_OVERFLOWS_TYPE(s16, u64, S16_MAX, false); TEST_OVERFLOWS_TYPE(s16, u64, -1, true); TEST_OVERFLOWS_TYPE(s16, u64, S16_MIN, true); #endif TEST_OVERFLOWS_TYPE(s16, s8, S8_MAX, false); TEST_OVERFLOWS_TYPE(s16, s8, S8_MIN, false); TEST_OVERFLOWS_TYPE(s16, s8, (s16)S8_MAX + 1, true); TEST_OVERFLOWS_TYPE(s16, s8, (s16)S8_MIN - 1, true); TEST_OVERFLOWS_TYPE(s16, s8, S16_MAX, true); TEST_OVERFLOWS_TYPE(s16, s8, S16_MIN, true); TEST_OVERFLOWS_TYPE(s16, s16, S16_MAX, false); TEST_OVERFLOWS_TYPE(s16, s16, S16_MIN, false); TEST_OVERFLOWS_TYPE(s16, s32, S16_MAX, false); TEST_OVERFLOWS_TYPE(s16, s32, S16_MIN, false); TEST_OVERFLOWS_TYPE(u32, u8, U8_MAX, false); TEST_OVERFLOWS_TYPE(u32, u8, (u32)U8_MAX + 1, true); TEST_OVERFLOWS_TYPE(u32, u8, U32_MAX, true); TEST_OVERFLOWS_TYPE(u32, s8, S8_MAX, false); TEST_OVERFLOWS_TYPE(u32, s8, (u32)S8_MAX + 1, true); TEST_OVERFLOWS_TYPE(u32, s8, U32_MAX, true); TEST_OVERFLOWS_TYPE(u32, u16, U16_MAX, false); TEST_OVERFLOWS_TYPE(u32, u16, U16_MAX + 1, true); TEST_OVERFLOWS_TYPE(u32, u16, U32_MAX, true); TEST_OVERFLOWS_TYPE(u32, s16, S16_MAX, false); TEST_OVERFLOWS_TYPE(u32, s16, (u32)S16_MAX + 1, true); TEST_OVERFLOWS_TYPE(u32, s16, U32_MAX, true); TEST_OVERFLOWS_TYPE(u32, u32, U32_MAX, false); TEST_OVERFLOWS_TYPE(u32, s32, S32_MAX, false); TEST_OVERFLOWS_TYPE(u32, s32, U32_MAX, true); TEST_OVERFLOWS_TYPE(u32, s32, (u32)S32_MAX + 1, true); #if BITS_PER_LONG == 64 TEST_OVERFLOWS_TYPE(u32, u64, U32_MAX, false); TEST_OVERFLOWS_TYPE(u32, s64, U32_MAX, false); #endif TEST_OVERFLOWS_TYPE(s32, u8, U8_MAX, false); TEST_OVERFLOWS_TYPE(s32, u8, (s32)U8_MAX + 1, true); TEST_OVERFLOWS_TYPE(s32, u16, S32_MAX, true); TEST_OVERFLOWS_TYPE(s32, u8, -1, true); TEST_OVERFLOWS_TYPE(s32, u8, S32_MIN, true); TEST_OVERFLOWS_TYPE(s32, u16, U16_MAX, false); TEST_OVERFLOWS_TYPE(s32, u16, (s32)U16_MAX + 1, true); TEST_OVERFLOWS_TYPE(s32, u16, S32_MAX, true); TEST_OVERFLOWS_TYPE(s32, u16, -1, true); TEST_OVERFLOWS_TYPE(s32, u16, S32_MIN, true); TEST_OVERFLOWS_TYPE(s32, u32, S32_MAX, false); TEST_OVERFLOWS_TYPE(s32, u32, -1, true); TEST_OVERFLOWS_TYPE(s32, u32, S32_MIN, true); #if BITS_PER_LONG == 64 TEST_OVERFLOWS_TYPE(s32, u64, S32_MAX, false); TEST_OVERFLOWS_TYPE(s32, u64, -1, true); TEST_OVERFLOWS_TYPE(s32, u64, S32_MIN, true); #endif TEST_OVERFLOWS_TYPE(s32, s8, S8_MAX, false); TEST_OVERFLOWS_TYPE(s32, s8, S8_MIN, false); TEST_OVERFLOWS_TYPE(s32, s8, (s32)S8_MAX + 1, true); TEST_OVERFLOWS_TYPE(s32, s8, (s32)S8_MIN - 1, true); TEST_OVERFLOWS_TYPE(s32, s8, S32_MAX, true); TEST_OVERFLOWS_TYPE(s32, s8, S32_MIN, true); TEST_OVERFLOWS_TYPE(s32, s16, S16_MAX, false); TEST_OVERFLOWS_TYPE(s32, s16, S16_MIN, false); TEST_OVERFLOWS_TYPE(s32, s16, (s32)S16_MAX + 1, true); TEST_OVERFLOWS_TYPE(s32, s16, (s32)S16_MIN - 1, true); TEST_OVERFLOWS_TYPE(s32, s16, S32_MAX, true); TEST_OVERFLOWS_TYPE(s32, s16, S32_MIN, true); TEST_OVERFLOWS_TYPE(s32, s32, S32_MAX, false); TEST_OVERFLOWS_TYPE(s32, s32, S32_MIN, false); #if BITS_PER_LONG == 64 TEST_OVERFLOWS_TYPE(s32, s64, S32_MAX, false); TEST_OVERFLOWS_TYPE(s32, s64, S32_MIN, false); TEST_OVERFLOWS_TYPE(u64, u8, U64_MAX, true); TEST_OVERFLOWS_TYPE(u64, u8, U8_MAX, false); TEST_OVERFLOWS_TYPE(u64, u8, (u64)U8_MAX + 1, true); TEST_OVERFLOWS_TYPE(u64, u16, U64_MAX, true); TEST_OVERFLOWS_TYPE(u64, u16, U16_MAX, false); TEST_OVERFLOWS_TYPE(u64, u16, (u64)U16_MAX + 1, true); TEST_OVERFLOWS_TYPE(u64, u32, U64_MAX, true); TEST_OVERFLOWS_TYPE(u64, u32, U32_MAX, false); TEST_OVERFLOWS_TYPE(u64, u32, (u64)U32_MAX + 1, true); TEST_OVERFLOWS_TYPE(u64, u64, U64_MAX, false); TEST_OVERFLOWS_TYPE(u64, s8, S8_MAX, false); TEST_OVERFLOWS_TYPE(u64, s8, (u64)S8_MAX + 1, true); TEST_OVERFLOWS_TYPE(u64, s8, U64_MAX, true); TEST_OVERFLOWS_TYPE(u64, s16, S16_MAX, false); TEST_OVERFLOWS_TYPE(u64, s16, (u64)S16_MAX + 1, true); TEST_OVERFLOWS_TYPE(u64, s16, U64_MAX, true); TEST_OVERFLOWS_TYPE(u64, s32, S32_MAX, false); TEST_OVERFLOWS_TYPE(u64, s32, (u64)S32_MAX + 1, true); TEST_OVERFLOWS_TYPE(u64, s32, U64_MAX, true); TEST_OVERFLOWS_TYPE(u64, s64, S64_MAX, false); TEST_OVERFLOWS_TYPE(u64, s64, U64_MAX, true); TEST_OVERFLOWS_TYPE(u64, s64, (u64)S64_MAX + 1, true); TEST_OVERFLOWS_TYPE(s64, u8, S64_MAX, true); TEST_OVERFLOWS_TYPE(s64, u8, S64_MIN, true); TEST_OVERFLOWS_TYPE(s64, u8, -1, true); TEST_OVERFLOWS_TYPE(s64, u8, U8_MAX, false); TEST_OVERFLOWS_TYPE(s64, u8, (s64)U8_MAX + 1, true); TEST_OVERFLOWS_TYPE(s64, u16, S64_MAX, true); TEST_OVERFLOWS_TYPE(s64, u16, S64_MIN, true); TEST_OVERFLOWS_TYPE(s64, u16, -1, true); TEST_OVERFLOWS_TYPE(s64, u16, U16_MAX, false); TEST_OVERFLOWS_TYPE(s64, u16, (s64)U16_MAX + 1, true); TEST_OVERFLOWS_TYPE(s64, u32, S64_MAX, true); TEST_OVERFLOWS_TYPE(s64, u32, S64_MIN, true); TEST_OVERFLOWS_TYPE(s64, u32, -1, true); TEST_OVERFLOWS_TYPE(s64, u32, U32_MAX, false); TEST_OVERFLOWS_TYPE(s64, u32, (s64)U32_MAX + 1, true); TEST_OVERFLOWS_TYPE(s64, u64, S64_MAX, false); TEST_OVERFLOWS_TYPE(s64, u64, S64_MIN, true); TEST_OVERFLOWS_TYPE(s64, u64, -1, true); TEST_OVERFLOWS_TYPE(s64, s8, S8_MAX, false); TEST_OVERFLOWS_TYPE(s64, s8, S8_MIN, false); TEST_OVERFLOWS_TYPE(s64, s8, (s64)S8_MAX + 1, true); TEST_OVERFLOWS_TYPE(s64, s8, (s64)S8_MIN - 1, true); TEST_OVERFLOWS_TYPE(s64, s8, S64_MAX, true); TEST_OVERFLOWS_TYPE(s64, s16, S16_MAX, false); TEST_OVERFLOWS_TYPE(s64, s16, S16_MIN, false); TEST_OVERFLOWS_TYPE(s64, s16, (s64)S16_MAX + 1, true); TEST_OVERFLOWS_TYPE(s64, s16, (s64)S16_MIN - 1, true); TEST_OVERFLOWS_TYPE(s64, s16, S64_MAX, true); TEST_OVERFLOWS_TYPE(s64, s32, S32_MAX, false); TEST_OVERFLOWS_TYPE(s64, s32, S32_MIN, false); TEST_OVERFLOWS_TYPE(s64, s32, (s64)S32_MAX + 1, true); TEST_OVERFLOWS_TYPE(s64, s32, (s64)S32_MIN - 1, true); TEST_OVERFLOWS_TYPE(s64, s32, S64_MAX, true); TEST_OVERFLOWS_TYPE(s64, s64, S64_MAX, false); TEST_OVERFLOWS_TYPE(s64, s64, S64_MIN, false); #endif /* Check for macro side-effects. */ var = INT_MAX - 1; __TEST_OVERFLOWS_TYPE(__overflows_type, var++, int, false); __TEST_OVERFLOWS_TYPE(__overflows_type, var++, int, false); __TEST_OVERFLOWS_TYPE(__overflows_type, var++, int, true); var = INT_MAX - 1; __TEST_OVERFLOWS_TYPE(overflows_type, var++, int, false); __TEST_OVERFLOWS_TYPE(overflows_type, var++, int, false); __TEST_OVERFLOWS_TYPE(overflows_type, var++, int, true); kunit_info(test, "%d overflows_type() tests finished\n", count); #undef TEST_OVERFLOWS_TYPE #undef __TEST_OVERFLOWS_TYPE } static void same_type_test(struct kunit *test) { int count = 0; int var; #define TEST_SAME_TYPE(t1, t2, same) do { \ typeof(t1) __t1h = type_max(t1); \ typeof(t1) __t1l = type_min(t1); \ typeof(t2) __t2h = type_max(t2); \ typeof(t2) __t2l = type_min(t2); \ KUNIT_EXPECT_EQ(test, true, __same_type(t1, __t1h)); \ KUNIT_EXPECT_EQ(test, true, __same_type(t1, __t1l)); \ KUNIT_EXPECT_EQ(test, true, __same_type(__t1h, t1)); \ KUNIT_EXPECT_EQ(test, true, __same_type(__t1l, t1)); \ KUNIT_EXPECT_EQ(test, true, __same_type(t2, __t2h)); \ KUNIT_EXPECT_EQ(test, true, __same_type(t2, __t2l)); \ KUNIT_EXPECT_EQ(test, true, __same_type(__t2h, t2)); \ KUNIT_EXPECT_EQ(test, true, __same_type(__t2l, t2)); \ KUNIT_EXPECT_EQ(test, same, __same_type(t1, t2)); \ KUNIT_EXPECT_EQ(test, same, __same_type(t2, __t1h)); \ KUNIT_EXPECT_EQ(test, same, __same_type(t2, __t1l)); \ KUNIT_EXPECT_EQ(test, same, __same_type(__t1h, t2)); \ KUNIT_EXPECT_EQ(test, same, __same_type(__t1l, t2)); \ KUNIT_EXPECT_EQ(test, same, __same_type(t1, __t2h)); \ KUNIT_EXPECT_EQ(test, same, __same_type(t1, __t2l)); \ KUNIT_EXPECT_EQ(test, same, __same_type(__t2h, t1)); \ KUNIT_EXPECT_EQ(test, same, __same_type(__t2l, t1)); \ } while (0) #if BITS_PER_LONG == 64 # define TEST_SAME_TYPE64(base, t, m) TEST_SAME_TYPE(base, t, m) #else # define TEST_SAME_TYPE64(base, t, m) do { } while (0) #endif #define TEST_TYPE_SETS(base, mu8, mu16, mu32, ms8, ms16, ms32, mu64, ms64) \ do { \ TEST_SAME_TYPE(base, u8, mu8); \ TEST_SAME_TYPE(base, u16, mu16); \ TEST_SAME_TYPE(base, u32, mu32); \ TEST_SAME_TYPE(base, s8, ms8); \ TEST_SAME_TYPE(base, s16, ms16); \ TEST_SAME_TYPE(base, s32, ms32); \ TEST_SAME_TYPE64(base, u64, mu64); \ TEST_SAME_TYPE64(base, s64, ms64); \ } while (0) TEST_TYPE_SETS(u8, true, false, false, false, false, false, false, false); TEST_TYPE_SETS(u16, false, true, false, false, false, false, false, false); TEST_TYPE_SETS(u32, false, false, true, false, false, false, false, false); TEST_TYPE_SETS(s8, false, false, false, true, false, false, false, false); TEST_TYPE_SETS(s16, false, false, false, false, true, false, false, false); TEST_TYPE_SETS(s32, false, false, false, false, false, true, false, false); #if BITS_PER_LONG == 64 TEST_TYPE_SETS(u64, false, false, false, false, false, false, true, false); TEST_TYPE_SETS(s64, false, false, false, false, false, false, false, true); #endif /* Check for macro side-effects. */ var = 4; KUNIT_EXPECT_EQ(test, var, 4); KUNIT_EXPECT_TRUE(test, __same_type(var++, int)); KUNIT_EXPECT_EQ(test, var, 4); KUNIT_EXPECT_TRUE(test, __same_type(int, var++)); KUNIT_EXPECT_EQ(test, var, 4); KUNIT_EXPECT_TRUE(test, __same_type(var++, var++)); KUNIT_EXPECT_EQ(test, var, 4); kunit_info(test, "%d __same_type() tests finished\n", count); #undef TEST_TYPE_SETS #undef TEST_SAME_TYPE64 #undef TEST_SAME_TYPE } static void castable_to_type_test(struct kunit *test) { int count = 0; #define TEST_CASTABLE_TO_TYPE(arg1, arg2, pass) do { \ bool __pass = castable_to_type(arg1, arg2); \ KUNIT_EXPECT_EQ_MSG(test, __pass, pass, \ "expected castable_to_type(" #arg1 ", " #arg2 ") to%s pass\n",\ pass ? "" : " not"); \ count++; \ } while (0) TEST_CASTABLE_TO_TYPE(16, u8, true); TEST_CASTABLE_TO_TYPE(16, u16, true); TEST_CASTABLE_TO_TYPE(16, u32, true); TEST_CASTABLE_TO_TYPE(16, s8, true); TEST_CASTABLE_TO_TYPE(16, s16, true); TEST_CASTABLE_TO_TYPE(16, s32, true); TEST_CASTABLE_TO_TYPE(-16, s8, true); TEST_CASTABLE_TO_TYPE(-16, s16, true); TEST_CASTABLE_TO_TYPE(-16, s32, true); #if BITS_PER_LONG == 64 TEST_CASTABLE_TO_TYPE(16, u64, true); TEST_CASTABLE_TO_TYPE(-16, s64, true); #endif #define TEST_CASTABLE_TO_TYPE_VAR(width) do { \ u ## width u ## width ## var = 0; \ s ## width s ## width ## var = 0; \ \ /* Constant expressions that fit types. */ \ TEST_CASTABLE_TO_TYPE(type_max(u ## width), u ## width, true); \ TEST_CASTABLE_TO_TYPE(type_min(u ## width), u ## width, true); \ TEST_CASTABLE_TO_TYPE(type_max(u ## width), u ## width ## var, true); \ TEST_CASTABLE_TO_TYPE(type_min(u ## width), u ## width ## var, true); \ TEST_CASTABLE_TO_TYPE(type_max(s ## width), s ## width, true); \ TEST_CASTABLE_TO_TYPE(type_min(s ## width), s ## width, true); \ TEST_CASTABLE_TO_TYPE(type_max(s ## width), s ## width ## var, true); \ TEST_CASTABLE_TO_TYPE(type_min(u ## width), s ## width ## var, true); \ /* Constant expressions that do not fit types. */ \ TEST_CASTABLE_TO_TYPE(type_max(u ## width), s ## width, false); \ TEST_CASTABLE_TO_TYPE(type_max(u ## width), s ## width ## var, false); \ TEST_CASTABLE_TO_TYPE(type_min(s ## width), u ## width, false); \ TEST_CASTABLE_TO_TYPE(type_min(s ## width), u ## width ## var, false); \ /* Non-constant expression with mismatched type. */ \ TEST_CASTABLE_TO_TYPE(s ## width ## var, u ## width, false); \ TEST_CASTABLE_TO_TYPE(u ## width ## var, s ## width, false); \ } while (0) #define TEST_CASTABLE_TO_TYPE_RANGE(width) do { \ unsigned long big = U ## width ## _MAX; \ signed long small = S ## width ## _MIN; \ u ## width u ## width ## var = 0; \ s ## width s ## width ## var = 0; \ \ /* Constant expression in range. */ \ TEST_CASTABLE_TO_TYPE(U ## width ## _MAX, u ## width, true); \ TEST_CASTABLE_TO_TYPE(U ## width ## _MAX, u ## width ## var, true); \ TEST_CASTABLE_TO_TYPE(S ## width ## _MIN, s ## width, true); \ TEST_CASTABLE_TO_TYPE(S ## width ## _MIN, s ## width ## var, true); \ /* Constant expression out of range. */ \ TEST_CASTABLE_TO_TYPE((unsigned long)U ## width ## _MAX + 1, u ## width, false); \ TEST_CASTABLE_TO_TYPE((unsigned long)U ## width ## _MAX + 1, u ## width ## var, false); \ TEST_CASTABLE_TO_TYPE((signed long)S ## width ## _MIN - 1, s ## width, false); \ TEST_CASTABLE_TO_TYPE((signed long)S ## width ## _MIN - 1, s ## width ## var, false); \ /* Non-constant expression with mismatched type. */ \ TEST_CASTABLE_TO_TYPE(big, u ## width, false); \ TEST_CASTABLE_TO_TYPE(big, u ## width ## var, false); \ TEST_CASTABLE_TO_TYPE(small, s ## width, false); \ TEST_CASTABLE_TO_TYPE(small, s ## width ## var, false); \ } while (0) TEST_CASTABLE_TO_TYPE_VAR(8); TEST_CASTABLE_TO_TYPE_VAR(16); TEST_CASTABLE_TO_TYPE_VAR(32); #if BITS_PER_LONG == 64 TEST_CASTABLE_TO_TYPE_VAR(64); #endif TEST_CASTABLE_TO_TYPE_RANGE(8); TEST_CASTABLE_TO_TYPE_RANGE(16); #if BITS_PER_LONG == 64 TEST_CASTABLE_TO_TYPE_RANGE(32); #endif kunit_info(test, "%d castable_to_type() tests finished\n", count); #undef TEST_CASTABLE_TO_TYPE_RANGE #undef TEST_CASTABLE_TO_TYPE_VAR #undef TEST_CASTABLE_TO_TYPE } struct foo { int a; u32 counter; s16 array[] __counted_by(counter); }; struct bar { int a; u32 counter; s16 array[]; }; static void DEFINE_FLEX_test(struct kunit *test) { /* Using _RAW_ on a __counted_by struct will initialize "counter" to zero */ DEFINE_RAW_FLEX(struct foo, two_but_zero, array, 2); #if __has_attribute(__counted_by__) int expected_raw_size = sizeof(struct foo); #else int expected_raw_size = sizeof(struct foo) + 2 * sizeof(s16); #endif /* Without annotation, it will always be on-stack size. */ DEFINE_RAW_FLEX(struct bar, two, array, 2); DEFINE_FLEX(struct foo, eight, array, counter, 8); DEFINE_FLEX(struct foo, empty, array, counter, 0); KUNIT_EXPECT_EQ(test, __struct_size(two_but_zero), expected_raw_size); KUNIT_EXPECT_EQ(test, __struct_size(two), sizeof(struct bar) + 2 * sizeof(s16)); KUNIT_EXPECT_EQ(test, __struct_size(eight), 24); KUNIT_EXPECT_EQ(test, __struct_size(empty), sizeof(struct foo)); } static struct kunit_case overflow_test_cases[] = { KUNIT_CASE(u8_u8__u8_overflow_test), KUNIT_CASE(s8_s8__s8_overflow_test), KUNIT_CASE(u16_u16__u16_overflow_test), KUNIT_CASE(s16_s16__s16_overflow_test), KUNIT_CASE(u32_u32__u32_overflow_test), KUNIT_CASE(s32_s32__s32_overflow_test), KUNIT_CASE(u64_u64__u64_overflow_test), KUNIT_CASE(s64_s64__s64_overflow_test), KUNIT_CASE(u32_u32__int_overflow_test), KUNIT_CASE(u32_u32__u8_overflow_test), KUNIT_CASE(u8_u8__int_overflow_test), KUNIT_CASE(int_int__u8_overflow_test), KUNIT_CASE(shift_sane_test), KUNIT_CASE(shift_overflow_test), KUNIT_CASE(shift_truncate_test), KUNIT_CASE(shift_nonsense_test), KUNIT_CASE(overflow_allocation_test), KUNIT_CASE(overflow_size_helpers_test), KUNIT_CASE(overflows_type_test), KUNIT_CASE(same_type_test), KUNIT_CASE(castable_to_type_test), KUNIT_CASE(DEFINE_FLEX_test), {} }; static struct kunit_suite overflow_test_suite = { .name = "overflow", .test_cases = overflow_test_cases, }; kunit_test_suite(overflow_test_suite); MODULE_LICENSE("Dual MIT/GPL");