/* * mac80211 configuration hooks for cfg80211 * * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> * * This file is GPLv2 as found in COPYING. */ #include <linux/ieee80211.h> #include <linux/nl80211.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <net/net_namespace.h> #include <linux/rcupdate.h> #include <linux/if_ether.h> #include <net/cfg80211.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "cfg.h" #include "rate.h" #include "mesh.h" static struct wireless_dev *ieee80211_add_iface(struct wiphy *wiphy, const char *name, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct ieee80211_local *local = wiphy_priv(wiphy); struct wireless_dev *wdev; struct ieee80211_sub_if_data *sdata; int err; err = ieee80211_if_add(local, name, &wdev, type, params); if (err) return ERR_PTR(err); if (type == NL80211_IFTYPE_MONITOR && flags) { sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); sdata->u.mntr_flags = *flags; } return wdev; } static int ieee80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev) { ieee80211_if_remove(IEEE80211_WDEV_TO_SUB_IF(wdev)); return 0; } static int ieee80211_change_iface(struct wiphy *wiphy, struct net_device *dev, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int ret; ret = ieee80211_if_change_type(sdata, type); if (ret) return ret; if (type == NL80211_IFTYPE_AP_VLAN && params && params->use_4addr == 0) RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); else if (type == NL80211_IFTYPE_STATION && params && params->use_4addr >= 0) sdata->u.mgd.use_4addr = params->use_4addr; if (sdata->vif.type == NL80211_IFTYPE_MONITOR && flags) { struct ieee80211_local *local = sdata->local; if (ieee80211_sdata_running(sdata)) { u32 mask = MONITOR_FLAG_COOK_FRAMES | MONITOR_FLAG_ACTIVE; /* * Prohibit MONITOR_FLAG_COOK_FRAMES and * MONITOR_FLAG_ACTIVE to be changed while the * interface is up. * Else we would need to add a lot of cruft * to update everything: * cooked_mntrs, monitor and all fif_* counters * reconfigure hardware */ if ((*flags & mask) != (sdata->u.mntr_flags & mask)) return -EBUSY; ieee80211_adjust_monitor_flags(sdata, -1); sdata->u.mntr_flags = *flags; ieee80211_adjust_monitor_flags(sdata, 1); ieee80211_configure_filter(local); } else { /* * Because the interface is down, ieee80211_do_stop * and ieee80211_do_open take care of "everything" * mentioned in the comment above. */ sdata->u.mntr_flags = *flags; } } return 0; } static int ieee80211_start_p2p_device(struct wiphy *wiphy, struct wireless_dev *wdev) { return ieee80211_do_open(wdev, true); } static void ieee80211_stop_p2p_device(struct wiphy *wiphy, struct wireless_dev *wdev) { ieee80211_sdata_stop(IEEE80211_WDEV_TO_SUB_IF(wdev)); } static int ieee80211_set_noack_map(struct wiphy *wiphy, struct net_device *dev, u16 noack_map) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); sdata->noack_map = noack_map; return 0; } static int ieee80211_add_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta = NULL; const struct ieee80211_cipher_scheme *cs = NULL; struct ieee80211_key *key; int err; if (!ieee80211_sdata_running(sdata)) return -ENETDOWN; /* reject WEP and TKIP keys if WEP failed to initialize */ switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_WEP104: if (IS_ERR(local->wep_tx_tfm)) return -EINVAL; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_GCMP: break; default: cs = ieee80211_cs_get(local, params->cipher, sdata->vif.type); break; } key = ieee80211_key_alloc(params->cipher, key_idx, params->key_len, params->key, params->seq_len, params->seq, cs); if (IS_ERR(key)) return PTR_ERR(key); if (pairwise) key->conf.flags |= IEEE80211_KEY_FLAG_PAIRWISE; mutex_lock(&local->sta_mtx); if (mac_addr) { if (ieee80211_vif_is_mesh(&sdata->vif)) sta = sta_info_get(sdata, mac_addr); else sta = sta_info_get_bss(sdata, mac_addr); /* * The ASSOC test makes sure the driver is ready to * receive the key. When wpa_supplicant has roamed * using FT, it attempts to set the key before * association has completed, this rejects that attempt * so it will set the key again after assocation. * * TODO: accept the key if we have a station entry and * add it to the device after the station. */ if (!sta || !test_sta_flag(sta, WLAN_STA_ASSOC)) { ieee80211_key_free_unused(key); err = -ENOENT; goto out_unlock; } } switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED) key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: /* Keys without a station are used for TX only */ if (key->sta && test_sta_flag(key->sta, WLAN_STA_MFP)) key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; break; case NL80211_IFTYPE_ADHOC: /* no MFP (yet) */ break; case NL80211_IFTYPE_MESH_POINT: #ifdef CONFIG_MAC80211_MESH if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE) key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; break; #endif case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: /* shouldn't happen */ WARN_ON_ONCE(1); break; } if (sta) sta->cipher_scheme = cs; err = ieee80211_key_link(key, sdata, sta); out_unlock: mutex_unlock(&local->sta_mtx); return err; } static int ieee80211_del_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct ieee80211_key *key = NULL; int ret; mutex_lock(&local->sta_mtx); mutex_lock(&local->key_mtx); if (mac_addr) { ret = -ENOENT; sta = sta_info_get_bss(sdata, mac_addr); if (!sta) goto out_unlock; if (pairwise) key = key_mtx_dereference(local, sta->ptk[key_idx]); else key = key_mtx_dereference(local, sta->gtk[key_idx]); } else key = key_mtx_dereference(local, sdata->keys[key_idx]); if (!key) { ret = -ENOENT; goto out_unlock; } ieee80211_key_free(key, true); ret = 0; out_unlock: mutex_unlock(&local->key_mtx); mutex_unlock(&local->sta_mtx); return ret; } static int ieee80211_get_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params *params)) { struct ieee80211_sub_if_data *sdata; struct sta_info *sta = NULL; u8 seq[6] = {0}; struct key_params params; struct ieee80211_key *key = NULL; u64 pn64; u32 iv32; u16 iv16; int err = -ENOENT; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); if (mac_addr) { sta = sta_info_get_bss(sdata, mac_addr); if (!sta) goto out; if (pairwise && key_idx < NUM_DEFAULT_KEYS) key = rcu_dereference(sta->ptk[key_idx]); else if (!pairwise && key_idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) key = rcu_dereference(sta->gtk[key_idx]); } else key = rcu_dereference(sdata->keys[key_idx]); if (!key) goto out; memset(¶ms, 0, sizeof(params)); params.cipher = key->conf.cipher; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_TKIP: iv32 = key->u.tkip.tx.iv32; iv16 = key->u.tkip.tx.iv16; if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) drv_get_tkip_seq(sdata->local, key->conf.hw_key_idx, &iv32, &iv16); seq[0] = iv16 & 0xff; seq[1] = (iv16 >> 8) & 0xff; seq[2] = iv32 & 0xff; seq[3] = (iv32 >> 8) & 0xff; seq[4] = (iv32 >> 16) & 0xff; seq[5] = (iv32 >> 24) & 0xff; params.seq = seq; params.seq_len = 6; break; case WLAN_CIPHER_SUITE_CCMP: pn64 = atomic64_read(&key->u.ccmp.tx_pn); seq[0] = pn64; seq[1] = pn64 >> 8; seq[2] = pn64 >> 16; seq[3] = pn64 >> 24; seq[4] = pn64 >> 32; seq[5] = pn64 >> 40; params.seq = seq; params.seq_len = 6; break; case WLAN_CIPHER_SUITE_AES_CMAC: pn64 = atomic64_read(&key->u.aes_cmac.tx_pn); seq[0] = pn64; seq[1] = pn64 >> 8; seq[2] = pn64 >> 16; seq[3] = pn64 >> 24; seq[4] = pn64 >> 32; seq[5] = pn64 >> 40; params.seq = seq; params.seq_len = 6; break; } params.key = key->conf.key; params.key_len = key->conf.keylen; callback(cookie, ¶ms); err = 0; out: rcu_read_unlock(); return err; } static int ieee80211_config_default_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool uni, bool multi) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); ieee80211_set_default_key(sdata, key_idx, uni, multi); return 0; } static int ieee80211_config_default_mgmt_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); ieee80211_set_default_mgmt_key(sdata, key_idx); return 0; } void sta_set_rate_info_tx(struct sta_info *sta, const struct ieee80211_tx_rate *rate, struct rate_info *rinfo) { rinfo->flags = 0; if (rate->flags & IEEE80211_TX_RC_MCS) { rinfo->flags |= RATE_INFO_FLAGS_MCS; rinfo->mcs = rate->idx; } else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) { rinfo->flags |= RATE_INFO_FLAGS_VHT_MCS; rinfo->mcs = ieee80211_rate_get_vht_mcs(rate); rinfo->nss = ieee80211_rate_get_vht_nss(rate); } else { struct ieee80211_supported_band *sband; int shift = ieee80211_vif_get_shift(&sta->sdata->vif); u16 brate; sband = sta->local->hw.wiphy->bands[ ieee80211_get_sdata_band(sta->sdata)]; brate = sband->bitrates[rate->idx].bitrate; rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); } if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) rinfo->flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH; if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH) rinfo->flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH; if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH) rinfo->flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH; if (rate->flags & IEEE80211_TX_RC_SHORT_GI) rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; } void sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) { rinfo->flags = 0; if (sta->last_rx_rate_flag & RX_FLAG_HT) { rinfo->flags |= RATE_INFO_FLAGS_MCS; rinfo->mcs = sta->last_rx_rate_idx; } else if (sta->last_rx_rate_flag & RX_FLAG_VHT) { rinfo->flags |= RATE_INFO_FLAGS_VHT_MCS; rinfo->nss = sta->last_rx_rate_vht_nss; rinfo->mcs = sta->last_rx_rate_idx; } else { struct ieee80211_supported_band *sband; int shift = ieee80211_vif_get_shift(&sta->sdata->vif); u16 brate; sband = sta->local->hw.wiphy->bands[ ieee80211_get_sdata_band(sta->sdata)]; brate = sband->bitrates[sta->last_rx_rate_idx].bitrate; rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); } if (sta->last_rx_rate_flag & RX_FLAG_40MHZ) rinfo->flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH; if (sta->last_rx_rate_flag & RX_FLAG_SHORT_GI) rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; if (sta->last_rx_rate_vht_flag & RX_VHT_FLAG_80MHZ) rinfo->flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH; if (sta->last_rx_rate_vht_flag & RX_VHT_FLAG_80P80MHZ) rinfo->flags |= RATE_INFO_FLAGS_80P80_MHZ_WIDTH; if (sta->last_rx_rate_vht_flag & RX_VHT_FLAG_160MHZ) rinfo->flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH; } static void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct timespec uptime; u64 packets = 0; int i, ac; sinfo->generation = sdata->local->sta_generation; sinfo->filled = STATION_INFO_INACTIVE_TIME | STATION_INFO_RX_BYTES64 | STATION_INFO_TX_BYTES64 | STATION_INFO_RX_PACKETS | STATION_INFO_TX_PACKETS | STATION_INFO_TX_RETRIES | STATION_INFO_TX_FAILED | STATION_INFO_TX_BITRATE | STATION_INFO_RX_BITRATE | STATION_INFO_RX_DROP_MISC | STATION_INFO_BSS_PARAM | STATION_INFO_CONNECTED_TIME | STATION_INFO_STA_FLAGS | STATION_INFO_BEACON_LOSS_COUNT; do_posix_clock_monotonic_gettime(&uptime); sinfo->connected_time = uptime.tv_sec - sta->last_connected; sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx); sinfo->tx_bytes = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { sinfo->tx_bytes += sta->tx_bytes[ac]; packets += sta->tx_packets[ac]; } sinfo->tx_packets = packets; sinfo->rx_bytes = sta->rx_bytes; sinfo->rx_packets = sta->rx_packets; sinfo->tx_retries = sta->tx_retry_count; sinfo->tx_failed = sta->tx_retry_failed; sinfo->rx_dropped_misc = sta->rx_dropped; sinfo->beacon_loss_count = sta->beacon_loss_count; if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) || (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) { sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG; if (!local->ops->get_rssi || drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal)) sinfo->signal = (s8)sta->last_signal; sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal); } if (sta->chains) { sinfo->filled |= STATION_INFO_CHAIN_SIGNAL | STATION_INFO_CHAIN_SIGNAL_AVG; sinfo->chains = sta->chains; for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { sinfo->chain_signal[i] = sta->chain_signal_last[i]; sinfo->chain_signal_avg[i] = (s8) -ewma_read(&sta->chain_signal_avg[i]); } } sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate); sta_set_rate_info_rx(sta, &sinfo->rxrate); if (ieee80211_vif_is_mesh(&sdata->vif)) { #ifdef CONFIG_MAC80211_MESH sinfo->filled |= STATION_INFO_LLID | STATION_INFO_PLID | STATION_INFO_PLINK_STATE | STATION_INFO_LOCAL_PM | STATION_INFO_PEER_PM | STATION_INFO_NONPEER_PM; sinfo->llid = sta->llid; sinfo->plid = sta->plid; sinfo->plink_state = sta->plink_state; if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { sinfo->filled |= STATION_INFO_T_OFFSET; sinfo->t_offset = sta->t_offset; } sinfo->local_pm = sta->local_pm; sinfo->peer_pm = sta->peer_pm; sinfo->nonpeer_pm = sta->nonpeer_pm; #endif } sinfo->bss_param.flags = 0; if (sdata->vif.bss_conf.use_cts_prot) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; if (sdata->vif.bss_conf.use_short_preamble) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; if (sdata->vif.bss_conf.use_short_slot) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; sinfo->bss_param.dtim_period = sdata->local->hw.conf.ps_dtim_period; sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; sinfo->sta_flags.set = 0; sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | BIT(NL80211_STA_FLAG_WME) | BIT(NL80211_STA_FLAG_MFP) | BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED) | BIT(NL80211_STA_FLAG_TDLS_PEER); if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); if (test_sta_flag(sta, WLAN_STA_WME)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); if (test_sta_flag(sta, WLAN_STA_MFP)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); if (test_sta_flag(sta, WLAN_STA_AUTH)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); if (test_sta_flag(sta, WLAN_STA_ASSOC)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); } static const char ieee80211_gstrings_sta_stats[][ETH_GSTRING_LEN] = { "rx_packets", "rx_bytes", "wep_weak_iv_count", "rx_duplicates", "rx_fragments", "rx_dropped", "tx_packets", "tx_bytes", "tx_fragments", "tx_filtered", "tx_retry_failed", "tx_retries", "beacon_loss", "sta_state", "txrate", "rxrate", "signal", "channel", "noise", "ch_time", "ch_time_busy", "ch_time_ext_busy", "ch_time_rx", "ch_time_tx" }; #define STA_STATS_LEN ARRAY_SIZE(ieee80211_gstrings_sta_stats) static int ieee80211_get_et_sset_count(struct wiphy *wiphy, struct net_device *dev, int sset) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int rv = 0; if (sset == ETH_SS_STATS) rv += STA_STATS_LEN; rv += drv_get_et_sset_count(sdata, sset); if (rv == 0) return -EOPNOTSUPP; return rv; } static void ieee80211_get_et_stats(struct wiphy *wiphy, struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_channel *channel; struct sta_info *sta; struct ieee80211_local *local = sdata->local; struct station_info sinfo; struct survey_info survey; int i, q; #define STA_STATS_SURVEY_LEN 7 memset(data, 0, sizeof(u64) * STA_STATS_LEN); #define ADD_STA_STATS(sta) \ do { \ data[i++] += sta->rx_packets; \ data[i++] += sta->rx_bytes; \ data[i++] += sta->wep_weak_iv_count; \ data[i++] += sta->num_duplicates; \ data[i++] += sta->rx_fragments; \ data[i++] += sta->rx_dropped; \ \ data[i++] += sinfo.tx_packets; \ data[i++] += sinfo.tx_bytes; \ data[i++] += sta->tx_fragments; \ data[i++] += sta->tx_filtered_count; \ data[i++] += sta->tx_retry_failed; \ data[i++] += sta->tx_retry_count; \ data[i++] += sta->beacon_loss_count; \ } while (0) /* For Managed stations, find the single station based on BSSID * and use that. For interface types, iterate through all available * stations and add stats for any station that is assigned to this * network device. */ mutex_lock(&local->sta_mtx); if (sdata->vif.type == NL80211_IFTYPE_STATION) { sta = sta_info_get_bss(sdata, sdata->u.mgd.bssid); if (!(sta && !WARN_ON(sta->sdata->dev != dev))) goto do_survey; sinfo.filled = 0; sta_set_sinfo(sta, &sinfo); i = 0; ADD_STA_STATS(sta); data[i++] = sta->sta_state; if (sinfo.filled & STATION_INFO_TX_BITRATE) data[i] = 100000 * cfg80211_calculate_bitrate(&sinfo.txrate); i++; if (sinfo.filled & STATION_INFO_RX_BITRATE) data[i] = 100000 * cfg80211_calculate_bitrate(&sinfo.rxrate); i++; if (sinfo.filled & STATION_INFO_SIGNAL_AVG) data[i] = (u8)sinfo.signal_avg; i++; } else { list_for_each_entry(sta, &local->sta_list, list) { /* Make sure this station belongs to the proper dev */ if (sta->sdata->dev != dev) continue; sinfo.filled = 0; sta_set_sinfo(sta, &sinfo); i = 0; ADD_STA_STATS(sta); } } do_survey: i = STA_STATS_LEN - STA_STATS_SURVEY_LEN; /* Get survey stats for current channel */ survey.filled = 0; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (chanctx_conf) channel = chanctx_conf->def.chan; else channel = NULL; rcu_read_unlock(); if (channel) { q = 0; do { survey.filled = 0; if (drv_get_survey(local, q, &survey) != 0) { survey.filled = 0; break; } q++; } while (channel != survey.channel); } if (survey.filled) data[i++] = survey.channel->center_freq; else data[i++] = 0; if (survey.filled & SURVEY_INFO_NOISE_DBM) data[i++] = (u8)survey.noise; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_CHANNEL_TIME) data[i++] = survey.channel_time; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_CHANNEL_TIME_BUSY) data[i++] = survey.channel_time_busy; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_CHANNEL_TIME_EXT_BUSY) data[i++] = survey.channel_time_ext_busy; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_CHANNEL_TIME_RX) data[i++] = survey.channel_time_rx; else data[i++] = -1LL; if (survey.filled & SURVEY_INFO_CHANNEL_TIME_TX) data[i++] = survey.channel_time_tx; else data[i++] = -1LL; mutex_unlock(&local->sta_mtx); if (WARN_ON(i != STA_STATS_LEN)) return; drv_get_et_stats(sdata, stats, &(data[STA_STATS_LEN])); } static void ieee80211_get_et_strings(struct wiphy *wiphy, struct net_device *dev, u32 sset, u8 *data) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int sz_sta_stats = 0; if (sset == ETH_SS_STATS) { sz_sta_stats = sizeof(ieee80211_gstrings_sta_stats); memcpy(data, ieee80211_gstrings_sta_stats, sz_sta_stats); } drv_get_et_strings(sdata, sset, &(data[sz_sta_stats])); } static int ieee80211_dump_station(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; int ret = -ENOENT; mutex_lock(&local->sta_mtx); sta = sta_info_get_by_idx(sdata, idx); if (sta) { ret = 0; memcpy(mac, sta->sta.addr, ETH_ALEN); sta_set_sinfo(sta, sinfo); } mutex_unlock(&local->sta_mtx); return ret; } static int ieee80211_dump_survey(struct wiphy *wiphy, struct net_device *dev, int idx, struct survey_info *survey) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); return drv_get_survey(local, idx, survey); } static int ieee80211_get_station(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_info *sinfo) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; int ret = -ENOENT; mutex_lock(&local->sta_mtx); sta = sta_info_get_bss(sdata, mac); if (sta) { ret = 0; sta_set_sinfo(sta, sinfo); } mutex_unlock(&local->sta_mtx); return ret; } static int ieee80211_set_monitor_channel(struct wiphy *wiphy, struct cfg80211_chan_def *chandef) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata; int ret = 0; if (cfg80211_chandef_identical(&local->monitor_chandef, chandef)) return 0; mutex_lock(&local->mtx); mutex_lock(&local->iflist_mtx); if (local->use_chanctx) { sdata = rcu_dereference_protected( local->monitor_sdata, lockdep_is_held(&local->iflist_mtx)); if (sdata) { ieee80211_vif_release_channel(sdata); ret = ieee80211_vif_use_channel(sdata, chandef, IEEE80211_CHANCTX_EXCLUSIVE); } } else if (local->open_count == local->monitors) { local->_oper_chandef = *chandef; ieee80211_hw_config(local, 0); } if (ret == 0) local->monitor_chandef = *chandef; mutex_unlock(&local->iflist_mtx); mutex_unlock(&local->mtx); return ret; } static int ieee80211_set_probe_resp(struct ieee80211_sub_if_data *sdata, const u8 *resp, size_t resp_len) { struct probe_resp *new, *old; if (!resp || !resp_len) return 1; old = sdata_dereference(sdata->u.ap.probe_resp, sdata); new = kzalloc(sizeof(struct probe_resp) + resp_len, GFP_KERNEL); if (!new) return -ENOMEM; new->len = resp_len; memcpy(new->data, resp, resp_len); rcu_assign_pointer(sdata->u.ap.probe_resp, new); if (old) kfree_rcu(old, rcu_head); return 0; } static int ieee80211_assign_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_beacon_data *params) { struct beacon_data *new, *old; int new_head_len, new_tail_len; int size, err; u32 changed = BSS_CHANGED_BEACON; old = sdata_dereference(sdata->u.ap.beacon, sdata); /* Need to have a beacon head if we don't have one yet */ if (!params->head && !old) return -EINVAL; /* new or old head? */ if (params->head) new_head_len = params->head_len; else new_head_len = old->head_len; /* new or old tail? */ if (params->tail || !old) /* params->tail_len will be zero for !params->tail */ new_tail_len = params->tail_len; else new_tail_len = old->tail_len; size = sizeof(*new) + new_head_len + new_tail_len; new = kzalloc(size, GFP_KERNEL); if (!new) return -ENOMEM; /* start filling the new info now */ /* * pointers go into the block we allocated, * memory is | beacon_data | head | tail | */ new->head = ((u8 *) new) + sizeof(*new); new->tail = new->head + new_head_len; new->head_len = new_head_len; new->tail_len = new_tail_len; /* copy in head */ if (params->head) memcpy(new->head, params->head, new_head_len); else memcpy(new->head, old->head, new_head_len); /* copy in optional tail */ if (params->tail) memcpy(new->tail, params->tail, new_tail_len); else if (old) memcpy(new->tail, old->tail, new_tail_len); err = ieee80211_set_probe_resp(sdata, params->probe_resp, params->probe_resp_len); if (err < 0) return err; if (err == 0) changed |= BSS_CHANGED_AP_PROBE_RESP; rcu_assign_pointer(sdata->u.ap.beacon, new); if (old) kfree_rcu(old, rcu_head); return changed; } static int ieee80211_start_ap(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ap_settings *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct beacon_data *old; struct ieee80211_sub_if_data *vlan; u32 changed = BSS_CHANGED_BEACON_INT | BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON | BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; int err; old = sdata_dereference(sdata->u.ap.beacon, sdata); if (old) return -EALREADY; /* TODO: make hostapd tell us what it wants */ sdata->smps_mode = IEEE80211_SMPS_OFF; sdata->needed_rx_chains = sdata->local->rx_chains; mutex_lock(&local->mtx); sdata->radar_required = params->radar_required; err = ieee80211_vif_use_channel(sdata, ¶ms->chandef, IEEE80211_CHANCTX_SHARED); mutex_unlock(&local->mtx); if (err) return err; ieee80211_vif_copy_chanctx_to_vlans(sdata, false); /* * Apply control port protocol, this allows us to * not encrypt dynamic WEP control frames. */ sdata->control_port_protocol = params->crypto.control_port_ethertype; sdata->control_port_no_encrypt = params->crypto.control_port_no_encrypt; sdata->encrypt_headroom = ieee80211_cs_headroom(sdata->local, ¶ms->crypto, sdata->vif.type); list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) { vlan->control_port_protocol = params->crypto.control_port_ethertype; vlan->control_port_no_encrypt = params->crypto.control_port_no_encrypt; vlan->encrypt_headroom = ieee80211_cs_headroom(sdata->local, ¶ms->crypto, vlan->vif.type); } sdata->vif.bss_conf.beacon_int = params->beacon_interval; sdata->vif.bss_conf.dtim_period = params->dtim_period; sdata->vif.bss_conf.enable_beacon = true; sdata->vif.bss_conf.ssid_len = params->ssid_len; if (params->ssid_len) memcpy(sdata->vif.bss_conf.ssid, params->ssid, params->ssid_len); sdata->vif.bss_conf.hidden_ssid = (params->hidden_ssid != NL80211_HIDDEN_SSID_NOT_IN_USE); memset(&sdata->vif.bss_conf.p2p_noa_attr, 0, sizeof(sdata->vif.bss_conf.p2p_noa_attr)); sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow = params->p2p_ctwindow & IEEE80211_P2P_OPPPS_CTWINDOW_MASK; if (params->p2p_opp_ps) sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT; err = ieee80211_assign_beacon(sdata, ¶ms->beacon); if (err < 0) { ieee80211_vif_release_channel(sdata); return err; } changed |= err; err = drv_start_ap(sdata->local, sdata); if (err) { old = sdata_dereference(sdata->u.ap.beacon, sdata); if (old) kfree_rcu(old, rcu_head); RCU_INIT_POINTER(sdata->u.ap.beacon, NULL); ieee80211_vif_release_channel(sdata); return err; } ieee80211_recalc_dtim(local, sdata); ieee80211_bss_info_change_notify(sdata, changed); netif_carrier_on(dev); list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) netif_carrier_on(vlan->dev); return 0; } static int ieee80211_change_beacon(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_beacon_data *params) { struct ieee80211_sub_if_data *sdata; struct beacon_data *old; int err; sdata = IEEE80211_DEV_TO_SUB_IF(dev); sdata_assert_lock(sdata); /* don't allow changing the beacon while CSA is in place - offset * of channel switch counter may change */ if (sdata->vif.csa_active) return -EBUSY; old = sdata_dereference(sdata->u.ap.beacon, sdata); if (!old) return -ENOENT; err = ieee80211_assign_beacon(sdata, params); if (err < 0) return err; ieee80211_bss_info_change_notify(sdata, err); return 0; } static int ieee80211_stop_ap(struct wiphy *wiphy, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_sub_if_data *vlan; struct ieee80211_local *local = sdata->local; struct beacon_data *old_beacon; struct probe_resp *old_probe_resp; struct cfg80211_chan_def chandef; sdata_assert_lock(sdata); old_beacon = sdata_dereference(sdata->u.ap.beacon, sdata); if (!old_beacon) return -ENOENT; old_probe_resp = sdata_dereference(sdata->u.ap.probe_resp, sdata); /* abort any running channel switch */ sdata->vif.csa_active = false; kfree(sdata->u.ap.next_beacon); sdata->u.ap.next_beacon = NULL; /* turn off carrier for this interface and dependent VLANs */ list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) netif_carrier_off(vlan->dev); netif_carrier_off(dev); /* remove beacon and probe response */ RCU_INIT_POINTER(sdata->u.ap.beacon, NULL); RCU_INIT_POINTER(sdata->u.ap.probe_resp, NULL); kfree_rcu(old_beacon, rcu_head); if (old_probe_resp) kfree_rcu(old_probe_resp, rcu_head); sdata->u.ap.driver_smps_mode = IEEE80211_SMPS_OFF; __sta_info_flush(sdata, true); ieee80211_free_keys(sdata, true); sdata->vif.bss_conf.enable_beacon = false; sdata->vif.bss_conf.ssid_len = 0; clear_bit(SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, &sdata->state); ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON_ENABLED); if (sdata->wdev.cac_started) { chandef = sdata->vif.bss_conf.chandef; cancel_delayed_work_sync(&sdata->dfs_cac_timer_work); cfg80211_cac_event(sdata->dev, &chandef, NL80211_RADAR_CAC_ABORTED, GFP_KERNEL); } drv_stop_ap(sdata->local, sdata); /* free all potentially still buffered bcast frames */ local->total_ps_buffered -= skb_queue_len(&sdata->u.ap.ps.bc_buf); skb_queue_purge(&sdata->u.ap.ps.bc_buf); ieee80211_vif_copy_chanctx_to_vlans(sdata, true); mutex_lock(&local->mtx); ieee80211_vif_release_channel(sdata); mutex_unlock(&local->mtx); return 0; } /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ struct iapp_layer2_update { u8 da[ETH_ALEN]; /* broadcast */ u8 sa[ETH_ALEN]; /* STA addr */ __be16 len; /* 6 */ u8 dsap; /* 0 */ u8 ssap; /* 0 */ u8 control; u8 xid_info[3]; } __packed; static void ieee80211_send_layer2_update(struct sta_info *sta) { struct iapp_layer2_update *msg; struct sk_buff *skb; /* Send Level 2 Update Frame to update forwarding tables in layer 2 * bridge devices */ skb = dev_alloc_skb(sizeof(*msg)); if (!skb) return; msg = (struct iapp_layer2_update *)skb_put(skb, sizeof(*msg)); /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ eth_broadcast_addr(msg->da); memcpy(msg->sa, sta->sta.addr, ETH_ALEN); msg->len = htons(6); msg->dsap = 0; msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ msg->control = 0xaf; /* XID response lsb.1111F101. * F=0 (no poll command; unsolicited frame) */ msg->xid_info[0] = 0x81; /* XID format identifier */ msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ skb->dev = sta->sdata->dev; skb->protocol = eth_type_trans(skb, sta->sdata->dev); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx_ni(skb); } static int sta_apply_auth_flags(struct ieee80211_local *local, struct sta_info *sta, u32 mask, u32 set) { int ret; if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED) && set & BIT(NL80211_STA_FLAG_AUTHENTICATED) && !test_sta_flag(sta, WLAN_STA_AUTH)) { ret = sta_info_move_state(sta, IEEE80211_STA_AUTH); if (ret) return ret; } if (mask & BIT(NL80211_STA_FLAG_ASSOCIATED) && set & BIT(NL80211_STA_FLAG_ASSOCIATED) && !test_sta_flag(sta, WLAN_STA_ASSOC)) { ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); if (ret) return ret; } if (mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) { if (set & BIT(NL80211_STA_FLAG_AUTHORIZED)) ret = sta_info_move_state(sta, IEEE80211_STA_AUTHORIZED); else if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); else ret = 0; if (ret) return ret; } if (mask & BIT(NL80211_STA_FLAG_ASSOCIATED) && !(set & BIT(NL80211_STA_FLAG_ASSOCIATED)) && test_sta_flag(sta, WLAN_STA_ASSOC)) { ret = sta_info_move_state(sta, IEEE80211_STA_AUTH); if (ret) return ret; } if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED) && !(set & BIT(NL80211_STA_FLAG_AUTHENTICATED)) && test_sta_flag(sta, WLAN_STA_AUTH)) { ret = sta_info_move_state(sta, IEEE80211_STA_NONE); if (ret) return ret; } return 0; } static int sta_apply_parameters(struct ieee80211_local *local, struct sta_info *sta, struct station_parameters *params) { int ret = 0; struct ieee80211_supported_band *sband; struct ieee80211_sub_if_data *sdata = sta->sdata; enum ieee80211_band band = ieee80211_get_sdata_band(sdata); u32 mask, set; sband = local->hw.wiphy->bands[band]; mask = params->sta_flags_mask; set = params->sta_flags_set; if (ieee80211_vif_is_mesh(&sdata->vif)) { /* * In mesh mode, ASSOCIATED isn't part of the nl80211 * API but must follow AUTHENTICATED for driver state. */ if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED)) mask |= BIT(NL80211_STA_FLAG_ASSOCIATED); if (set & BIT(NL80211_STA_FLAG_AUTHENTICATED)) set |= BIT(NL80211_STA_FLAG_ASSOCIATED); } else if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { /* * TDLS -- everything follows authorized, but * only becoming authorized is possible, not * going back */ if (set & BIT(NL80211_STA_FLAG_AUTHORIZED)) { set |= BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED); mask |= BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED); } } ret = sta_apply_auth_flags(local, sta, mask, set); if (ret) return ret; if (mask & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE)) { if (set & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE)) set_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE); else clear_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE); } if (mask & BIT(NL80211_STA_FLAG_WME)) { if (set & BIT(NL80211_STA_FLAG_WME)) { set_sta_flag(sta, WLAN_STA_WME); sta->sta.wme = true; } else { clear_sta_flag(sta, WLAN_STA_WME); sta->sta.wme = false; } } if (mask & BIT(NL80211_STA_FLAG_MFP)) { if (set & BIT(NL80211_STA_FLAG_MFP)) set_sta_flag(sta, WLAN_STA_MFP); else clear_sta_flag(sta, WLAN_STA_MFP); } if (mask & BIT(NL80211_STA_FLAG_TDLS_PEER)) { if (set & BIT(NL80211_STA_FLAG_TDLS_PEER)) set_sta_flag(sta, WLAN_STA_TDLS_PEER); else clear_sta_flag(sta, WLAN_STA_TDLS_PEER); } if (params->sta_modify_mask & STATION_PARAM_APPLY_UAPSD) { sta->sta.uapsd_queues = params->uapsd_queues; sta->sta.max_sp = params->max_sp; } /* * cfg80211 validates this (1-2007) and allows setting the AID * only when creating a new station entry */ if (params->aid) sta->sta.aid = params->aid; /* * Some of the following updates would be racy if called on an * existing station, via ieee80211_change_station(). However, * all such changes are rejected by cfg80211 except for updates * changing the supported rates on an existing but not yet used * TDLS peer. */ if (params->listen_interval >= 0) sta->listen_interval = params->listen_interval; if (params->supported_rates) { ieee80211_parse_bitrates(&sdata->vif.bss_conf.chandef, sband, params->supported_rates, params->supported_rates_len, &sta->sta.supp_rates[band]); } if (params->ht_capa) ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband, params->ht_capa, sta); if (params->vht_capa) ieee80211_vht_cap_ie_to_sta_vht_cap(sdata, sband, params->vht_capa, sta); if (params->opmode_notif_used) { /* returned value is only needed for rc update, but the * rc isn't initialized here yet, so ignore it */ __ieee80211_vht_handle_opmode(sdata, sta, params->opmode_notif, band, false); } if (ieee80211_vif_is_mesh(&sdata->vif)) { #ifdef CONFIG_MAC80211_MESH u32 changed = 0; if (params->sta_modify_mask & STATION_PARAM_APPLY_PLINK_STATE) { switch (params->plink_state) { case NL80211_PLINK_ESTAB: if (sta->plink_state != NL80211_PLINK_ESTAB) changed = mesh_plink_inc_estab_count( sdata); sta->plink_state = params->plink_state; ieee80211_mps_sta_status_update(sta); changed |= ieee80211_mps_set_sta_local_pm(sta, sdata->u.mesh.mshcfg.power_mode); break; case NL80211_PLINK_LISTEN: case NL80211_PLINK_BLOCKED: case NL80211_PLINK_OPN_SNT: case NL80211_PLINK_OPN_RCVD: case NL80211_PLINK_CNF_RCVD: case NL80211_PLINK_HOLDING: if (sta->plink_state == NL80211_PLINK_ESTAB) changed = mesh_plink_dec_estab_count( sdata); sta->plink_state = params->plink_state; ieee80211_mps_sta_status_update(sta); changed |= ieee80211_mps_set_sta_local_pm(sta, NL80211_MESH_POWER_UNKNOWN); break; default: /* nothing */ break; } } switch (params->plink_action) { case NL80211_PLINK_ACTION_NO_ACTION: /* nothing */ break; case NL80211_PLINK_ACTION_OPEN: changed |= mesh_plink_open(sta); break; case NL80211_PLINK_ACTION_BLOCK: changed |= mesh_plink_block(sta); break; } if (params->local_pm) changed |= ieee80211_mps_set_sta_local_pm(sta, params->local_pm); ieee80211_mbss_info_change_notify(sdata, changed); #endif } return 0; } static int ieee80211_add_station(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_parameters *params) { struct ieee80211_local *local = wiphy_priv(wiphy); struct sta_info *sta; struct ieee80211_sub_if_data *sdata; int err; int layer2_update; if (params->vlan) { sdata = IEEE80211_DEV_TO_SUB_IF(params->vlan); if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_AP) return -EINVAL; } else sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (ether_addr_equal(mac, sdata->vif.addr)) return -EINVAL; if (is_multicast_ether_addr(mac)) return -EINVAL; sta = sta_info_alloc(sdata, mac, GFP_KERNEL); if (!sta) return -ENOMEM; /* * defaults -- if userspace wants something else we'll * change it accordingly in sta_apply_parameters() */ if (!(params->sta_flags_set & BIT(NL80211_STA_FLAG_TDLS_PEER))) { sta_info_pre_move_state(sta, IEEE80211_STA_AUTH); sta_info_pre_move_state(sta, IEEE80211_STA_ASSOC); } err = sta_apply_parameters(local, sta, params); if (err) { sta_info_free(local, sta); return err; } /* * for TDLS, rate control should be initialized only when * rates are known and station is marked authorized */ if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER)) rate_control_rate_init(sta); layer2_update = sdata->vif.type == NL80211_IFTYPE_AP_VLAN || sdata->vif.type == NL80211_IFTYPE_AP; err = sta_info_insert_rcu(sta); if (err) { rcu_read_unlock(); return err; } if (layer2_update) ieee80211_send_layer2_update(sta); rcu_read_unlock(); return 0; } static int ieee80211_del_station(struct wiphy *wiphy, struct net_device *dev, u8 *mac) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (mac) return sta_info_destroy_addr_bss(sdata, mac); sta_info_flush(sdata); return 0; } static int ieee80211_change_station(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_parameters *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wiphy_priv(wiphy); struct sta_info *sta; struct ieee80211_sub_if_data *vlansdata; enum cfg80211_station_type statype; int err; mutex_lock(&local->sta_mtx); sta = sta_info_get_bss(sdata, mac); if (!sta) { err = -ENOENT; goto out_err; } switch (sdata->vif.type) { case NL80211_IFTYPE_MESH_POINT: if (sdata->u.mesh.user_mpm) statype = CFG80211_STA_MESH_PEER_USER; else statype = CFG80211_STA_MESH_PEER_KERNEL; break; case NL80211_IFTYPE_ADHOC: statype = CFG80211_STA_IBSS; break; case NL80211_IFTYPE_STATION: if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { statype = CFG80211_STA_AP_STA; break; } if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) statype = CFG80211_STA_TDLS_PEER_ACTIVE; else statype = CFG80211_STA_TDLS_PEER_SETUP; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: statype = CFG80211_STA_AP_CLIENT; break; default: err = -EOPNOTSUPP; goto out_err; } err = cfg80211_check_station_change(wiphy, params, statype); if (err) goto out_err; if (params->vlan && params->vlan != sta->sdata->dev) { bool prev_4addr = false; bool new_4addr = false; vlansdata = IEEE80211_DEV_TO_SUB_IF(params->vlan); if (params->vlan->ieee80211_ptr->use_4addr) { if (vlansdata->u.vlan.sta) { err = -EBUSY; goto out_err; } rcu_assign_pointer(vlansdata->u.vlan.sta, sta); new_4addr = true; } if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sta->sdata->u.vlan.sta) { rcu_assign_pointer(sta->sdata->u.vlan.sta, NULL); prev_4addr = true; } sta->sdata = vlansdata; if (sta->sta_state == IEEE80211_STA_AUTHORIZED && prev_4addr != new_4addr) { if (new_4addr) atomic_dec(&sta->sdata->bss->num_mcast_sta); else atomic_inc(&sta->sdata->bss->num_mcast_sta); } ieee80211_send_layer2_update(sta); } err = sta_apply_parameters(local, sta, params); if (err) goto out_err; /* When peer becomes authorized, init rate control as well */ if (test_sta_flag(sta, WLAN_STA_TDLS_PEER) && test_sta_flag(sta, WLAN_STA_AUTHORIZED)) rate_control_rate_init(sta); mutex_unlock(&local->sta_mtx); if ((sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && sta->known_smps_mode != sta->sdata->bss->req_smps && test_sta_flag(sta, WLAN_STA_AUTHORIZED) && sta_info_tx_streams(sta) != 1) { ht_dbg(sta->sdata, "%pM just authorized and MIMO capable - update SMPS\n", sta->sta.addr); ieee80211_send_smps_action(sta->sdata, sta->sdata->bss->req_smps, sta->sta.addr, sta->sdata->vif.bss_conf.bssid); } if (sdata->vif.type == NL80211_IFTYPE_STATION && params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) { ieee80211_recalc_ps(local, -1); ieee80211_recalc_ps_vif(sdata); } return 0; out_err: mutex_unlock(&local->sta_mtx); return err; } #ifdef CONFIG_MAC80211_MESH static int ieee80211_add_mpath(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop) { struct ieee80211_sub_if_data *sdata; struct mesh_path *mpath; struct sta_info *sta; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); sta = sta_info_get(sdata, next_hop); if (!sta) { rcu_read_unlock(); return -ENOENT; } mpath = mesh_path_add(sdata, dst); if (IS_ERR(mpath)) { rcu_read_unlock(); return PTR_ERR(mpath); } mesh_path_fix_nexthop(mpath, sta); rcu_read_unlock(); return 0; } static int ieee80211_del_mpath(struct wiphy *wiphy, struct net_device *dev, u8 *dst) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (dst) return mesh_path_del(sdata, dst); mesh_path_flush_by_iface(sdata); return 0; } static int ieee80211_change_mpath(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop) { struct ieee80211_sub_if_data *sdata; struct mesh_path *mpath; struct sta_info *sta; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); sta = sta_info_get(sdata, next_hop); if (!sta) { rcu_read_unlock(); return -ENOENT; } mpath = mesh_path_lookup(sdata, dst); if (!mpath) { rcu_read_unlock(); return -ENOENT; } mesh_path_fix_nexthop(mpath, sta); rcu_read_unlock(); return 0; } static void mpath_set_pinfo(struct mesh_path *mpath, u8 *next_hop, struct mpath_info *pinfo) { struct sta_info *next_hop_sta = rcu_dereference(mpath->next_hop); if (next_hop_sta) memcpy(next_hop, next_hop_sta->sta.addr, ETH_ALEN); else memset(next_hop, 0, ETH_ALEN); memset(pinfo, 0, sizeof(*pinfo)); pinfo->generation = mesh_paths_generation; pinfo->filled = MPATH_INFO_FRAME_QLEN | MPATH_INFO_SN | MPATH_INFO_METRIC | MPATH_INFO_EXPTIME | MPATH_INFO_DISCOVERY_TIMEOUT | MPATH_INFO_DISCOVERY_RETRIES | MPATH_INFO_FLAGS; pinfo->frame_qlen = mpath->frame_queue.qlen; pinfo->sn = mpath->sn; pinfo->metric = mpath->metric; if (time_before(jiffies, mpath->exp_time)) pinfo->exptime = jiffies_to_msecs(mpath->exp_time - jiffies); pinfo->discovery_timeout = jiffies_to_msecs(mpath->discovery_timeout); pinfo->discovery_retries = mpath->discovery_retries; if (mpath->flags & MESH_PATH_ACTIVE) pinfo->flags |= NL80211_MPATH_FLAG_ACTIVE; if (mpath->flags & MESH_PATH_RESOLVING) pinfo->flags |= NL80211_MPATH_FLAG_RESOLVING; if (mpath->flags & MESH_PATH_SN_VALID) pinfo->flags |= NL80211_MPATH_FLAG_SN_VALID; if (mpath->flags & MESH_PATH_FIXED) pinfo->flags |= NL80211_MPATH_FLAG_FIXED; if (mpath->flags & MESH_PATH_RESOLVED) pinfo->flags |= NL80211_MPATH_FLAG_RESOLVED; } static int ieee80211_get_mpath(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { struct ieee80211_sub_if_data *sdata; struct mesh_path *mpath; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); mpath = mesh_path_lookup(sdata, dst); if (!mpath) { rcu_read_unlock(); return -ENOENT; } memcpy(dst, mpath->dst, ETH_ALEN); mpath_set_pinfo(mpath, next_hop, pinfo); rcu_read_unlock(); return 0; } static int ieee80211_dump_mpath(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { struct ieee80211_sub_if_data *sdata; struct mesh_path *mpath; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); mpath = mesh_path_lookup_by_idx(sdata, idx); if (!mpath) { rcu_read_unlock(); return -ENOENT; } memcpy(dst, mpath->dst, ETH_ALEN); mpath_set_pinfo(mpath, next_hop, pinfo); rcu_read_unlock(); return 0; } static int ieee80211_get_mesh_config(struct wiphy *wiphy, struct net_device *dev, struct mesh_config *conf) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(dev); memcpy(conf, &(sdata->u.mesh.mshcfg), sizeof(struct mesh_config)); return 0; } static inline bool _chg_mesh_attr(enum nl80211_meshconf_params parm, u32 mask) { return (mask >> (parm-1)) & 0x1; } static int copy_mesh_setup(struct ieee80211_if_mesh *ifmsh, const struct mesh_setup *setup) { u8 *new_ie; const u8 *old_ie; struct ieee80211_sub_if_data *sdata = container_of(ifmsh, struct ieee80211_sub_if_data, u.mesh); /* allocate information elements */ new_ie = NULL; old_ie = ifmsh->ie; if (setup->ie_len) { new_ie = kmemdup(setup->ie, setup->ie_len, GFP_KERNEL); if (!new_ie) return -ENOMEM; } ifmsh->ie_len = setup->ie_len; ifmsh->ie = new_ie; kfree(old_ie); /* now copy the rest of the setup parameters */ ifmsh->mesh_id_len = setup->mesh_id_len; memcpy(ifmsh->mesh_id, setup->mesh_id, ifmsh->mesh_id_len); ifmsh->mesh_sp_id = setup->sync_method; ifmsh->mesh_pp_id = setup->path_sel_proto; ifmsh->mesh_pm_id = setup->path_metric; ifmsh->user_mpm = setup->user_mpm; ifmsh->mesh_auth_id = setup->auth_id; ifmsh->security = IEEE80211_MESH_SEC_NONE; if (setup->is_authenticated) ifmsh->security |= IEEE80211_MESH_SEC_AUTHED; if (setup->is_secure) ifmsh->security |= IEEE80211_MESH_SEC_SECURED; /* mcast rate setting in Mesh Node */ memcpy(sdata->vif.bss_conf.mcast_rate, setup->mcast_rate, sizeof(setup->mcast_rate)); sdata->vif.bss_conf.basic_rates = setup->basic_rates; sdata->vif.bss_conf.beacon_int = setup->beacon_interval; sdata->vif.bss_conf.dtim_period = setup->dtim_period; return 0; } static int ieee80211_update_mesh_config(struct wiphy *wiphy, struct net_device *dev, u32 mask, const struct mesh_config *nconf) { struct mesh_config *conf; struct ieee80211_sub_if_data *sdata; struct ieee80211_if_mesh *ifmsh; sdata = IEEE80211_DEV_TO_SUB_IF(dev); ifmsh = &sdata->u.mesh; /* Set the config options which we are interested in setting */ conf = &(sdata->u.mesh.mshcfg); if (_chg_mesh_attr(NL80211_MESHCONF_RETRY_TIMEOUT, mask)) conf->dot11MeshRetryTimeout = nconf->dot11MeshRetryTimeout; if (_chg_mesh_attr(NL80211_MESHCONF_CONFIRM_TIMEOUT, mask)) conf->dot11MeshConfirmTimeout = nconf->dot11MeshConfirmTimeout; if (_chg_mesh_attr(NL80211_MESHCONF_HOLDING_TIMEOUT, mask)) conf->dot11MeshHoldingTimeout = nconf->dot11MeshHoldingTimeout; if (_chg_mesh_attr(NL80211_MESHCONF_MAX_PEER_LINKS, mask)) conf->dot11MeshMaxPeerLinks = nconf->dot11MeshMaxPeerLinks; if (_chg_mesh_attr(NL80211_MESHCONF_MAX_RETRIES, mask)) conf->dot11MeshMaxRetries = nconf->dot11MeshMaxRetries; if (_chg_mesh_attr(NL80211_MESHCONF_TTL, mask)) conf->dot11MeshTTL = nconf->dot11MeshTTL; if (_chg_mesh_attr(NL80211_MESHCONF_ELEMENT_TTL, mask)) conf->element_ttl = nconf->element_ttl; if (_chg_mesh_attr(NL80211_MESHCONF_AUTO_OPEN_PLINKS, mask)) { if (ifmsh->user_mpm) return -EBUSY; conf->auto_open_plinks = nconf->auto_open_plinks; } if (_chg_mesh_attr(NL80211_MESHCONF_SYNC_OFFSET_MAX_NEIGHBOR, mask)) conf->dot11MeshNbrOffsetMaxNeighbor = nconf->dot11MeshNbrOffsetMaxNeighbor; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES, mask)) conf->dot11MeshHWMPmaxPREQretries = nconf->dot11MeshHWMPmaxPREQretries; if (_chg_mesh_attr(NL80211_MESHCONF_PATH_REFRESH_TIME, mask)) conf->path_refresh_time = nconf->path_refresh_time; if (_chg_mesh_attr(NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT, mask)) conf->min_discovery_timeout = nconf->min_discovery_timeout; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT, mask)) conf->dot11MeshHWMPactivePathTimeout = nconf->dot11MeshHWMPactivePathTimeout; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL, mask)) conf->dot11MeshHWMPpreqMinInterval = nconf->dot11MeshHWMPpreqMinInterval; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PERR_MIN_INTERVAL, mask)) conf->dot11MeshHWMPperrMinInterval = nconf->dot11MeshHWMPperrMinInterval; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME, mask)) conf->dot11MeshHWMPnetDiameterTraversalTime = nconf->dot11MeshHWMPnetDiameterTraversalTime; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOTMODE, mask)) { conf->dot11MeshHWMPRootMode = nconf->dot11MeshHWMPRootMode; ieee80211_mesh_root_setup(ifmsh); } if (_chg_mesh_attr(NL80211_MESHCONF_GATE_ANNOUNCEMENTS, mask)) { /* our current gate announcement implementation rides on root * announcements, so require this ifmsh to also be a root node * */ if (nconf->dot11MeshGateAnnouncementProtocol && !(conf->dot11MeshHWMPRootMode > IEEE80211_ROOTMODE_ROOT)) { conf->dot11MeshHWMPRootMode = IEEE80211_PROACTIVE_RANN; ieee80211_mesh_root_setup(ifmsh); } conf->dot11MeshGateAnnouncementProtocol = nconf->dot11MeshGateAnnouncementProtocol; } if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_RANN_INTERVAL, mask)) conf->dot11MeshHWMPRannInterval = nconf->dot11MeshHWMPRannInterval; if (_chg_mesh_attr(NL80211_MESHCONF_FORWARDING, mask)) conf->dot11MeshForwarding = nconf->dot11MeshForwarding; if (_chg_mesh_attr(NL80211_MESHCONF_RSSI_THRESHOLD, mask)) { /* our RSSI threshold implementation is supported only for * devices that report signal in dBm. */ if (!(sdata->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)) return -ENOTSUPP; conf->rssi_threshold = nconf->rssi_threshold; } if (_chg_mesh_attr(NL80211_MESHCONF_HT_OPMODE, mask)) { conf->ht_opmode = nconf->ht_opmode; sdata->vif.bss_conf.ht_operation_mode = nconf->ht_opmode; ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_HT); } if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PATH_TO_ROOT_TIMEOUT, mask)) conf->dot11MeshHWMPactivePathToRootTimeout = nconf->dot11MeshHWMPactivePathToRootTimeout; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOT_INTERVAL, mask)) conf->dot11MeshHWMProotInterval = nconf->dot11MeshHWMProotInterval; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_CONFIRMATION_INTERVAL, mask)) conf->dot11MeshHWMPconfirmationInterval = nconf->dot11MeshHWMPconfirmationInterval; if (_chg_mesh_attr(NL80211_MESHCONF_POWER_MODE, mask)) { conf->power_mode = nconf->power_mode; ieee80211_mps_local_status_update(sdata); } if (_chg_mesh_attr(NL80211_MESHCONF_AWAKE_WINDOW, mask)) conf->dot11MeshAwakeWindowDuration = nconf->dot11MeshAwakeWindowDuration; if (_chg_mesh_attr(NL80211_MESHCONF_PLINK_TIMEOUT, mask)) conf->plink_timeout = nconf->plink_timeout; ieee80211_mbss_info_change_notify(sdata, BSS_CHANGED_BEACON); return 0; } static int ieee80211_join_mesh(struct wiphy *wiphy, struct net_device *dev, const struct mesh_config *conf, const struct mesh_setup *setup) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; int err; memcpy(&ifmsh->mshcfg, conf, sizeof(struct mesh_config)); err = copy_mesh_setup(ifmsh, setup); if (err) return err; /* can mesh use other SMPS modes? */ sdata->smps_mode = IEEE80211_SMPS_OFF; sdata->needed_rx_chains = sdata->local->rx_chains; mutex_lock(&sdata->local->mtx); err = ieee80211_vif_use_channel(sdata, &setup->chandef, IEEE80211_CHANCTX_SHARED); mutex_unlock(&sdata->local->mtx); if (err) return err; return ieee80211_start_mesh(sdata); } static int ieee80211_leave_mesh(struct wiphy *wiphy, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); ieee80211_stop_mesh(sdata); mutex_lock(&sdata->local->mtx); ieee80211_vif_release_channel(sdata); mutex_unlock(&sdata->local->mtx); return 0; } #endif static int ieee80211_change_bss(struct wiphy *wiphy, struct net_device *dev, struct bss_parameters *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); enum ieee80211_band band; u32 changed = 0; if (!sdata_dereference(sdata->u.ap.beacon, sdata)) return -ENOENT; band = ieee80211_get_sdata_band(sdata); if (params->use_cts_prot >= 0) { sdata->vif.bss_conf.use_cts_prot = params->use_cts_prot; changed |= BSS_CHANGED_ERP_CTS_PROT; } if (params->use_short_preamble >= 0) { sdata->vif.bss_conf.use_short_preamble = params->use_short_preamble; changed |= BSS_CHANGED_ERP_PREAMBLE; } if (!sdata->vif.bss_conf.use_short_slot && band == IEEE80211_BAND_5GHZ) { sdata->vif.bss_conf.use_short_slot = true; changed |= BSS_CHANGED_ERP_SLOT; } if (params->use_short_slot_time >= 0) { sdata->vif.bss_conf.use_short_slot = params->use_short_slot_time; changed |= BSS_CHANGED_ERP_SLOT; } if (params->basic_rates) { ieee80211_parse_bitrates(&sdata->vif.bss_conf.chandef, wiphy->bands[band], params->basic_rates, params->basic_rates_len, &sdata->vif.bss_conf.basic_rates); changed |= BSS_CHANGED_BASIC_RATES; } if (params->ap_isolate >= 0) { if (params->ap_isolate) sdata->flags |= IEEE80211_SDATA_DONT_BRIDGE_PACKETS; else sdata->flags &= ~IEEE80211_SDATA_DONT_BRIDGE_PACKETS; } if (params->ht_opmode >= 0) { sdata->vif.bss_conf.ht_operation_mode = (u16) params->ht_opmode; changed |= BSS_CHANGED_HT; } if (params->p2p_ctwindow >= 0) { sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow &= ~IEEE80211_P2P_OPPPS_CTWINDOW_MASK; sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow |= params->p2p_ctwindow & IEEE80211_P2P_OPPPS_CTWINDOW_MASK; changed |= BSS_CHANGED_P2P_PS; } if (params->p2p_opp_ps > 0) { sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT; changed |= BSS_CHANGED_P2P_PS; } else if (params->p2p_opp_ps == 0) { sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow &= ~IEEE80211_P2P_OPPPS_ENABLE_BIT; changed |= BSS_CHANGED_P2P_PS; } ieee80211_bss_info_change_notify(sdata, changed); return 0; } static int ieee80211_set_txq_params(struct wiphy *wiphy, struct net_device *dev, struct ieee80211_txq_params *params) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_tx_queue_params p; if (!local->ops->conf_tx) return -EOPNOTSUPP; if (local->hw.queues < IEEE80211_NUM_ACS) return -EOPNOTSUPP; memset(&p, 0, sizeof(p)); p.aifs = params->aifs; p.cw_max = params->cwmax; p.cw_min = params->cwmin; p.txop = params->txop; /* * Setting tx queue params disables u-apsd because it's only * called in master mode. */ p.uapsd = false; sdata->tx_conf[params->ac] = p; if (drv_conf_tx(local, sdata, params->ac, &p)) { wiphy_debug(local->hw.wiphy, "failed to set TX queue parameters for AC %d\n", params->ac); return -EINVAL; } ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_QOS); return 0; } #ifdef CONFIG_PM static int ieee80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wowlan) { return __ieee80211_suspend(wiphy_priv(wiphy), wowlan); } static int ieee80211_resume(struct wiphy *wiphy) { return __ieee80211_resume(wiphy_priv(wiphy)); } #else #define ieee80211_suspend NULL #define ieee80211_resume NULL #endif static int ieee80211_scan(struct wiphy *wiphy, struct cfg80211_scan_request *req) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_WDEV_TO_SUB_IF(req->wdev); switch (ieee80211_vif_type_p2p(&sdata->vif)) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_DEVICE: break; case NL80211_IFTYPE_P2P_GO: if (sdata->local->ops->hw_scan) break; /* * FIXME: implement NoA while scanning in software, * for now fall through to allow scanning only when * beaconing hasn't been configured yet */ case NL80211_IFTYPE_AP: /* * If the scan has been forced (and the driver supports * forcing), don't care about being beaconing already. * This will create problems to the attached stations (e.g. all * the frames sent while scanning on other channel will be * lost) */ if (sdata->u.ap.beacon && (!(wiphy->features & NL80211_FEATURE_AP_SCAN) || !(req->flags & NL80211_SCAN_FLAG_AP))) return -EOPNOTSUPP; break; default: return -EOPNOTSUPP; } return ieee80211_request_scan(sdata, req); } static int ieee80211_sched_scan_start(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_sched_scan_request *req) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (!sdata->local->ops->sched_scan_start) return -EOPNOTSUPP; return ieee80211_request_sched_scan_start(sdata, req); } static int ieee80211_sched_scan_stop(struct wiphy *wiphy, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (!sdata->local->ops->sched_scan_stop) return -EOPNOTSUPP; return ieee80211_request_sched_scan_stop(sdata); } static int ieee80211_auth(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_auth_request *req) { return ieee80211_mgd_auth(IEEE80211_DEV_TO_SUB_IF(dev), req); } static int ieee80211_assoc(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_assoc_request *req) { return ieee80211_mgd_assoc(IEEE80211_DEV_TO_SUB_IF(dev), req); } static int ieee80211_deauth(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_deauth_request *req) { return ieee80211_mgd_deauth(IEEE80211_DEV_TO_SUB_IF(dev), req); } static int ieee80211_disassoc(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_disassoc_request *req) { return ieee80211_mgd_disassoc(IEEE80211_DEV_TO_SUB_IF(dev), req); } static int ieee80211_join_ibss(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params) { return ieee80211_ibss_join(IEEE80211_DEV_TO_SUB_IF(dev), params); } static int ieee80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev) { return ieee80211_ibss_leave(IEEE80211_DEV_TO_SUB_IF(dev)); } static int ieee80211_set_mcast_rate(struct wiphy *wiphy, struct net_device *dev, int rate[IEEE80211_NUM_BANDS]) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); memcpy(sdata->vif.bss_conf.mcast_rate, rate, sizeof(int) * IEEE80211_NUM_BANDS); return 0; } static int ieee80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct ieee80211_local *local = wiphy_priv(wiphy); int err; if (changed & WIPHY_PARAM_FRAG_THRESHOLD) { err = drv_set_frag_threshold(local, wiphy->frag_threshold); if (err) return err; } if (changed & WIPHY_PARAM_COVERAGE_CLASS) { err = drv_set_coverage_class(local, wiphy->coverage_class); if (err) return err; } if (changed & WIPHY_PARAM_RTS_THRESHOLD) { err = drv_set_rts_threshold(local, wiphy->rts_threshold); if (err) return err; } if (changed & WIPHY_PARAM_RETRY_SHORT) { if (wiphy->retry_short > IEEE80211_MAX_TX_RETRY) return -EINVAL; local->hw.conf.short_frame_max_tx_count = wiphy->retry_short; } if (changed & WIPHY_PARAM_RETRY_LONG) { if (wiphy->retry_long > IEEE80211_MAX_TX_RETRY) return -EINVAL; local->hw.conf.long_frame_max_tx_count = wiphy->retry_long; } if (changed & (WIPHY_PARAM_RETRY_SHORT | WIPHY_PARAM_RETRY_LONG)) ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_RETRY_LIMITS); return 0; } static int ieee80211_set_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, int mbm) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata; if (wdev) { sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); switch (type) { case NL80211_TX_POWER_AUTOMATIC: sdata->user_power_level = IEEE80211_UNSET_POWER_LEVEL; break; case NL80211_TX_POWER_LIMITED: case NL80211_TX_POWER_FIXED: if (mbm < 0 || (mbm % 100)) return -EOPNOTSUPP; sdata->user_power_level = MBM_TO_DBM(mbm); break; } ieee80211_recalc_txpower(sdata); return 0; } switch (type) { case NL80211_TX_POWER_AUTOMATIC: local->user_power_level = IEEE80211_UNSET_POWER_LEVEL; break; case NL80211_TX_POWER_LIMITED: case NL80211_TX_POWER_FIXED: if (mbm < 0 || (mbm % 100)) return -EOPNOTSUPP; local->user_power_level = MBM_TO_DBM(mbm); break; } mutex_lock(&local->iflist_mtx); list_for_each_entry(sdata, &local->interfaces, list) sdata->user_power_level = local->user_power_level; list_for_each_entry(sdata, &local->interfaces, list) ieee80211_recalc_txpower(sdata); mutex_unlock(&local->iflist_mtx); return 0; } static int ieee80211_get_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, int *dbm) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); if (!local->use_chanctx) *dbm = local->hw.conf.power_level; else *dbm = sdata->vif.bss_conf.txpower; return 0; } static int ieee80211_set_wds_peer(struct wiphy *wiphy, struct net_device *dev, const u8 *addr) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); memcpy(&sdata->u.wds.remote_addr, addr, ETH_ALEN); return 0; } static void ieee80211_rfkill_poll(struct wiphy *wiphy) { struct ieee80211_local *local = wiphy_priv(wiphy); drv_rfkill_poll(local); } #ifdef CONFIG_NL80211_TESTMODE static int ieee80211_testmode_cmd(struct wiphy *wiphy, struct wireless_dev *wdev, void *data, int len) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_vif *vif = NULL; if (!local->ops->testmode_cmd) return -EOPNOTSUPP; if (wdev) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); if (sdata->flags & IEEE80211_SDATA_IN_DRIVER) vif = &sdata->vif; } return local->ops->testmode_cmd(&local->hw, vif, data, len); } static int ieee80211_testmode_dump(struct wiphy *wiphy, struct sk_buff *skb, struct netlink_callback *cb, void *data, int len) { struct ieee80211_local *local = wiphy_priv(wiphy); if (!local->ops->testmode_dump) return -EOPNOTSUPP; return local->ops->testmode_dump(&local->hw, skb, cb, data, len); } #endif int __ieee80211_request_smps_ap(struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps_mode) { struct sta_info *sta; enum ieee80211_smps_mode old_req; int i; if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_AP)) return -EINVAL; if (sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) return 0; old_req = sdata->u.ap.req_smps; sdata->u.ap.req_smps = smps_mode; /* AUTOMATIC doesn't mean much for AP - don't allow it */ if (old_req == smps_mode || smps_mode == IEEE80211_SMPS_AUTOMATIC) return 0; /* If no associated stations, there's no need to do anything */ if (!atomic_read(&sdata->u.ap.num_mcast_sta)) { sdata->smps_mode = smps_mode; ieee80211_queue_work(&sdata->local->hw, &sdata->recalc_smps); return 0; } ht_dbg(sdata, "SMSP %d requested in AP mode, sending Action frame to %d stations\n", smps_mode, atomic_read(&sdata->u.ap.num_mcast_sta)); mutex_lock(&sdata->local->sta_mtx); for (i = 0; i < STA_HASH_SIZE; i++) { for (sta = rcu_dereference_protected(sdata->local->sta_hash[i], lockdep_is_held(&sdata->local->sta_mtx)); sta; sta = rcu_dereference_protected(sta->hnext, lockdep_is_held(&sdata->local->sta_mtx))) { /* * Only stations associated to our AP and * associated VLANs */ if (sta->sdata->bss != &sdata->u.ap) continue; /* This station doesn't support MIMO - skip it */ if (sta_info_tx_streams(sta) == 1) continue; /* * Don't wake up a STA just to send the action frame * unless we are getting more restrictive. */ if (test_sta_flag(sta, WLAN_STA_PS_STA) && !ieee80211_smps_is_restrictive(sta->known_smps_mode, smps_mode)) { ht_dbg(sdata, "Won't send SMPS to sleeping STA %pM\n", sta->sta.addr); continue; } /* * If the STA is not authorized, wait until it gets * authorized and the action frame will be sent then. */ if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) continue; ht_dbg(sdata, "Sending SMPS to %pM\n", sta->sta.addr); ieee80211_send_smps_action(sdata, smps_mode, sta->sta.addr, sdata->vif.bss_conf.bssid); } } mutex_unlock(&sdata->local->sta_mtx); sdata->smps_mode = smps_mode; ieee80211_queue_work(&sdata->local->hw, &sdata->recalc_smps); return 0; } int __ieee80211_request_smps_mgd(struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps_mode) { const u8 *ap; enum ieee80211_smps_mode old_req; int err; lockdep_assert_held(&sdata->wdev.mtx); if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) return -EINVAL; old_req = sdata->u.mgd.req_smps; sdata->u.mgd.req_smps = smps_mode; if (old_req == smps_mode && smps_mode != IEEE80211_SMPS_AUTOMATIC) return 0; /* * If not associated, or current association is not an HT * association, there's no need to do anything, just store * the new value until we associate. */ if (!sdata->u.mgd.associated || sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) return 0; ap = sdata->u.mgd.associated->bssid; if (smps_mode == IEEE80211_SMPS_AUTOMATIC) { if (sdata->u.mgd.powersave) smps_mode = IEEE80211_SMPS_DYNAMIC; else smps_mode = IEEE80211_SMPS_OFF; } /* send SM PS frame to AP */ err = ieee80211_send_smps_action(sdata, smps_mode, ap, ap); if (err) sdata->u.mgd.req_smps = old_req; return err; } static int ieee80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, int timeout) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); if (sdata->vif.type != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS)) return -EOPNOTSUPP; if (enabled == sdata->u.mgd.powersave && timeout == local->dynamic_ps_forced_timeout) return 0; sdata->u.mgd.powersave = enabled; local->dynamic_ps_forced_timeout = timeout; /* no change, but if automatic follow powersave */ sdata_lock(sdata); __ieee80211_request_smps_mgd(sdata, sdata->u.mgd.req_smps); sdata_unlock(sdata); if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS) ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); ieee80211_recalc_ps(local, -1); ieee80211_recalc_ps_vif(sdata); return 0; } static int ieee80211_set_cqm_rssi_config(struct wiphy *wiphy, struct net_device *dev, s32 rssi_thold, u32 rssi_hyst) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_vif *vif = &sdata->vif; struct ieee80211_bss_conf *bss_conf = &vif->bss_conf; if (rssi_thold == bss_conf->cqm_rssi_thold && rssi_hyst == bss_conf->cqm_rssi_hyst) return 0; bss_conf->cqm_rssi_thold = rssi_thold; bss_conf->cqm_rssi_hyst = rssi_hyst; /* tell the driver upon association, unless already associated */ if (sdata->u.mgd.associated && sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI) ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_CQM); return 0; } static int ieee80211_set_bitrate_mask(struct wiphy *wiphy, struct net_device *dev, const u8 *addr, const struct cfg80211_bitrate_mask *mask) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); int i, ret; if (!ieee80211_sdata_running(sdata)) return -ENETDOWN; if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) { ret = drv_set_bitrate_mask(local, sdata, mask); if (ret) return ret; } for (i = 0; i < IEEE80211_NUM_BANDS; i++) { struct ieee80211_supported_band *sband = wiphy->bands[i]; int j; sdata->rc_rateidx_mask[i] = mask->control[i].legacy; memcpy(sdata->rc_rateidx_mcs_mask[i], mask->control[i].ht_mcs, sizeof(mask->control[i].ht_mcs)); sdata->rc_has_mcs_mask[i] = false; if (!sband) continue; for (j = 0; j < IEEE80211_HT_MCS_MASK_LEN; j++) if (~sdata->rc_rateidx_mcs_mask[i][j]) { sdata->rc_has_mcs_mask[i] = true; break; } } return 0; } static int ieee80211_start_roc_work(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel *channel, unsigned int duration, u64 *cookie, struct sk_buff *txskb, enum ieee80211_roc_type type) { struct ieee80211_roc_work *roc, *tmp; bool queued = false; int ret; lockdep_assert_held(&local->mtx); if (local->use_chanctx && !local->ops->remain_on_channel) return -EOPNOTSUPP; roc = kzalloc(sizeof(*roc), GFP_KERNEL); if (!roc) return -ENOMEM; /* * If the duration is zero, then the driver * wouldn't actually do anything. Set it to * 10 for now. * * TODO: cancel the off-channel operation * when we get the SKB's TX status and * the wait time was zero before. */ if (!duration) duration = 10; roc->chan = channel; roc->duration = duration; roc->req_duration = duration; roc->frame = txskb; roc->type = type; roc->mgmt_tx_cookie = (unsigned long)txskb; roc->sdata = sdata; INIT_DELAYED_WORK(&roc->work, ieee80211_sw_roc_work); INIT_LIST_HEAD(&roc->dependents); /* * cookie is either the roc cookie (for normal roc) * or the SKB (for mgmt TX) */ if (!txskb) { /* local->mtx protects this */ local->roc_cookie_counter++; roc->cookie = local->roc_cookie_counter; /* wow, you wrapped 64 bits ... more likely a bug */ if (WARN_ON(roc->cookie == 0)) { roc->cookie = 1; local->roc_cookie_counter++; } *cookie = roc->cookie; } else { *cookie = (unsigned long)txskb; } /* if there's one pending or we're scanning, queue this one */ if (!list_empty(&local->roc_list) || local->scanning || local->radar_detect_enabled) goto out_check_combine; /* if not HW assist, just queue & schedule work */ if (!local->ops->remain_on_channel) { ieee80211_queue_delayed_work(&local->hw, &roc->work, 0); goto out_queue; } /* otherwise actually kick it off here (for error handling) */ ret = drv_remain_on_channel(local, sdata, channel, duration, type); if (ret) { kfree(roc); return ret; } roc->started = true; goto out_queue; out_check_combine: list_for_each_entry(tmp, &local->roc_list, list) { if (tmp->chan != channel || tmp->sdata != sdata) continue; /* * Extend this ROC if possible: * * If it hasn't started yet, just increase the duration * and add the new one to the list of dependents. * If the type of the new ROC has higher priority, modify the * type of the previous one to match that of the new one. */ if (!tmp->started) { list_add_tail(&roc->list, &tmp->dependents); tmp->duration = max(tmp->duration, roc->duration); tmp->type = max(tmp->type, roc->type); queued = true; break; } /* If it has already started, it's more difficult ... */ if (local->ops->remain_on_channel) { unsigned long j = jiffies; /* * In the offloaded ROC case, if it hasn't begun, add * this new one to the dependent list to be handled * when the master one begins. If it has begun, * check that there's still a minimum time left and * if so, start this one, transmitting the frame, but * add it to the list directly after this one with * a reduced time so we'll ask the driver to execute * it right after finishing the previous one, in the * hope that it'll also be executed right afterwards, * effectively extending the old one. * If there's no minimum time left, just add it to the * normal list. * TODO: the ROC type is ignored here, assuming that it * is better to immediately use the current ROC. */ if (!tmp->hw_begun) { list_add_tail(&roc->list, &tmp->dependents); queued = true; break; } if (time_before(j + IEEE80211_ROC_MIN_LEFT, tmp->hw_start_time + msecs_to_jiffies(tmp->duration))) { int new_dur; ieee80211_handle_roc_started(roc); new_dur = roc->duration - jiffies_to_msecs(tmp->hw_start_time + msecs_to_jiffies( tmp->duration) - j); if (new_dur > 0) { /* add right after tmp */ list_add(&roc->list, &tmp->list); } else { list_add_tail(&roc->list, &tmp->dependents); } queued = true; } } else if (del_timer_sync(&tmp->work.timer)) { unsigned long new_end; /* * In the software ROC case, cancel the timer, if * that fails then the finish work is already * queued/pending and thus we queue the new ROC * normally, if that succeeds then we can extend * the timer duration and TX the frame (if any.) */ list_add_tail(&roc->list, &tmp->dependents); queued = true; new_end = jiffies + msecs_to_jiffies(roc->duration); /* ok, it was started & we canceled timer */ if (time_after(new_end, tmp->work.timer.expires)) mod_timer(&tmp->work.timer, new_end); else add_timer(&tmp->work.timer); ieee80211_handle_roc_started(roc); } break; } out_queue: if (!queued) list_add_tail(&roc->list, &local->roc_list); return 0; } static int ieee80211_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); struct ieee80211_local *local = sdata->local; int ret; mutex_lock(&local->mtx); ret = ieee80211_start_roc_work(local, sdata, chan, duration, cookie, NULL, IEEE80211_ROC_TYPE_NORMAL); mutex_unlock(&local->mtx); return ret; } static int ieee80211_cancel_roc(struct ieee80211_local *local, u64 cookie, bool mgmt_tx) { struct ieee80211_roc_work *roc, *tmp, *found = NULL; int ret; mutex_lock(&local->mtx); list_for_each_entry_safe(roc, tmp, &local->roc_list, list) { struct ieee80211_roc_work *dep, *tmp2; list_for_each_entry_safe(dep, tmp2, &roc->dependents, list) { if (!mgmt_tx && dep->cookie != cookie) continue; else if (mgmt_tx && dep->mgmt_tx_cookie != cookie) continue; /* found dependent item -- just remove it */ list_del(&dep->list); mutex_unlock(&local->mtx); ieee80211_roc_notify_destroy(dep, true); return 0; } if (!mgmt_tx && roc->cookie != cookie) continue; else if (mgmt_tx && roc->mgmt_tx_cookie != cookie) continue; found = roc; break; } if (!found) { mutex_unlock(&local->mtx); return -ENOENT; } /* * We found the item to cancel, so do that. Note that it * may have dependents, which we also cancel (and send * the expired signal for.) Not doing so would be quite * tricky here, but we may need to fix it later. */ if (local->ops->remain_on_channel) { if (found->started) { ret = drv_cancel_remain_on_channel(local); if (WARN_ON_ONCE(ret)) { mutex_unlock(&local->mtx); return ret; } } list_del(&found->list); if (found->started) ieee80211_start_next_roc(local); mutex_unlock(&local->mtx); ieee80211_roc_notify_destroy(found, true); } else { /* work may be pending so use it all the time */ found->abort = true; ieee80211_queue_delayed_work(&local->hw, &found->work, 0); mutex_unlock(&local->mtx); /* work will clean up etc */ flush_delayed_work(&found->work); WARN_ON(!found->to_be_freed); kfree(found); } return 0; } static int ieee80211_cancel_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); struct ieee80211_local *local = sdata->local; return ieee80211_cancel_roc(local, cookie, false); } static int ieee80211_start_radar_detection(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_chan_def *chandef, u32 cac_time_ms) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; int err; mutex_lock(&local->mtx); if (!list_empty(&local->roc_list) || local->scanning) { err = -EBUSY; goto out_unlock; } /* whatever, but channel contexts should not complain about that one */ sdata->smps_mode = IEEE80211_SMPS_OFF; sdata->needed_rx_chains = local->rx_chains; sdata->radar_required = true; err = ieee80211_vif_use_channel(sdata, chandef, IEEE80211_CHANCTX_SHARED); if (err) goto out_unlock; ieee80211_queue_delayed_work(&sdata->local->hw, &sdata->dfs_cac_timer_work, msecs_to_jiffies(cac_time_ms)); out_unlock: mutex_unlock(&local->mtx); return err; } static struct cfg80211_beacon_data * cfg80211_beacon_dup(struct cfg80211_beacon_data *beacon) { struct cfg80211_beacon_data *new_beacon; u8 *pos; int len; len = beacon->head_len + beacon->tail_len + beacon->beacon_ies_len + beacon->proberesp_ies_len + beacon->assocresp_ies_len + beacon->probe_resp_len; new_beacon = kzalloc(sizeof(*new_beacon) + len, GFP_KERNEL); if (!new_beacon) return NULL; pos = (u8 *)(new_beacon + 1); if (beacon->head_len) { new_beacon->head_len = beacon->head_len; new_beacon->head = pos; memcpy(pos, beacon->head, beacon->head_len); pos += beacon->head_len; } if (beacon->tail_len) { new_beacon->tail_len = beacon->tail_len; new_beacon->tail = pos; memcpy(pos, beacon->tail, beacon->tail_len); pos += beacon->tail_len; } if (beacon->beacon_ies_len) { new_beacon->beacon_ies_len = beacon->beacon_ies_len; new_beacon->beacon_ies = pos; memcpy(pos, beacon->beacon_ies, beacon->beacon_ies_len); pos += beacon->beacon_ies_len; } if (beacon->proberesp_ies_len) { new_beacon->proberesp_ies_len = beacon->proberesp_ies_len; new_beacon->proberesp_ies = pos; memcpy(pos, beacon->proberesp_ies, beacon->proberesp_ies_len); pos += beacon->proberesp_ies_len; } if (beacon->assocresp_ies_len) { new_beacon->assocresp_ies_len = beacon->assocresp_ies_len; new_beacon->assocresp_ies = pos; memcpy(pos, beacon->assocresp_ies, beacon->assocresp_ies_len); pos += beacon->assocresp_ies_len; } if (beacon->probe_resp_len) { new_beacon->probe_resp_len = beacon->probe_resp_len; beacon->probe_resp = pos; memcpy(pos, beacon->probe_resp, beacon->probe_resp_len); pos += beacon->probe_resp_len; } return new_beacon; } void ieee80211_csa_finish(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); ieee80211_queue_work(&sdata->local->hw, &sdata->csa_finalize_work); } EXPORT_SYMBOL(ieee80211_csa_finish); static void ieee80211_csa_finalize(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; int err, changed = 0; sdata_assert_lock(sdata); mutex_lock(&local->mtx); sdata->radar_required = sdata->csa_radar_required; err = ieee80211_vif_change_channel(sdata, &changed); mutex_unlock(&local->mtx); if (WARN_ON(err < 0)) return; if (!local->use_chanctx) { local->_oper_chandef = sdata->csa_chandef; ieee80211_hw_config(local, 0); } sdata->vif.csa_active = false; switch (sdata->vif.type) { case NL80211_IFTYPE_AP: err = ieee80211_assign_beacon(sdata, sdata->u.ap.next_beacon); kfree(sdata->u.ap.next_beacon); sdata->u.ap.next_beacon = NULL; if (err < 0) return; changed |= err; break; case NL80211_IFTYPE_ADHOC: err = ieee80211_ibss_finish_csa(sdata); if (err < 0) return; changed |= err; break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: err = ieee80211_mesh_finish_csa(sdata); if (err < 0) return; changed |= err; break; #endif default: WARN_ON(1); return; } ieee80211_bss_info_change_notify(sdata, changed); ieee80211_wake_queues_by_reason(&sdata->local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_CSA); cfg80211_ch_switch_notify(sdata->dev, &sdata->csa_chandef); } void ieee80211_csa_finalize_work(struct work_struct *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, csa_finalize_work); sdata_lock(sdata); /* AP might have been stopped while waiting for the lock. */ if (!sdata->vif.csa_active) goto unlock; if (!ieee80211_sdata_running(sdata)) goto unlock; ieee80211_csa_finalize(sdata); unlock: sdata_unlock(sdata); } static int ieee80211_set_csa_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *params, u32 *changed) { int err; switch (sdata->vif.type) { case NL80211_IFTYPE_AP: sdata->u.ap.next_beacon = cfg80211_beacon_dup(¶ms->beacon_after); if (!sdata->u.ap.next_beacon) return -ENOMEM; /* * With a count of 0, we don't have to wait for any * TBTT before switching, so complete the CSA * immediately. In theory, with a count == 1 we * should delay the switch until just before the next * TBTT, but that would complicate things so we switch * immediately too. If we would delay the switch * until the next TBTT, we would have to set the probe * response here. * * TODO: A channel switch with count <= 1 without * sending a CSA action frame is kind of useless, * because the clients won't know we're changing * channels. The action frame must be implemented * either here or in the userspace. */ if (params->count <= 1) break; sdata->csa_counter_offset_beacon = params->counter_offset_beacon; sdata->csa_counter_offset_presp = params->counter_offset_presp; err = ieee80211_assign_beacon(sdata, ¶ms->beacon_csa); if (err < 0) { kfree(sdata->u.ap.next_beacon); return err; } *changed |= err; break; case NL80211_IFTYPE_ADHOC: if (!sdata->vif.bss_conf.ibss_joined) return -EINVAL; if (params->chandef.width != sdata->u.ibss.chandef.width) return -EINVAL; switch (params->chandef.width) { case NL80211_CHAN_WIDTH_40: if (cfg80211_get_chandef_type(¶ms->chandef) != cfg80211_get_chandef_type(&sdata->u.ibss.chandef)) return -EINVAL; case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: break; default: return -EINVAL; } /* changes into another band are not supported */ if (sdata->u.ibss.chandef.chan->band != params->chandef.chan->band) return -EINVAL; /* see comments in the NL80211_IFTYPE_AP block */ if (params->count > 1) { err = ieee80211_ibss_csa_beacon(sdata, params); if (err < 0) return err; *changed |= err; } ieee80211_send_action_csa(sdata, params); break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; if (params->chandef.width != sdata->vif.bss_conf.chandef.width) return -EINVAL; /* changes into another band are not supported */ if (sdata->vif.bss_conf.chandef.chan->band != params->chandef.chan->band) return -EINVAL; if (ifmsh->csa_role == IEEE80211_MESH_CSA_ROLE_NONE) { ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_INIT; if (!ifmsh->pre_value) ifmsh->pre_value = 1; else ifmsh->pre_value++; } /* see comments in the NL80211_IFTYPE_AP block */ if (params->count > 1) { err = ieee80211_mesh_csa_beacon(sdata, params); if (err < 0) { ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_NONE; return err; } *changed |= err; } if (ifmsh->csa_role == IEEE80211_MESH_CSA_ROLE_INIT) ieee80211_send_action_csa(sdata, params); break; } #endif default: return -EOPNOTSUPP; } return 0; } int ieee80211_channel_switch(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_csa_settings *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_chanctx *chanctx; int err, num_chanctx, changed = 0; sdata_assert_lock(sdata); if (!list_empty(&local->roc_list) || local->scanning) return -EBUSY; if (sdata->wdev.cac_started) return -EBUSY; if (cfg80211_chandef_identical(¶ms->chandef, &sdata->vif.bss_conf.chandef)) return -EINVAL; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); return -EBUSY; } /* don't handle for multi-VIF cases */ chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); if (chanctx->refcount > 1) { rcu_read_unlock(); return -EBUSY; } num_chanctx = 0; list_for_each_entry_rcu(chanctx, &local->chanctx_list, list) num_chanctx++; rcu_read_unlock(); if (num_chanctx > 1) return -EBUSY; /* don't allow another channel switch if one is already active. */ if (sdata->vif.csa_active) return -EBUSY; err = ieee80211_set_csa_beacon(sdata, params, &changed); if (err) return err; sdata->csa_radar_required = params->radar_required; if (params->block_tx) ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_CSA); sdata->csa_chandef = params->chandef; sdata->vif.csa_active = true; if (changed) { ieee80211_bss_info_change_notify(sdata, changed); drv_channel_switch_beacon(sdata, ¶ms->chandef); } else { /* if the beacon didn't change, we can finalize immediately */ ieee80211_csa_finalize(sdata); } return 0; } static int ieee80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct sta_info *sta; const struct ieee80211_mgmt *mgmt = (void *)params->buf; bool need_offchan = false; u32 flags; int ret; if (params->dont_wait_for_ack) flags = IEEE80211_TX_CTL_NO_ACK; else flags = IEEE80211_TX_INTFL_NL80211_FRAME_TX | IEEE80211_TX_CTL_REQ_TX_STATUS; if (params->no_cck) flags |= IEEE80211_TX_CTL_NO_CCK_RATE; switch (sdata->vif.type) { case NL80211_IFTYPE_ADHOC: if (!sdata->vif.bss_conf.ibss_joined) need_offchan = true; /* fall through */ #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: if (ieee80211_vif_is_mesh(&sdata->vif) && !sdata->u.mesh.mesh_id_len) need_offchan = true; /* fall through */ #endif case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_GO: if (sdata->vif.type != NL80211_IFTYPE_ADHOC && !ieee80211_vif_is_mesh(&sdata->vif) && !rcu_access_pointer(sdata->bss->beacon)) need_offchan = true; if (!ieee80211_is_action(mgmt->frame_control) || mgmt->u.action.category == WLAN_CATEGORY_PUBLIC || mgmt->u.action.category == WLAN_CATEGORY_SELF_PROTECTED || mgmt->u.action.category == WLAN_CATEGORY_SPECTRUM_MGMT) break; rcu_read_lock(); sta = sta_info_get(sdata, mgmt->da); rcu_read_unlock(); if (!sta) return -ENOLINK; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: if (!sdata->u.mgd.associated) need_offchan = true; break; case NL80211_IFTYPE_P2P_DEVICE: need_offchan = true; break; default: return -EOPNOTSUPP; } /* configurations requiring offchan cannot work if no channel has been * specified */ if (need_offchan && !params->chan) return -EINVAL; mutex_lock(&local->mtx); /* Check if the operating channel is the requested channel */ if (!need_offchan) { struct ieee80211_chanctx_conf *chanctx_conf; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (chanctx_conf) { need_offchan = params->chan && (params->chan != chanctx_conf->def.chan); } else if (!params->chan) { ret = -EINVAL; rcu_read_unlock(); goto out_unlock; } else { need_offchan = true; } rcu_read_unlock(); } if (need_offchan && !params->offchan) { ret = -EBUSY; goto out_unlock; } skb = dev_alloc_skb(local->hw.extra_tx_headroom + params->len); if (!skb) { ret = -ENOMEM; goto out_unlock; } skb_reserve(skb, local->hw.extra_tx_headroom); memcpy(skb_put(skb, params->len), params->buf, params->len); IEEE80211_SKB_CB(skb)->flags = flags; skb->dev = sdata->dev; if (!need_offchan) { *cookie = (unsigned long) skb; ieee80211_tx_skb(sdata, skb); ret = 0; goto out_unlock; } IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_TX_OFFCHAN | IEEE80211_TX_INTFL_OFFCHAN_TX_OK; if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) IEEE80211_SKB_CB(skb)->hw_queue = local->hw.offchannel_tx_hw_queue; /* This will handle all kinds of coalescing and immediate TX */ ret = ieee80211_start_roc_work(local, sdata, params->chan, params->wait, cookie, skb, IEEE80211_ROC_TYPE_MGMT_TX); if (ret) kfree_skb(skb); out_unlock: mutex_unlock(&local->mtx); return ret; } static int ieee80211_mgmt_tx_cancel_wait(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie) { struct ieee80211_local *local = wiphy_priv(wiphy); return ieee80211_cancel_roc(local, cookie, true); } static void ieee80211_mgmt_frame_register(struct wiphy *wiphy, struct wireless_dev *wdev, u16 frame_type, bool reg) { struct ieee80211_local *local = wiphy_priv(wiphy); switch (frame_type) { case IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ: if (reg) local->probe_req_reg++; else local->probe_req_reg--; if (!local->open_count) break; ieee80211_queue_work(&local->hw, &local->reconfig_filter); break; default: break; } } static int ieee80211_set_antenna(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant) { struct ieee80211_local *local = wiphy_priv(wiphy); if (local->started) return -EOPNOTSUPP; return drv_set_antenna(local, tx_ant, rx_ant); } static int ieee80211_get_antenna(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant) { struct ieee80211_local *local = wiphy_priv(wiphy); return drv_get_antenna(local, tx_ant, rx_ant); } static int ieee80211_set_ringparam(struct wiphy *wiphy, u32 tx, u32 rx) { struct ieee80211_local *local = wiphy_priv(wiphy); return drv_set_ringparam(local, tx, rx); } static void ieee80211_get_ringparam(struct wiphy *wiphy, u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max) { struct ieee80211_local *local = wiphy_priv(wiphy); drv_get_ringparam(local, tx, tx_max, rx, rx_max); } static int ieee80211_set_rekey_data(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_gtk_rekey_data *data) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (!local->ops->set_rekey_data) return -EOPNOTSUPP; drv_set_rekey_data(local, sdata, data); return 0; } static void ieee80211_tdls_add_ext_capab(struct sk_buff *skb) { u8 *pos = (void *)skb_put(skb, 7); *pos++ = WLAN_EID_EXT_CAPABILITY; *pos++ = 5; /* len */ *pos++ = 0x0; *pos++ = 0x0; *pos++ = 0x0; *pos++ = 0x0; *pos++ = WLAN_EXT_CAPA5_TDLS_ENABLED; } static u16 ieee80211_get_tdls_sta_capab(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; u16 capab; capab = 0; if (ieee80211_get_sdata_band(sdata) != IEEE80211_BAND_2GHZ) return capab; if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE)) capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME; if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE)) capab |= WLAN_CAPABILITY_SHORT_PREAMBLE; return capab; } static void ieee80211_tdls_add_link_ie(struct sk_buff *skb, u8 *src_addr, u8 *peer, u8 *bssid) { struct ieee80211_tdls_lnkie *lnkid; lnkid = (void *)skb_put(skb, sizeof(struct ieee80211_tdls_lnkie)); lnkid->ie_type = WLAN_EID_LINK_ID; lnkid->ie_len = sizeof(struct ieee80211_tdls_lnkie) - 2; memcpy(lnkid->bssid, bssid, ETH_ALEN); memcpy(lnkid->init_sta, src_addr, ETH_ALEN); memcpy(lnkid->resp_sta, peer, ETH_ALEN); } static int ieee80211_prep_tdls_encap_data(struct wiphy *wiphy, struct net_device *dev, u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); enum ieee80211_band band = ieee80211_get_sdata_band(sdata); struct ieee80211_tdls_data *tf; tf = (void *)skb_put(skb, offsetof(struct ieee80211_tdls_data, u)); memcpy(tf->da, peer, ETH_ALEN); memcpy(tf->sa, sdata->vif.addr, ETH_ALEN); tf->ether_type = cpu_to_be16(ETH_P_TDLS); tf->payload_type = WLAN_TDLS_SNAP_RFTYPE; switch (action_code) { case WLAN_TDLS_SETUP_REQUEST: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_SETUP_REQUEST; skb_put(skb, sizeof(tf->u.setup_req)); tf->u.setup_req.dialog_token = dialog_token; tf->u.setup_req.capability = cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata)); ieee80211_add_srates_ie(sdata, skb, false, band); ieee80211_add_ext_srates_ie(sdata, skb, false, band); ieee80211_tdls_add_ext_capab(skb); break; case WLAN_TDLS_SETUP_RESPONSE: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_SETUP_RESPONSE; skb_put(skb, sizeof(tf->u.setup_resp)); tf->u.setup_resp.status_code = cpu_to_le16(status_code); tf->u.setup_resp.dialog_token = dialog_token; tf->u.setup_resp.capability = cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata)); ieee80211_add_srates_ie(sdata, skb, false, band); ieee80211_add_ext_srates_ie(sdata, skb, false, band); ieee80211_tdls_add_ext_capab(skb); break; case WLAN_TDLS_SETUP_CONFIRM: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_SETUP_CONFIRM; skb_put(skb, sizeof(tf->u.setup_cfm)); tf->u.setup_cfm.status_code = cpu_to_le16(status_code); tf->u.setup_cfm.dialog_token = dialog_token; break; case WLAN_TDLS_TEARDOWN: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_TEARDOWN; skb_put(skb, sizeof(tf->u.teardown)); tf->u.teardown.reason_code = cpu_to_le16(status_code); break; case WLAN_TDLS_DISCOVERY_REQUEST: tf->category = WLAN_CATEGORY_TDLS; tf->action_code = WLAN_TDLS_DISCOVERY_REQUEST; skb_put(skb, sizeof(tf->u.discover_req)); tf->u.discover_req.dialog_token = dialog_token; break; default: return -EINVAL; } return 0; } static int ieee80211_prep_tdls_direct(struct wiphy *wiphy, struct net_device *dev, u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); enum ieee80211_band band = ieee80211_get_sdata_band(sdata); struct ieee80211_mgmt *mgmt; mgmt = (void *)skb_put(skb, 24); memset(mgmt, 0, 24); memcpy(mgmt->da, peer, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); switch (action_code) { case WLAN_PUB_ACTION_TDLS_DISCOVER_RES: skb_put(skb, 1 + sizeof(mgmt->u.action.u.tdls_discover_resp)); mgmt->u.action.category = WLAN_CATEGORY_PUBLIC; mgmt->u.action.u.tdls_discover_resp.action_code = WLAN_PUB_ACTION_TDLS_DISCOVER_RES; mgmt->u.action.u.tdls_discover_resp.dialog_token = dialog_token; mgmt->u.action.u.tdls_discover_resp.capability = cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata)); ieee80211_add_srates_ie(sdata, skb, false, band); ieee80211_add_ext_srates_ie(sdata, skb, false, band); ieee80211_tdls_add_ext_capab(skb); break; default: return -EINVAL; } return 0; } static int ieee80211_tdls_mgmt(struct wiphy *wiphy, struct net_device *dev, u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, const u8 *extra_ies, size_t extra_ies_len) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sk_buff *skb = NULL; bool send_direct; int ret; if (!(wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS)) return -ENOTSUPP; /* make sure we are in managed mode, and associated */ if (sdata->vif.type != NL80211_IFTYPE_STATION || !sdata->u.mgd.associated) return -EINVAL; tdls_dbg(sdata, "TDLS mgmt action %d peer %pM\n", action_code, peer); skb = dev_alloc_skb(local->hw.extra_tx_headroom + max(sizeof(struct ieee80211_mgmt), sizeof(struct ieee80211_tdls_data)) + 50 + /* supported rates */ 7 + /* ext capab */ extra_ies_len + sizeof(struct ieee80211_tdls_lnkie)); if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom); switch (action_code) { case WLAN_TDLS_SETUP_REQUEST: case WLAN_TDLS_SETUP_RESPONSE: case WLAN_TDLS_SETUP_CONFIRM: case WLAN_TDLS_TEARDOWN: case WLAN_TDLS_DISCOVERY_REQUEST: ret = ieee80211_prep_tdls_encap_data(wiphy, dev, peer, action_code, dialog_token, status_code, skb); send_direct = false; break; case WLAN_PUB_ACTION_TDLS_DISCOVER_RES: ret = ieee80211_prep_tdls_direct(wiphy, dev, peer, action_code, dialog_token, status_code, skb); send_direct = true; break; default: ret = -ENOTSUPP; break; } if (ret < 0) goto fail; if (extra_ies_len) memcpy(skb_put(skb, extra_ies_len), extra_ies, extra_ies_len); /* the TDLS link IE is always added last */ switch (action_code) { case WLAN_TDLS_SETUP_REQUEST: case WLAN_TDLS_SETUP_CONFIRM: case WLAN_TDLS_TEARDOWN: case WLAN_TDLS_DISCOVERY_REQUEST: /* we are the initiator */ ieee80211_tdls_add_link_ie(skb, sdata->vif.addr, peer, sdata->u.mgd.bssid); break; case WLAN_TDLS_SETUP_RESPONSE: case WLAN_PUB_ACTION_TDLS_DISCOVER_RES: /* we are the responder */ ieee80211_tdls_add_link_ie(skb, peer, sdata->vif.addr, sdata->u.mgd.bssid); break; default: ret = -ENOTSUPP; goto fail; } if (send_direct) { ieee80211_tx_skb(sdata, skb); return 0; } /* * According to 802.11z: Setup req/resp are sent in AC_BK, otherwise * we should default to AC_VI. */ switch (action_code) { case WLAN_TDLS_SETUP_REQUEST: case WLAN_TDLS_SETUP_RESPONSE: skb_set_queue_mapping(skb, IEEE80211_AC_BK); skb->priority = 2; break; default: skb_set_queue_mapping(skb, IEEE80211_AC_VI); skb->priority = 5; break; } /* disable bottom halves when entering the Tx path */ local_bh_disable(); ret = ieee80211_subif_start_xmit(skb, dev); local_bh_enable(); return ret; fail: dev_kfree_skb(skb); return ret; } static int ieee80211_tdls_oper(struct wiphy *wiphy, struct net_device *dev, u8 *peer, enum nl80211_tdls_operation oper) { struct sta_info *sta; struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (!(wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS)) return -ENOTSUPP; if (sdata->vif.type != NL80211_IFTYPE_STATION) return -EINVAL; tdls_dbg(sdata, "TDLS oper %d peer %pM\n", oper, peer); switch (oper) { case NL80211_TDLS_ENABLE_LINK: rcu_read_lock(); sta = sta_info_get(sdata, peer); if (!sta) { rcu_read_unlock(); return -ENOLINK; } set_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH); rcu_read_unlock(); break; case NL80211_TDLS_DISABLE_LINK: return sta_info_destroy_addr(sdata, peer); case NL80211_TDLS_TEARDOWN: case NL80211_TDLS_SETUP: case NL80211_TDLS_DISCOVERY_REQ: /* We don't support in-driver setup/teardown/discovery */ return -ENOTSUPP; default: return -ENOTSUPP; } return 0; } static int ieee80211_probe_client(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct ieee80211_qos_hdr *nullfunc; struct sk_buff *skb; int size = sizeof(*nullfunc); __le16 fc; bool qos; struct ieee80211_tx_info *info; struct sta_info *sta; struct ieee80211_chanctx_conf *chanctx_conf; enum ieee80211_band band; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); return -EINVAL; } band = chanctx_conf->def.chan->band; sta = sta_info_get_bss(sdata, peer); if (sta) { qos = test_sta_flag(sta, WLAN_STA_WME); } else { rcu_read_unlock(); return -ENOLINK; } if (qos) { fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC | IEEE80211_FCTL_FROMDS); } else { size -= 2; fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_FROMDS); } skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); if (!skb) { rcu_read_unlock(); return -ENOMEM; } skb->dev = dev; skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = (void *) skb_put(skb, size); nullfunc->frame_control = fc; nullfunc->duration_id = 0; memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); nullfunc->seq_ctrl = 0; info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_NL80211_FRAME_TX; skb_set_queue_mapping(skb, IEEE80211_AC_VO); skb->priority = 7; if (qos) nullfunc->qos_ctrl = cpu_to_le16(7); local_bh_disable(); ieee80211_xmit(sdata, skb, band); local_bh_enable(); rcu_read_unlock(); *cookie = (unsigned long) skb; return 0; } static int ieee80211_cfg_get_channel(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_chanctx_conf *chanctx_conf; int ret = -ENODATA; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (chanctx_conf) { *chandef = chanctx_conf->def; ret = 0; } else if (local->open_count > 0 && local->open_count == local->monitors && sdata->vif.type == NL80211_IFTYPE_MONITOR) { if (local->use_chanctx) *chandef = local->monitor_chandef; else *chandef = local->_oper_chandef; ret = 0; } rcu_read_unlock(); return ret; } #ifdef CONFIG_PM static void ieee80211_set_wakeup(struct wiphy *wiphy, bool enabled) { drv_set_wakeup(wiphy_priv(wiphy), enabled); } #endif static int ieee80211_set_qos_map(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_qos_map *qos_map) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct mac80211_qos_map *new_qos_map, *old_qos_map; if (qos_map) { new_qos_map = kzalloc(sizeof(*new_qos_map), GFP_KERNEL); if (!new_qos_map) return -ENOMEM; memcpy(&new_qos_map->qos_map, qos_map, sizeof(*qos_map)); } else { /* A NULL qos_map was passed to disable QoS mapping */ new_qos_map = NULL; } old_qos_map = sdata_dereference(sdata->qos_map, sdata); rcu_assign_pointer(sdata->qos_map, new_qos_map); if (old_qos_map) kfree_rcu(old_qos_map, rcu_head); return 0; } const struct cfg80211_ops mac80211_config_ops = { .add_virtual_intf = ieee80211_add_iface, .del_virtual_intf = ieee80211_del_iface, .change_virtual_intf = ieee80211_change_iface, .start_p2p_device = ieee80211_start_p2p_device, .stop_p2p_device = ieee80211_stop_p2p_device, .add_key = ieee80211_add_key, .del_key = ieee80211_del_key, .get_key = ieee80211_get_key, .set_default_key = ieee80211_config_default_key, .set_default_mgmt_key = ieee80211_config_default_mgmt_key, .start_ap = ieee80211_start_ap, .change_beacon = ieee80211_change_beacon, .stop_ap = ieee80211_stop_ap, .add_station = ieee80211_add_station, .del_station = ieee80211_del_station, .change_station = ieee80211_change_station, .get_station = ieee80211_get_station, .dump_station = ieee80211_dump_station, .dump_survey = ieee80211_dump_survey, #ifdef CONFIG_MAC80211_MESH .add_mpath = ieee80211_add_mpath, .del_mpath = ieee80211_del_mpath, .change_mpath = ieee80211_change_mpath, .get_mpath = ieee80211_get_mpath, .dump_mpath = ieee80211_dump_mpath, .update_mesh_config = ieee80211_update_mesh_config, .get_mesh_config = ieee80211_get_mesh_config, .join_mesh = ieee80211_join_mesh, .leave_mesh = ieee80211_leave_mesh, #endif .change_bss = ieee80211_change_bss, .set_txq_params = ieee80211_set_txq_params, .set_monitor_channel = ieee80211_set_monitor_channel, .suspend = ieee80211_suspend, .resume = ieee80211_resume, .scan = ieee80211_scan, .sched_scan_start = ieee80211_sched_scan_start, .sched_scan_stop = ieee80211_sched_scan_stop, .auth = ieee80211_auth, .assoc = ieee80211_assoc, .deauth = ieee80211_deauth, .disassoc = ieee80211_disassoc, .join_ibss = ieee80211_join_ibss, .leave_ibss = ieee80211_leave_ibss, .set_mcast_rate = ieee80211_set_mcast_rate, .set_wiphy_params = ieee80211_set_wiphy_params, .set_tx_power = ieee80211_set_tx_power, .get_tx_power = ieee80211_get_tx_power, .set_wds_peer = ieee80211_set_wds_peer, .rfkill_poll = ieee80211_rfkill_poll, CFG80211_TESTMODE_CMD(ieee80211_testmode_cmd) CFG80211_TESTMODE_DUMP(ieee80211_testmode_dump) .set_power_mgmt = ieee80211_set_power_mgmt, .set_bitrate_mask = ieee80211_set_bitrate_mask, .remain_on_channel = ieee80211_remain_on_channel, .cancel_remain_on_channel = ieee80211_cancel_remain_on_channel, .mgmt_tx = ieee80211_mgmt_tx, .mgmt_tx_cancel_wait = ieee80211_mgmt_tx_cancel_wait, .set_cqm_rssi_config = ieee80211_set_cqm_rssi_config, .mgmt_frame_register = ieee80211_mgmt_frame_register, .set_antenna = ieee80211_set_antenna, .get_antenna = ieee80211_get_antenna, .set_ringparam = ieee80211_set_ringparam, .get_ringparam = ieee80211_get_ringparam, .set_rekey_data = ieee80211_set_rekey_data, .tdls_oper = ieee80211_tdls_oper, .tdls_mgmt = ieee80211_tdls_mgmt, .probe_client = ieee80211_probe_client, .set_noack_map = ieee80211_set_noack_map, #ifdef CONFIG_PM .set_wakeup = ieee80211_set_wakeup, #endif .get_et_sset_count = ieee80211_get_et_sset_count, .get_et_stats = ieee80211_get_et_stats, .get_et_strings = ieee80211_get_et_strings, .get_channel = ieee80211_cfg_get_channel, .start_radar_detection = ieee80211_start_radar_detection, .channel_switch = ieee80211_channel_switch, .set_qos_map = ieee80211_set_qos_map, };