#define pr_fmt(fmt) "IPsec: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct esp_skb_cb { struct xfrm_skb_cb xfrm; void *tmp; }; struct esp_output_extra { __be32 seqhi; u32 esphoff; }; #define ESP_SKB_CB(__skb) ((struct esp_skb_cb *)&((__skb)->cb[0])) static u32 esp4_get_mtu(struct xfrm_state *x, int mtu); /* * Allocate an AEAD request structure with extra space for SG and IV. * * For alignment considerations the IV is placed at the front, followed * by the request and finally the SG list. * * TODO: Use spare space in skb for this where possible. */ static void *esp_alloc_tmp(struct crypto_aead *aead, int nfrags, int extralen) { unsigned int len; len = extralen; len += crypto_aead_ivsize(aead); if (len) { len += crypto_aead_alignmask(aead) & ~(crypto_tfm_ctx_alignment() - 1); len = ALIGN(len, crypto_tfm_ctx_alignment()); } len += sizeof(struct aead_request) + crypto_aead_reqsize(aead); len = ALIGN(len, __alignof__(struct scatterlist)); len += sizeof(struct scatterlist) * nfrags; return kmalloc(len, GFP_ATOMIC); } static inline void *esp_tmp_extra(void *tmp) { return PTR_ALIGN(tmp, __alignof__(struct esp_output_extra)); } static inline u8 *esp_tmp_iv(struct crypto_aead *aead, void *tmp, int extralen) { return crypto_aead_ivsize(aead) ? PTR_ALIGN((u8 *)tmp + extralen, crypto_aead_alignmask(aead) + 1) : tmp + extralen; } static inline struct aead_request *esp_tmp_req(struct crypto_aead *aead, u8 *iv) { struct aead_request *req; req = (void *)PTR_ALIGN(iv + crypto_aead_ivsize(aead), crypto_tfm_ctx_alignment()); aead_request_set_tfm(req, aead); return req; } static inline struct scatterlist *esp_req_sg(struct crypto_aead *aead, struct aead_request *req) { return (void *)ALIGN((unsigned long)(req + 1) + crypto_aead_reqsize(aead), __alignof__(struct scatterlist)); } static void esp_ssg_unref(struct xfrm_state *x, void *tmp) { struct esp_output_extra *extra = esp_tmp_extra(tmp); struct crypto_aead *aead = x->data; int extralen = 0; u8 *iv; struct aead_request *req; struct scatterlist *sg; if (x->props.flags & XFRM_STATE_ESN) extralen += sizeof(*extra); extra = esp_tmp_extra(tmp); iv = esp_tmp_iv(aead, tmp, extralen); req = esp_tmp_req(aead, iv); /* Unref skb_frag_pages in the src scatterlist if necessary. * Skip the first sg which comes from skb->data. */ if (req->src != req->dst) for (sg = sg_next(req->src); sg; sg = sg_next(sg)) put_page(sg_page(sg)); } static void esp_output_done(struct crypto_async_request *base, int err) { struct sk_buff *skb = base->data; struct xfrm_offload *xo = xfrm_offload(skb); void *tmp; struct xfrm_state *x; if (xo && (xo->flags & XFRM_DEV_RESUME)) x = skb->sp->xvec[skb->sp->len - 1]; else x = skb_dst(skb)->xfrm; tmp = ESP_SKB_CB(skb)->tmp; esp_ssg_unref(x, tmp); kfree(tmp); if (xo && (xo->flags & XFRM_DEV_RESUME)) { if (err) { XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTSTATEPROTOERROR); kfree_skb(skb); return; } skb_push(skb, skb->data - skb_mac_header(skb)); secpath_reset(skb); xfrm_dev_resume(skb); } else { xfrm_output_resume(skb, err); } } /* Move ESP header back into place. */ static void esp_restore_header(struct sk_buff *skb, unsigned int offset) { struct ip_esp_hdr *esph = (void *)(skb->data + offset); void *tmp = ESP_SKB_CB(skb)->tmp; __be32 *seqhi = esp_tmp_extra(tmp); esph->seq_no = esph->spi; esph->spi = *seqhi; } static void esp_output_restore_header(struct sk_buff *skb) { void *tmp = ESP_SKB_CB(skb)->tmp; struct esp_output_extra *extra = esp_tmp_extra(tmp); esp_restore_header(skb, skb_transport_offset(skb) + extra->esphoff - sizeof(__be32)); } static struct ip_esp_hdr *esp_output_set_extra(struct sk_buff *skb, struct xfrm_state *x, struct ip_esp_hdr *esph, struct esp_output_extra *extra) { /* For ESN we move the header forward by 4 bytes to * accomodate the high bits. We will move it back after * encryption. */ if ((x->props.flags & XFRM_STATE_ESN)) { __u32 seqhi; struct xfrm_offload *xo = xfrm_offload(skb); if (xo) seqhi = xo->seq.hi; else seqhi = XFRM_SKB_CB(skb)->seq.output.hi; extra->esphoff = (unsigned char *)esph - skb_transport_header(skb); esph = (struct ip_esp_hdr *)((unsigned char *)esph - 4); extra->seqhi = esph->spi; esph->seq_no = htonl(seqhi); } esph->spi = x->id.spi; return esph; } static void esp_output_done_esn(struct crypto_async_request *base, int err) { struct sk_buff *skb = base->data; esp_output_restore_header(skb); esp_output_done(base, err); } static void esp_output_fill_trailer(u8 *tail, int tfclen, int plen, __u8 proto) { /* Fill padding... */ if (tfclen) { memset(tail, 0, tfclen); tail += tfclen; } do { int i; for (i = 0; i < plen - 2; i++) tail[i] = i + 1; } while (0); tail[plen - 2] = plen - 2; tail[plen - 1] = proto; } static void esp_output_udp_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { int encap_type; struct udphdr *uh; __be32 *udpdata32; __be16 sport, dport; struct xfrm_encap_tmpl *encap = x->encap; struct ip_esp_hdr *esph = esp->esph; spin_lock_bh(&x->lock); sport = encap->encap_sport; dport = encap->encap_dport; encap_type = encap->encap_type; spin_unlock_bh(&x->lock); uh = (struct udphdr *)esph; uh->source = sport; uh->dest = dport; uh->len = htons(skb->len + esp->tailen - skb_transport_offset(skb)); uh->check = 0; switch (encap_type) { default: case UDP_ENCAP_ESPINUDP: esph = (struct ip_esp_hdr *)(uh + 1); break; case UDP_ENCAP_ESPINUDP_NON_IKE: udpdata32 = (__be32 *)(uh + 1); udpdata32[0] = udpdata32[1] = 0; esph = (struct ip_esp_hdr *)(udpdata32 + 2); break; } *skb_mac_header(skb) = IPPROTO_UDP; esp->esph = esph; } int esp_output_head(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { u8 *tail; u8 *vaddr; int nfrags; int esph_offset; struct page *page; struct sk_buff *trailer; int tailen = esp->tailen; /* this is non-NULL only with UDP Encapsulation */ if (x->encap) esp_output_udp_encap(x, skb, esp); if (!skb_cloned(skb)) { if (tailen <= skb_tailroom(skb)) { nfrags = 1; trailer = skb; tail = skb_tail_pointer(trailer); goto skip_cow; } else if ((skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS) && !skb_has_frag_list(skb)) { int allocsize; struct sock *sk = skb->sk; struct page_frag *pfrag = &x->xfrag; esp->inplace = false; allocsize = ALIGN(tailen, L1_CACHE_BYTES); spin_lock_bh(&x->lock); if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) { spin_unlock_bh(&x->lock); goto cow; } page = pfrag->page; get_page(page); vaddr = kmap_atomic(page); tail = vaddr + pfrag->offset; esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto); kunmap_atomic(vaddr); nfrags = skb_shinfo(skb)->nr_frags; __skb_fill_page_desc(skb, nfrags, page, pfrag->offset, tailen); skb_shinfo(skb)->nr_frags = ++nfrags; pfrag->offset = pfrag->offset + allocsize; spin_unlock_bh(&x->lock); nfrags++; skb->len += tailen; skb->data_len += tailen; skb->truesize += tailen; if (sk) refcount_add(tailen, &sk->sk_wmem_alloc); goto out; } } cow: esph_offset = (unsigned char *)esp->esph - skb_transport_header(skb); nfrags = skb_cow_data(skb, tailen, &trailer); if (nfrags < 0) goto out; tail = skb_tail_pointer(trailer); esp->esph = (struct ip_esp_hdr *)(skb_transport_header(skb) + esph_offset); skip_cow: esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto); pskb_put(skb, trailer, tailen); out: return nfrags; } EXPORT_SYMBOL_GPL(esp_output_head); int esp_output_tail(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { u8 *iv; int alen; void *tmp; int ivlen; int assoclen; int extralen; struct page *page; struct ip_esp_hdr *esph; struct crypto_aead *aead; struct aead_request *req; struct scatterlist *sg, *dsg; struct esp_output_extra *extra; int err = -ENOMEM; assoclen = sizeof(struct ip_esp_hdr); extralen = 0; if (x->props.flags & XFRM_STATE_ESN) { extralen += sizeof(*extra); assoclen += sizeof(__be32); } aead = x->data; alen = crypto_aead_authsize(aead); ivlen = crypto_aead_ivsize(aead); tmp = esp_alloc_tmp(aead, esp->nfrags + 2, extralen); if (!tmp) goto error; extra = esp_tmp_extra(tmp); iv = esp_tmp_iv(aead, tmp, extralen); req = esp_tmp_req(aead, iv); sg = esp_req_sg(aead, req); if (esp->inplace) dsg = sg; else dsg = &sg[esp->nfrags]; esph = esp_output_set_extra(skb, x, esp->esph, extra); esp->esph = esph; sg_init_table(sg, esp->nfrags); err = skb_to_sgvec(skb, sg, (unsigned char *)esph - skb->data, assoclen + ivlen + esp->clen + alen); if (unlikely(err < 0)) goto error_free; if (!esp->inplace) { int allocsize; struct page_frag *pfrag = &x->xfrag; allocsize = ALIGN(skb->data_len, L1_CACHE_BYTES); spin_lock_bh(&x->lock); if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) { spin_unlock_bh(&x->lock); goto error_free; } skb_shinfo(skb)->nr_frags = 1; page = pfrag->page; get_page(page); /* replace page frags in skb with new page */ __skb_fill_page_desc(skb, 0, page, pfrag->offset, skb->data_len); pfrag->offset = pfrag->offset + allocsize; spin_unlock_bh(&x->lock); sg_init_table(dsg, skb_shinfo(skb)->nr_frags + 1); err = skb_to_sgvec(skb, dsg, (unsigned char *)esph - skb->data, assoclen + ivlen + esp->clen + alen); if (unlikely(err < 0)) goto error_free; } if ((x->props.flags & XFRM_STATE_ESN)) aead_request_set_callback(req, 0, esp_output_done_esn, skb); else aead_request_set_callback(req, 0, esp_output_done, skb); aead_request_set_crypt(req, sg, dsg, ivlen + esp->clen, iv); aead_request_set_ad(req, assoclen); memset(iv, 0, ivlen); memcpy(iv + ivlen - min(ivlen, 8), (u8 *)&esp->seqno + 8 - min(ivlen, 8), min(ivlen, 8)); ESP_SKB_CB(skb)->tmp = tmp; err = crypto_aead_encrypt(req); switch (err) { case -EINPROGRESS: goto error; case -ENOSPC: err = NET_XMIT_DROP; break; case 0: if ((x->props.flags & XFRM_STATE_ESN)) esp_output_restore_header(skb); } if (sg != dsg) esp_ssg_unref(x, tmp); error_free: kfree(tmp); error: return err; } EXPORT_SYMBOL_GPL(esp_output_tail); static int esp_output(struct xfrm_state *x, struct sk_buff *skb) { int alen; int blksize; struct ip_esp_hdr *esph; struct crypto_aead *aead; struct esp_info esp; esp.inplace = true; esp.proto = *skb_mac_header(skb); *skb_mac_header(skb) = IPPROTO_ESP; /* skb is pure payload to encrypt */ aead = x->data; alen = crypto_aead_authsize(aead); esp.tfclen = 0; if (x->tfcpad) { struct xfrm_dst *dst = (struct xfrm_dst *)skb_dst(skb); u32 padto; padto = min(x->tfcpad, esp4_get_mtu(x, dst->child_mtu_cached)); if (skb->len < padto) esp.tfclen = padto - skb->len; } blksize = ALIGN(crypto_aead_blocksize(aead), 4); esp.clen = ALIGN(skb->len + 2 + esp.tfclen, blksize); esp.plen = esp.clen - skb->len - esp.tfclen; esp.tailen = esp.tfclen + esp.plen + alen; esp.esph = ip_esp_hdr(skb); esp.nfrags = esp_output_head(x, skb, &esp); if (esp.nfrags < 0) return esp.nfrags; esph = esp.esph; esph->spi = x->id.spi; esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low); esp.seqno = cpu_to_be64(XFRM_SKB_CB(skb)->seq.output.low + ((u64)XFRM_SKB_CB(skb)->seq.output.hi << 32)); skb_push(skb, -skb_network_offset(skb)); return esp_output_tail(x, skb, &esp); } static inline int esp_remove_trailer(struct sk_buff *skb) { struct xfrm_state *x = xfrm_input_state(skb); struct xfrm_offload *xo = xfrm_offload(skb); struct crypto_aead *aead = x->data; int alen, hlen, elen; int padlen, trimlen; __wsum csumdiff; u8 nexthdr[2]; int ret; alen = crypto_aead_authsize(aead); hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); elen = skb->len - hlen; if (xo && (xo->flags & XFRM_ESP_NO_TRAILER)) { ret = xo->proto; goto out; } if (skb_copy_bits(skb, skb->len - alen - 2, nexthdr, 2)) BUG(); ret = -EINVAL; padlen = nexthdr[0]; if (padlen + 2 + alen >= elen) { net_dbg_ratelimited("ipsec esp packet is garbage padlen=%d, elen=%d\n", padlen + 2, elen - alen); goto out; } trimlen = alen + padlen + 2; if (skb->ip_summed == CHECKSUM_COMPLETE) { csumdiff = skb_checksum(skb, skb->len - trimlen, trimlen, 0); skb->csum = csum_block_sub(skb->csum, csumdiff, skb->len - trimlen); } pskb_trim(skb, skb->len - trimlen); ret = nexthdr[1]; out: return ret; } int esp_input_done2(struct sk_buff *skb, int err) { const struct iphdr *iph; struct xfrm_state *x = xfrm_input_state(skb); struct xfrm_offload *xo = xfrm_offload(skb); struct crypto_aead *aead = x->data; int hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); int ihl; if (!xo || (xo && !(xo->flags & CRYPTO_DONE))) kfree(ESP_SKB_CB(skb)->tmp); if (unlikely(err)) goto out; err = esp_remove_trailer(skb); if (unlikely(err < 0)) goto out; iph = ip_hdr(skb); ihl = iph->ihl * 4; if (x->encap) { struct xfrm_encap_tmpl *encap = x->encap; struct udphdr *uh = (void *)(skb_network_header(skb) + ihl); /* * 1) if the NAT-T peer's IP or port changed then * advertize the change to the keying daemon. * This is an inbound SA, so just compare * SRC ports. */ if (iph->saddr != x->props.saddr.a4 || uh->source != encap->encap_sport) { xfrm_address_t ipaddr; ipaddr.a4 = iph->saddr; km_new_mapping(x, &ipaddr, uh->source); /* XXX: perhaps add an extra * policy check here, to see * if we should allow or * reject a packet from a * different source * address/port. */ } /* * 2) ignore UDP/TCP checksums in case * of NAT-T in Transport Mode, or * perform other post-processing fixes * as per draft-ietf-ipsec-udp-encaps-06, * section 3.1.2 */ if (x->props.mode == XFRM_MODE_TRANSPORT) skb->ip_summed = CHECKSUM_UNNECESSARY; } skb_pull_rcsum(skb, hlen); if (x->props.mode == XFRM_MODE_TUNNEL) skb_reset_transport_header(skb); else skb_set_transport_header(skb, -ihl); /* RFC4303: Drop dummy packets without any error */ if (err == IPPROTO_NONE) err = -EINVAL; out: return err; } EXPORT_SYMBOL_GPL(esp_input_done2); static void esp_input_done(struct crypto_async_request *base, int err) { struct sk_buff *skb = base->data; xfrm_input_resume(skb, esp_input_done2(skb, err)); } static void esp_input_restore_header(struct sk_buff *skb) { esp_restore_header(skb, 0); __skb_pull(skb, 4); } static void esp_input_set_header(struct sk_buff *skb, __be32 *seqhi) { struct xfrm_state *x = xfrm_input_state(skb); struct ip_esp_hdr *esph; /* For ESN we move the header forward by 4 bytes to * accomodate the high bits. We will move it back after * decryption. */ if ((x->props.flags & XFRM_STATE_ESN)) { esph = skb_push(skb, 4); *seqhi = esph->spi; esph->spi = esph->seq_no; esph->seq_no = XFRM_SKB_CB(skb)->seq.input.hi; } } static void esp_input_done_esn(struct crypto_async_request *base, int err) { struct sk_buff *skb = base->data; esp_input_restore_header(skb); esp_input_done(base, err); } /* * Note: detecting truncated vs. non-truncated authentication data is very * expensive, so we only support truncated data, which is the recommended * and common case. */ static int esp_input(struct xfrm_state *x, struct sk_buff *skb) { struct ip_esp_hdr *esph; struct crypto_aead *aead = x->data; struct aead_request *req; struct sk_buff *trailer; int ivlen = crypto_aead_ivsize(aead); int elen = skb->len - sizeof(*esph) - ivlen; int nfrags; int assoclen; int seqhilen; __be32 *seqhi; void *tmp; u8 *iv; struct scatterlist *sg; int err = -EINVAL; if (!pskb_may_pull(skb, sizeof(*esph) + ivlen)) goto out; if (elen <= 0) goto out; assoclen = sizeof(*esph); seqhilen = 0; if (x->props.flags & XFRM_STATE_ESN) { seqhilen += sizeof(__be32); assoclen += seqhilen; } if (!skb_cloned(skb)) { if (!skb_is_nonlinear(skb)) { nfrags = 1; goto skip_cow; } else if (!skb_has_frag_list(skb)) { nfrags = skb_shinfo(skb)->nr_frags; nfrags++; goto skip_cow; } } err = skb_cow_data(skb, 0, &trailer); if (err < 0) goto out; nfrags = err; skip_cow: err = -ENOMEM; tmp = esp_alloc_tmp(aead, nfrags, seqhilen); if (!tmp) goto out; ESP_SKB_CB(skb)->tmp = tmp; seqhi = esp_tmp_extra(tmp); iv = esp_tmp_iv(aead, tmp, seqhilen); req = esp_tmp_req(aead, iv); sg = esp_req_sg(aead, req); esp_input_set_header(skb, seqhi); sg_init_table(sg, nfrags); err = skb_to_sgvec(skb, sg, 0, skb->len); if (unlikely(err < 0)) { kfree(tmp); goto out; } skb->ip_summed = CHECKSUM_NONE; if ((x->props.flags & XFRM_STATE_ESN)) aead_request_set_callback(req, 0, esp_input_done_esn, skb); else aead_request_set_callback(req, 0, esp_input_done, skb); aead_request_set_crypt(req, sg, sg, elen + ivlen, iv); aead_request_set_ad(req, assoclen); err = crypto_aead_decrypt(req); if (err == -EINPROGRESS) goto out; if ((x->props.flags & XFRM_STATE_ESN)) esp_input_restore_header(skb); err = esp_input_done2(skb, err); out: return err; } static u32 esp4_get_mtu(struct xfrm_state *x, int mtu) { struct crypto_aead *aead = x->data; u32 blksize = ALIGN(crypto_aead_blocksize(aead), 4); unsigned int net_adj; switch (x->props.mode) { case XFRM_MODE_TRANSPORT: case XFRM_MODE_BEET: net_adj = sizeof(struct iphdr); break; case XFRM_MODE_TUNNEL: net_adj = 0; break; default: BUG(); } return ((mtu - x->props.header_len - crypto_aead_authsize(aead) - net_adj) & ~(blksize - 1)) + net_adj - 2; } static int esp4_err(struct sk_buff *skb, u32 info) { struct net *net = dev_net(skb->dev); const struct iphdr *iph = (const struct iphdr *)skb->data; struct ip_esp_hdr *esph = (struct ip_esp_hdr *)(skb->data+(iph->ihl<<2)); struct xfrm_state *x; switch (icmp_hdr(skb)->type) { case ICMP_DEST_UNREACH: if (icmp_hdr(skb)->code != ICMP_FRAG_NEEDED) return 0; case ICMP_REDIRECT: break; default: return 0; } x = xfrm_state_lookup(net, skb->mark, (const xfrm_address_t *)&iph->daddr, esph->spi, IPPROTO_ESP, AF_INET); if (!x) return 0; if (icmp_hdr(skb)->type == ICMP_DEST_UNREACH) ipv4_update_pmtu(skb, net, info, 0, IPPROTO_ESP); else ipv4_redirect(skb, net, 0, 0, IPPROTO_ESP, 0); xfrm_state_put(x); return 0; } static void esp_destroy(struct xfrm_state *x) { struct crypto_aead *aead = x->data; if (!aead) return; crypto_free_aead(aead); } static int esp_init_aead(struct xfrm_state *x) { char aead_name[CRYPTO_MAX_ALG_NAME]; struct crypto_aead *aead; int err; err = -ENAMETOOLONG; if (snprintf(aead_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", x->geniv, x->aead->alg_name) >= CRYPTO_MAX_ALG_NAME) goto error; aead = crypto_alloc_aead(aead_name, 0, 0); err = PTR_ERR(aead); if (IS_ERR(aead)) goto error; x->data = aead; err = crypto_aead_setkey(aead, x->aead->alg_key, (x->aead->alg_key_len + 7) / 8); if (err) goto error; err = crypto_aead_setauthsize(aead, x->aead->alg_icv_len / 8); if (err) goto error; error: return err; } static int esp_init_authenc(struct xfrm_state *x) { struct crypto_aead *aead; struct crypto_authenc_key_param *param; struct rtattr *rta; char *key; char *p; char authenc_name[CRYPTO_MAX_ALG_NAME]; unsigned int keylen; int err; err = -EINVAL; if (!x->ealg) goto error; err = -ENAMETOOLONG; if ((x->props.flags & XFRM_STATE_ESN)) { if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME, "%s%sauthencesn(%s,%s)%s", x->geniv ?: "", x->geniv ? "(" : "", x->aalg ? x->aalg->alg_name : "digest_null", x->ealg->alg_name, x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME) goto error; } else { if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME, "%s%sauthenc(%s,%s)%s", x->geniv ?: "", x->geniv ? "(" : "", x->aalg ? x->aalg->alg_name : "digest_null", x->ealg->alg_name, x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME) goto error; } aead = crypto_alloc_aead(authenc_name, 0, 0); err = PTR_ERR(aead); if (IS_ERR(aead)) goto error; x->data = aead; keylen = (x->aalg ? (x->aalg->alg_key_len + 7) / 8 : 0) + (x->ealg->alg_key_len + 7) / 8 + RTA_SPACE(sizeof(*param)); err = -ENOMEM; key = kmalloc(keylen, GFP_KERNEL); if (!key) goto error; p = key; rta = (void *)p; rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; rta->rta_len = RTA_LENGTH(sizeof(*param)); param = RTA_DATA(rta); p += RTA_SPACE(sizeof(*param)); if (x->aalg) { struct xfrm_algo_desc *aalg_desc; memcpy(p, x->aalg->alg_key, (x->aalg->alg_key_len + 7) / 8); p += (x->aalg->alg_key_len + 7) / 8; aalg_desc = xfrm_aalg_get_byname(x->aalg->alg_name, 0); BUG_ON(!aalg_desc); err = -EINVAL; if (aalg_desc->uinfo.auth.icv_fullbits / 8 != crypto_aead_authsize(aead)) { pr_info("ESP: %s digestsize %u != %hu\n", x->aalg->alg_name, crypto_aead_authsize(aead), aalg_desc->uinfo.auth.icv_fullbits / 8); goto free_key; } err = crypto_aead_setauthsize( aead, x->aalg->alg_trunc_len / 8); if (err) goto free_key; } param->enckeylen = cpu_to_be32((x->ealg->alg_key_len + 7) / 8); memcpy(p, x->ealg->alg_key, (x->ealg->alg_key_len + 7) / 8); err = crypto_aead_setkey(aead, key, keylen); free_key: kfree(key); error: return err; } static int esp_init_state(struct xfrm_state *x) { struct crypto_aead *aead; u32 align; int err; x->data = NULL; if (x->aead) err = esp_init_aead(x); else err = esp_init_authenc(x); if (err) goto error; aead = x->data; x->props.header_len = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); if (x->props.mode == XFRM_MODE_TUNNEL) x->props.header_len += sizeof(struct iphdr); else if (x->props.mode == XFRM_MODE_BEET && x->sel.family != AF_INET6) x->props.header_len += IPV4_BEET_PHMAXLEN; if (x->encap) { struct xfrm_encap_tmpl *encap = x->encap; switch (encap->encap_type) { default: err = -EINVAL; goto error; case UDP_ENCAP_ESPINUDP: x->props.header_len += sizeof(struct udphdr); break; case UDP_ENCAP_ESPINUDP_NON_IKE: x->props.header_len += sizeof(struct udphdr) + 2 * sizeof(u32); break; } } align = ALIGN(crypto_aead_blocksize(aead), 4); x->props.trailer_len = align + 1 + crypto_aead_authsize(aead); error: return err; } static int esp4_rcv_cb(struct sk_buff *skb, int err) { return 0; } static const struct xfrm_type esp_type = { .description = "ESP4", .owner = THIS_MODULE, .proto = IPPROTO_ESP, .flags = XFRM_TYPE_REPLAY_PROT, .init_state = esp_init_state, .destructor = esp_destroy, .get_mtu = esp4_get_mtu, .input = esp_input, .output = esp_output, }; static struct xfrm4_protocol esp4_protocol = { .handler = xfrm4_rcv, .input_handler = xfrm_input, .cb_handler = esp4_rcv_cb, .err_handler = esp4_err, .priority = 0, }; static int __init esp4_init(void) { if (xfrm_register_type(&esp_type, AF_INET) < 0) { pr_info("%s: can't add xfrm type\n", __func__); return -EAGAIN; } if (xfrm4_protocol_register(&esp4_protocol, IPPROTO_ESP) < 0) { pr_info("%s: can't add protocol\n", __func__); xfrm_unregister_type(&esp_type, AF_INET); return -EAGAIN; } return 0; } static void __exit esp4_fini(void) { if (xfrm4_protocol_deregister(&esp4_protocol, IPPROTO_ESP) < 0) pr_info("%s: can't remove protocol\n", __func__); if (xfrm_unregister_type(&esp_type, AF_INET) < 0) pr_info("%s: can't remove xfrm type\n", __func__); } module_init(esp4_init); module_exit(esp4_fini); MODULE_LICENSE("GPL"); MODULE_ALIAS_XFRM_TYPE(AF_INET, XFRM_PROTO_ESP);