/* * VMware vSockets Driver * * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation version 2 and no later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmci_transport_notify.h" static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg); static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg); static void vmci_transport_peer_detach_cb(u32 sub_id, const struct vmci_event_data *ed, void *client_data); static void vmci_transport_recv_pkt_work(struct work_struct *work); static void vmci_transport_cleanup(struct work_struct *work); static int vmci_transport_recv_listen(struct sock *sk, struct vmci_transport_packet *pkt); static int vmci_transport_recv_connecting_server( struct sock *sk, struct sock *pending, struct vmci_transport_packet *pkt); static int vmci_transport_recv_connecting_client( struct sock *sk, struct vmci_transport_packet *pkt); static int vmci_transport_recv_connecting_client_negotiate( struct sock *sk, struct vmci_transport_packet *pkt); static int vmci_transport_recv_connecting_client_invalid( struct sock *sk, struct vmci_transport_packet *pkt); static int vmci_transport_recv_connected(struct sock *sk, struct vmci_transport_packet *pkt); static bool vmci_transport_old_proto_override(bool *old_pkt_proto); static u16 vmci_transport_new_proto_supported_versions(void); static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto, bool old_pkt_proto); struct vmci_transport_recv_pkt_info { struct work_struct work; struct sock *sk; struct vmci_transport_packet pkt; }; static LIST_HEAD(vmci_transport_cleanup_list); static DEFINE_SPINLOCK(vmci_transport_cleanup_lock); static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup); static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID, VMCI_INVALID_ID }; static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; static int PROTOCOL_OVERRIDE = -1; #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144 /* The default peer timeout indicates how long we will wait for a peer response * to a control message. */ #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) /* Helper function to convert from a VMCI error code to a VSock error code. */ static s32 vmci_transport_error_to_vsock_error(s32 vmci_error) { switch (vmci_error) { case VMCI_ERROR_NO_MEM: return -ENOMEM; case VMCI_ERROR_DUPLICATE_ENTRY: case VMCI_ERROR_ALREADY_EXISTS: return -EADDRINUSE; case VMCI_ERROR_NO_ACCESS: return -EPERM; case VMCI_ERROR_NO_RESOURCES: return -ENOBUFS; case VMCI_ERROR_INVALID_RESOURCE: return -EHOSTUNREACH; case VMCI_ERROR_INVALID_ARGS: default: break; } return -EINVAL; } static u32 vmci_transport_peer_rid(u32 peer_cid) { if (VMADDR_CID_HYPERVISOR == peer_cid) return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID; return VMCI_TRANSPORT_PACKET_RID; } static inline void vmci_transport_packet_init(struct vmci_transport_packet *pkt, struct sockaddr_vm *src, struct sockaddr_vm *dst, u8 type, u64 size, u64 mode, struct vmci_transport_waiting_info *wait, u16 proto, struct vmci_handle handle) { /* We register the stream control handler as an any cid handle so we * must always send from a source address of VMADDR_CID_ANY */ pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY, VMCI_TRANSPORT_PACKET_RID); pkt->dg.dst = vmci_make_handle(dst->svm_cid, vmci_transport_peer_rid(dst->svm_cid)); pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg); pkt->version = VMCI_TRANSPORT_PACKET_VERSION; pkt->type = type; pkt->src_port = src->svm_port; pkt->dst_port = dst->svm_port; memset(&pkt->proto, 0, sizeof(pkt->proto)); memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2)); switch (pkt->type) { case VMCI_TRANSPORT_PACKET_TYPE_INVALID: pkt->u.size = 0; break; case VMCI_TRANSPORT_PACKET_TYPE_REQUEST: case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: pkt->u.size = size; break; case VMCI_TRANSPORT_PACKET_TYPE_OFFER: case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: pkt->u.handle = handle; break; case VMCI_TRANSPORT_PACKET_TYPE_WROTE: case VMCI_TRANSPORT_PACKET_TYPE_READ: case VMCI_TRANSPORT_PACKET_TYPE_RST: pkt->u.size = 0; break; case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: pkt->u.mode = mode; break; case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ: case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE: memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait)); break; case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2: case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: pkt->u.size = size; pkt->proto = proto; break; } } static inline void vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt, struct sockaddr_vm *local, struct sockaddr_vm *remote) { vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port); vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port); } static int __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt, struct sockaddr_vm *src, struct sockaddr_vm *dst, enum vmci_transport_packet_type type, u64 size, u64 mode, struct vmci_transport_waiting_info *wait, u16 proto, struct vmci_handle handle, bool convert_error) { int err; vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait, proto, handle); err = vmci_datagram_send(&pkt->dg); if (convert_error && (err < 0)) return vmci_transport_error_to_vsock_error(err); return err; } static int vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt, enum vmci_transport_packet_type type, u64 size, u64 mode, struct vmci_transport_waiting_info *wait, struct vmci_handle handle) { struct vmci_transport_packet reply; struct sockaddr_vm src, dst; if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) { return 0; } else { vmci_transport_packet_get_addresses(pkt, &src, &dst); return __vmci_transport_send_control_pkt(&reply, &src, &dst, type, size, mode, wait, VSOCK_PROTO_INVALID, handle, true); } } static int vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src, struct sockaddr_vm *dst, enum vmci_transport_packet_type type, u64 size, u64 mode, struct vmci_transport_waiting_info *wait, struct vmci_handle handle) { /* Note that it is safe to use a single packet across all CPUs since * two tasklets of the same type are guaranteed to not ever run * simultaneously. If that ever changes, or VMCI stops using tasklets, * we can use per-cpu packets. */ static struct vmci_transport_packet pkt; return __vmci_transport_send_control_pkt(&pkt, src, dst, type, size, mode, wait, VSOCK_PROTO_INVALID, handle, false); } static int vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src, struct sockaddr_vm *dst, enum vmci_transport_packet_type type, u64 size, u64 mode, struct vmci_transport_waiting_info *wait, u16 proto, struct vmci_handle handle) { struct vmci_transport_packet *pkt; int err; pkt = kmalloc(sizeof(*pkt), GFP_KERNEL); if (!pkt) return -ENOMEM; err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size, mode, wait, proto, handle, true); kfree(pkt); return err; } static int vmci_transport_send_control_pkt(struct sock *sk, enum vmci_transport_packet_type type, u64 size, u64 mode, struct vmci_transport_waiting_info *wait, u16 proto, struct vmci_handle handle) { struct vsock_sock *vsk; vsk = vsock_sk(sk); if (!vsock_addr_bound(&vsk->local_addr)) return -EINVAL; if (!vsock_addr_bound(&vsk->remote_addr)) return -EINVAL; return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, &vsk->remote_addr, type, size, mode, wait, proto, handle); } static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst, struct sockaddr_vm *src, struct vmci_transport_packet *pkt) { if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) return 0; return vmci_transport_send_control_pkt_bh( dst, src, VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 0, NULL, VMCI_INVALID_HANDLE); } static int vmci_transport_send_reset(struct sock *sk, struct vmci_transport_packet *pkt) { struct sockaddr_vm *dst_ptr; struct sockaddr_vm dst; struct vsock_sock *vsk; if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) return 0; vsk = vsock_sk(sk); if (!vsock_addr_bound(&vsk->local_addr)) return -EINVAL; if (vsock_addr_bound(&vsk->remote_addr)) { dst_ptr = &vsk->remote_addr; } else { vsock_addr_init(&dst, pkt->dg.src.context, pkt->src_port); dst_ptr = &dst; } return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr, VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 0, NULL, VSOCK_PROTO_INVALID, VMCI_INVALID_HANDLE); } static int vmci_transport_send_negotiate(struct sock *sk, size_t size) { return vmci_transport_send_control_pkt( sk, VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE, size, 0, NULL, VSOCK_PROTO_INVALID, VMCI_INVALID_HANDLE); } static int vmci_transport_send_negotiate2(struct sock *sk, size_t size, u16 version) { return vmci_transport_send_control_pkt( sk, VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2, size, 0, NULL, version, VMCI_INVALID_HANDLE); } static int vmci_transport_send_qp_offer(struct sock *sk, struct vmci_handle handle) { return vmci_transport_send_control_pkt( sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0, 0, NULL, VSOCK_PROTO_INVALID, handle); } static int vmci_transport_send_attach(struct sock *sk, struct vmci_handle handle) { return vmci_transport_send_control_pkt( sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH, 0, 0, NULL, VSOCK_PROTO_INVALID, handle); } static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt) { return vmci_transport_reply_control_pkt_fast( pkt, VMCI_TRANSPORT_PACKET_TYPE_RST, 0, 0, NULL, VMCI_INVALID_HANDLE); } static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst, struct sockaddr_vm *src) { return vmci_transport_send_control_pkt_bh( dst, src, VMCI_TRANSPORT_PACKET_TYPE_INVALID, 0, 0, NULL, VMCI_INVALID_HANDLE); } int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst, struct sockaddr_vm *src) { return vmci_transport_send_control_pkt_bh( dst, src, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 0, NULL, VMCI_INVALID_HANDLE); } int vmci_transport_send_read_bh(struct sockaddr_vm *dst, struct sockaddr_vm *src) { return vmci_transport_send_control_pkt_bh( dst, src, VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 0, NULL, VMCI_INVALID_HANDLE); } int vmci_transport_send_wrote(struct sock *sk) { return vmci_transport_send_control_pkt( sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0, 0, NULL, VSOCK_PROTO_INVALID, VMCI_INVALID_HANDLE); } int vmci_transport_send_read(struct sock *sk) { return vmci_transport_send_control_pkt( sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0, 0, NULL, VSOCK_PROTO_INVALID, VMCI_INVALID_HANDLE); } int vmci_transport_send_waiting_write(struct sock *sk, struct vmci_transport_waiting_info *wait) { return vmci_transport_send_control_pkt( sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE, 0, 0, wait, VSOCK_PROTO_INVALID, VMCI_INVALID_HANDLE); } int vmci_transport_send_waiting_read(struct sock *sk, struct vmci_transport_waiting_info *wait) { return vmci_transport_send_control_pkt( sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ, 0, 0, wait, VSOCK_PROTO_INVALID, VMCI_INVALID_HANDLE); } static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode) { return vmci_transport_send_control_pkt( &vsk->sk, VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN, 0, mode, NULL, VSOCK_PROTO_INVALID, VMCI_INVALID_HANDLE); } static int vmci_transport_send_conn_request(struct sock *sk, size_t size) { return vmci_transport_send_control_pkt(sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST, size, 0, NULL, VSOCK_PROTO_INVALID, VMCI_INVALID_HANDLE); } static int vmci_transport_send_conn_request2(struct sock *sk, size_t size, u16 version) { return vmci_transport_send_control_pkt( sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2, size, 0, NULL, version, VMCI_INVALID_HANDLE); } static struct sock *vmci_transport_get_pending( struct sock *listener, struct vmci_transport_packet *pkt) { struct vsock_sock *vlistener; struct vsock_sock *vpending; struct sock *pending; struct sockaddr_vm src; vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); vlistener = vsock_sk(listener); list_for_each_entry(vpending, &vlistener->pending_links, pending_links) { if (vsock_addr_equals_addr(&src, &vpending->remote_addr) && pkt->dst_port == vpending->local_addr.svm_port) { pending = sk_vsock(vpending); sock_hold(pending); goto found; } } pending = NULL; found: return pending; } static void vmci_transport_release_pending(struct sock *pending) { sock_put(pending); } /* We allow two kinds of sockets to communicate with a restricted VM: 1) * trusted sockets 2) sockets from applications running as the same user as the * VM (this is only true for the host side and only when using hosted products) */ static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid) { return vsock->trusted || vmci_is_context_owner(peer_cid, vsock->owner->uid); } /* We allow sending datagrams to and receiving datagrams from a restricted VM * only if it is trusted as described in vmci_transport_is_trusted. */ static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid) { if (VMADDR_CID_HYPERVISOR == peer_cid) return true; if (vsock->cached_peer != peer_cid) { vsock->cached_peer = peer_cid; if (!vmci_transport_is_trusted(vsock, peer_cid) && (vmci_context_get_priv_flags(peer_cid) & VMCI_PRIVILEGE_FLAG_RESTRICTED)) { vsock->cached_peer_allow_dgram = false; } else { vsock->cached_peer_allow_dgram = true; } } return vsock->cached_peer_allow_dgram; } static int vmci_transport_queue_pair_alloc(struct vmci_qp **qpair, struct vmci_handle *handle, u64 produce_size, u64 consume_size, u32 peer, u32 flags, bool trusted) { int err = 0; if (trusted) { /* Try to allocate our queue pair as trusted. This will only * work if vsock is running in the host. */ err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size, peer, flags, VMCI_PRIVILEGE_FLAG_TRUSTED); if (err != VMCI_ERROR_NO_ACCESS) goto out; } err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size, peer, flags, VMCI_NO_PRIVILEGE_FLAGS); out: if (err < 0) { pr_err("Could not attach to queue pair with %d\n", err); err = vmci_transport_error_to_vsock_error(err); } return err; } static int vmci_transport_datagram_create_hnd(u32 resource_id, u32 flags, vmci_datagram_recv_cb recv_cb, void *client_data, struct vmci_handle *out_handle) { int err = 0; /* Try to allocate our datagram handler as trusted. This will only work * if vsock is running in the host. */ err = vmci_datagram_create_handle_priv(resource_id, flags, VMCI_PRIVILEGE_FLAG_TRUSTED, recv_cb, client_data, out_handle); if (err == VMCI_ERROR_NO_ACCESS) err = vmci_datagram_create_handle(resource_id, flags, recv_cb, client_data, out_handle); return err; } /* This is invoked as part of a tasklet that's scheduled when the VMCI * interrupt fires. This is run in bottom-half context and if it ever needs to * sleep it should defer that work to a work queue. */ static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg) { struct sock *sk; size_t size; struct sk_buff *skb; struct vsock_sock *vsk; sk = (struct sock *)data; /* This handler is privileged when this module is running on the host. * We will get datagrams from all endpoints (even VMs that are in a * restricted context). If we get one from a restricted context then * the destination socket must be trusted. * * NOTE: We access the socket struct without holding the lock here. * This is ok because the field we are interested is never modified * outside of the create and destruct socket functions. */ vsk = vsock_sk(sk); if (!vmci_transport_allow_dgram(vsk, dg->src.context)) return VMCI_ERROR_NO_ACCESS; size = VMCI_DG_SIZE(dg); /* Attach the packet to the socket's receive queue as an sk_buff. */ skb = alloc_skb(size, GFP_ATOMIC); if (!skb) return VMCI_ERROR_NO_MEM; /* sk_receive_skb() will do a sock_put(), so hold here. */ sock_hold(sk); skb_put(skb, size); memcpy(skb->data, dg, size); sk_receive_skb(sk, skb, 0); return VMCI_SUCCESS; } static bool vmci_transport_stream_allow(u32 cid, u32 port) { static const u32 non_socket_contexts[] = { VMADDR_CID_RESERVED, }; int i; BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts)); for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) { if (cid == non_socket_contexts[i]) return false; } return true; } /* This is invoked as part of a tasklet that's scheduled when the VMCI * interrupt fires. This is run in bottom-half context but it defers most of * its work to the packet handling work queue. */ static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg) { struct sock *sk; struct sockaddr_vm dst; struct sockaddr_vm src; struct vmci_transport_packet *pkt; struct vsock_sock *vsk; bool bh_process_pkt; int err; sk = NULL; err = VMCI_SUCCESS; bh_process_pkt = false; /* Ignore incoming packets from contexts without sockets, or resources * that aren't vsock implementations. */ if (!vmci_transport_stream_allow(dg->src.context, -1) || vmci_transport_peer_rid(dg->src.context) != dg->src.resource) return VMCI_ERROR_NO_ACCESS; if (VMCI_DG_SIZE(dg) < sizeof(*pkt)) /* Drop datagrams that do not contain full VSock packets. */ return VMCI_ERROR_INVALID_ARGS; pkt = (struct vmci_transport_packet *)dg; /* Find the socket that should handle this packet. First we look for a * connected socket and if there is none we look for a socket bound to * the destintation address. */ vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port); vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port); sk = vsock_find_connected_socket(&src, &dst); if (!sk) { sk = vsock_find_bound_socket(&dst); if (!sk) { /* We could not find a socket for this specified * address. If this packet is a RST, we just drop it. * If it is another packet, we send a RST. Note that * we do not send a RST reply to RSTs so that we do not * continually send RSTs between two endpoints. * * Note that since this is a reply, dst is src and src * is dst. */ if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) pr_err("unable to send reset\n"); err = VMCI_ERROR_NOT_FOUND; goto out; } } /* If the received packet type is beyond all types known to this * implementation, reply with an invalid message. Hopefully this will * help when implementing backwards compatibility in the future. */ if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) { vmci_transport_send_invalid_bh(&dst, &src); err = VMCI_ERROR_INVALID_ARGS; goto out; } /* This handler is privileged when this module is running on the host. * We will get datagram connect requests from all endpoints (even VMs * that are in a restricted context). If we get one from a restricted * context then the destination socket must be trusted. * * NOTE: We access the socket struct without holding the lock here. * This is ok because the field we are interested is never modified * outside of the create and destruct socket functions. */ vsk = vsock_sk(sk); if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) { err = VMCI_ERROR_NO_ACCESS; goto out; } /* We do most everything in a work queue, but let's fast path the * notification of reads and writes to help data transfer performance. * We can only do this if there is no process context code executing * for this socket since that may change the state. */ bh_lock_sock(sk); if (!sock_owned_by_user(sk)) { /* The local context ID may be out of date, update it. */ vsk->local_addr.svm_cid = dst.svm_cid; if (sk->sk_state == TCP_ESTABLISHED) vmci_trans(vsk)->notify_ops->handle_notify_pkt( sk, pkt, true, &dst, &src, &bh_process_pkt); } bh_unlock_sock(sk); if (!bh_process_pkt) { struct vmci_transport_recv_pkt_info *recv_pkt_info; recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC); if (!recv_pkt_info) { if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0) pr_err("unable to send reset\n"); err = VMCI_ERROR_NO_MEM; goto out; } recv_pkt_info->sk = sk; memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt)); INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work); schedule_work(&recv_pkt_info->work); /* Clear sk so that the reference count incremented by one of * the Find functions above is not decremented below. We need * that reference count for the packet handler we've scheduled * to run. */ sk = NULL; } out: if (sk) sock_put(sk); return err; } static void vmci_transport_handle_detach(struct sock *sk) { struct vsock_sock *vsk; vsk = vsock_sk(sk); if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) { sock_set_flag(sk, SOCK_DONE); /* On a detach the peer will not be sending or receiving * anymore. */ vsk->peer_shutdown = SHUTDOWN_MASK; /* We should not be sending anymore since the peer won't be * there to receive, but we can still receive if there is data * left in our consume queue. If the local endpoint is a host, * we can't call vsock_stream_has_data, since that may block, * but a host endpoint can't read data once the VM has * detached, so there is no available data in that case. */ if (vsk->local_addr.svm_cid == VMADDR_CID_HOST || vsock_stream_has_data(vsk) <= 0) { if (sk->sk_state == TCP_SYN_SENT) { /* The peer may detach from a queue pair while * we are still in the connecting state, i.e., * if the peer VM is killed after attaching to * a queue pair, but before we complete the * handshake. In that case, we treat the detach * event like a reset. */ sk->sk_state = TCP_CLOSE; sk->sk_err = ECONNRESET; sk->sk_error_report(sk); return; } sk->sk_state = TCP_CLOSE; } sk->sk_state_change(sk); } } static void vmci_transport_peer_detach_cb(u32 sub_id, const struct vmci_event_data *e_data, void *client_data) { struct vmci_transport *trans = client_data; const struct vmci_event_payload_qp *e_payload; e_payload = vmci_event_data_const_payload(e_data); /* XXX This is lame, we should provide a way to lookup sockets by * qp_handle. */ if (vmci_handle_is_invalid(e_payload->handle) || !vmci_handle_is_equal(trans->qp_handle, e_payload->handle)) return; /* We don't ask for delayed CBs when we subscribe to this event (we * pass 0 as flags to vmci_event_subscribe()). VMCI makes no * guarantees in that case about what context we might be running in, * so it could be BH or process, blockable or non-blockable. So we * need to account for all possible contexts here. */ spin_lock_bh(&trans->lock); if (!trans->sk) goto out; /* Apart from here, trans->lock is only grabbed as part of sk destruct, * where trans->sk isn't locked. */ bh_lock_sock(trans->sk); vmci_transport_handle_detach(trans->sk); bh_unlock_sock(trans->sk); out: spin_unlock_bh(&trans->lock); } static void vmci_transport_qp_resumed_cb(u32 sub_id, const struct vmci_event_data *e_data, void *client_data) { vsock_for_each_connected_socket(vmci_transport_handle_detach); } static void vmci_transport_recv_pkt_work(struct work_struct *work) { struct vmci_transport_recv_pkt_info *recv_pkt_info; struct vmci_transport_packet *pkt; struct sock *sk; recv_pkt_info = container_of(work, struct vmci_transport_recv_pkt_info, work); sk = recv_pkt_info->sk; pkt = &recv_pkt_info->pkt; lock_sock(sk); /* The local context ID may be out of date. */ vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context; switch (sk->sk_state) { case TCP_LISTEN: vmci_transport_recv_listen(sk, pkt); break; case TCP_SYN_SENT: /* Processing of pending connections for servers goes through * the listening socket, so see vmci_transport_recv_listen() * for that path. */ vmci_transport_recv_connecting_client(sk, pkt); break; case TCP_ESTABLISHED: vmci_transport_recv_connected(sk, pkt); break; default: /* Because this function does not run in the same context as * vmci_transport_recv_stream_cb it is possible that the * socket has closed. We need to let the other side know or it * could be sitting in a connect and hang forever. Send a * reset to prevent that. */ vmci_transport_send_reset(sk, pkt); break; } release_sock(sk); kfree(recv_pkt_info); /* Release reference obtained in the stream callback when we fetched * this socket out of the bound or connected list. */ sock_put(sk); } static int vmci_transport_recv_listen(struct sock *sk, struct vmci_transport_packet *pkt) { struct sock *pending; struct vsock_sock *vpending; int err; u64 qp_size; bool old_request = false; bool old_pkt_proto = false; err = 0; /* Because we are in the listen state, we could be receiving a packet * for ourself or any previous connection requests that we received. * If it's the latter, we try to find a socket in our list of pending * connections and, if we do, call the appropriate handler for the * state that that socket is in. Otherwise we try to service the * connection request. */ pending = vmci_transport_get_pending(sk, pkt); if (pending) { lock_sock(pending); /* The local context ID may be out of date. */ vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context; switch (pending->sk_state) { case TCP_SYN_SENT: err = vmci_transport_recv_connecting_server(sk, pending, pkt); break; default: vmci_transport_send_reset(pending, pkt); err = -EINVAL; } if (err < 0) vsock_remove_pending(sk, pending); release_sock(pending); vmci_transport_release_pending(pending); return err; } /* The listen state only accepts connection requests. Reply with a * reset unless we received a reset. */ if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST || pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) { vmci_transport_reply_reset(pkt); return -EINVAL; } if (pkt->u.size == 0) { vmci_transport_reply_reset(pkt); return -EINVAL; } /* If this socket can't accommodate this connection request, we send a * reset. Otherwise we create and initialize a child socket and reply * with a connection negotiation. */ if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) { vmci_transport_reply_reset(pkt); return -ECONNREFUSED; } pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL, sk->sk_type, 0); if (!pending) { vmci_transport_send_reset(sk, pkt); return -ENOMEM; } vpending = vsock_sk(pending); vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context, pkt->dst_port); vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context, pkt->src_port); /* If the proposed size fits within our min/max, accept it. Otherwise * propose our own size. */ if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size && pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) { qp_size = pkt->u.size; } else { qp_size = vmci_trans(vpending)->queue_pair_size; } /* Figure out if we are using old or new requests based on the * overrides pkt types sent by our peer. */ if (vmci_transport_old_proto_override(&old_pkt_proto)) { old_request = old_pkt_proto; } else { if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST) old_request = true; else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2) old_request = false; } if (old_request) { /* Handle a REQUEST (or override) */ u16 version = VSOCK_PROTO_INVALID; if (vmci_transport_proto_to_notify_struct( pending, &version, true)) err = vmci_transport_send_negotiate(pending, qp_size); else err = -EINVAL; } else { /* Handle a REQUEST2 (or override) */ int proto_int = pkt->proto; int pos; u16 active_proto_version = 0; /* The list of possible protocols is the intersection of all * protocols the client supports ... plus all the protocols we * support. */ proto_int &= vmci_transport_new_proto_supported_versions(); /* We choose the highest possible protocol version and use that * one. */ pos = fls(proto_int); if (pos) { active_proto_version = (1 << (pos - 1)); if (vmci_transport_proto_to_notify_struct( pending, &active_proto_version, false)) err = vmci_transport_send_negotiate2(pending, qp_size, active_proto_version); else err = -EINVAL; } else { err = -EINVAL; } } if (err < 0) { vmci_transport_send_reset(sk, pkt); sock_put(pending); err = vmci_transport_error_to_vsock_error(err); goto out; } vsock_add_pending(sk, pending); sk->sk_ack_backlog++; pending->sk_state = TCP_SYN_SENT; vmci_trans(vpending)->produce_size = vmci_trans(vpending)->consume_size = qp_size; vmci_trans(vpending)->queue_pair_size = qp_size; vmci_trans(vpending)->notify_ops->process_request(pending); /* We might never receive another message for this socket and it's not * connected to any process, so we have to ensure it gets cleaned up * ourself. Our delayed work function will take care of that. Note * that we do not ever cancel this function since we have few * guarantees about its state when calling cancel_delayed_work(). * Instead we hold a reference on the socket for that function and make * it capable of handling cases where it needs to do nothing but * release that reference. */ vpending->listener = sk; sock_hold(sk); sock_hold(pending); schedule_delayed_work(&vpending->pending_work, HZ); out: return err; } static int vmci_transport_recv_connecting_server(struct sock *listener, struct sock *pending, struct vmci_transport_packet *pkt) { struct vsock_sock *vpending; struct vmci_handle handle; struct vmci_qp *qpair; bool is_local; u32 flags; u32 detach_sub_id; int err; int skerr; vpending = vsock_sk(pending); detach_sub_id = VMCI_INVALID_ID; switch (pkt->type) { case VMCI_TRANSPORT_PACKET_TYPE_OFFER: if (vmci_handle_is_invalid(pkt->u.handle)) { vmci_transport_send_reset(pending, pkt); skerr = EPROTO; err = -EINVAL; goto destroy; } break; default: /* Close and cleanup the connection. */ vmci_transport_send_reset(pending, pkt); skerr = EPROTO; err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL; goto destroy; } /* In order to complete the connection we need to attach to the offered * queue pair and send an attach notification. We also subscribe to the * detach event so we know when our peer goes away, and we do that * before attaching so we don't miss an event. If all this succeeds, * we update our state and wakeup anything waiting in accept() for a * connection. */ /* We don't care about attach since we ensure the other side has * attached by specifying the ATTACH_ONLY flag below. */ err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, vmci_transport_peer_detach_cb, vmci_trans(vpending), &detach_sub_id); if (err < VMCI_SUCCESS) { vmci_transport_send_reset(pending, pkt); err = vmci_transport_error_to_vsock_error(err); skerr = -err; goto destroy; } vmci_trans(vpending)->detach_sub_id = detach_sub_id; /* Now attach to the queue pair the client created. */ handle = pkt->u.handle; /* vpending->local_addr always has a context id so we do not need to * worry about VMADDR_CID_ANY in this case. */ is_local = vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid; flags = VMCI_QPFLAG_ATTACH_ONLY; flags |= is_local ? VMCI_QPFLAG_LOCAL : 0; err = vmci_transport_queue_pair_alloc( &qpair, &handle, vmci_trans(vpending)->produce_size, vmci_trans(vpending)->consume_size, pkt->dg.src.context, flags, vmci_transport_is_trusted( vpending, vpending->remote_addr.svm_cid)); if (err < 0) { vmci_transport_send_reset(pending, pkt); skerr = -err; goto destroy; } vmci_trans(vpending)->qp_handle = handle; vmci_trans(vpending)->qpair = qpair; /* When we send the attach message, we must be ready to handle incoming * control messages on the newly connected socket. So we move the * pending socket to the connected state before sending the attach * message. Otherwise, an incoming packet triggered by the attach being * received by the peer may be processed concurrently with what happens * below after sending the attach message, and that incoming packet * will find the listening socket instead of the (currently) pending * socket. Note that enqueueing the socket increments the reference * count, so even if a reset comes before the connection is accepted, * the socket will be valid until it is removed from the queue. * * If we fail sending the attach below, we remove the socket from the * connected list and move the socket to TCP_CLOSE before * releasing the lock, so a pending slow path processing of an incoming * packet will not see the socket in the connected state in that case. */ pending->sk_state = TCP_ESTABLISHED; vsock_insert_connected(vpending); /* Notify our peer of our attach. */ err = vmci_transport_send_attach(pending, handle); if (err < 0) { vsock_remove_connected(vpending); pr_err("Could not send attach\n"); vmci_transport_send_reset(pending, pkt); err = vmci_transport_error_to_vsock_error(err); skerr = -err; goto destroy; } /* We have a connection. Move the now connected socket from the * listener's pending list to the accept queue so callers of accept() * can find it. */ vsock_remove_pending(listener, pending); vsock_enqueue_accept(listener, pending); /* Callers of accept() will be be waiting on the listening socket, not * the pending socket. */ listener->sk_data_ready(listener); return 0; destroy: pending->sk_err = skerr; pending->sk_state = TCP_CLOSE; /* As long as we drop our reference, all necessary cleanup will handle * when the cleanup function drops its reference and our destruct * implementation is called. Note that since the listen handler will * remove pending from the pending list upon our failure, the cleanup * function won't drop the additional reference, which is why we do it * here. */ sock_put(pending); return err; } static int vmci_transport_recv_connecting_client(struct sock *sk, struct vmci_transport_packet *pkt) { struct vsock_sock *vsk; int err; int skerr; vsk = vsock_sk(sk); switch (pkt->type) { case VMCI_TRANSPORT_PACKET_TYPE_ATTACH: if (vmci_handle_is_invalid(pkt->u.handle) || !vmci_handle_is_equal(pkt->u.handle, vmci_trans(vsk)->qp_handle)) { skerr = EPROTO; err = -EINVAL; goto destroy; } /* Signify the socket is connected and wakeup the waiter in * connect(). Also place the socket in the connected table for * accounting (it can already be found since it's in the bound * table). */ sk->sk_state = TCP_ESTABLISHED; sk->sk_socket->state = SS_CONNECTED; vsock_insert_connected(vsk); sk->sk_state_change(sk); break; case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE: case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2: if (pkt->u.size == 0 || pkt->dg.src.context != vsk->remote_addr.svm_cid || pkt->src_port != vsk->remote_addr.svm_port || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle) || vmci_trans(vsk)->qpair || vmci_trans(vsk)->produce_size != 0 || vmci_trans(vsk)->consume_size != 0 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) { skerr = EPROTO; err = -EINVAL; goto destroy; } err = vmci_transport_recv_connecting_client_negotiate(sk, pkt); if (err) { skerr = -err; goto destroy; } break; case VMCI_TRANSPORT_PACKET_TYPE_INVALID: err = vmci_transport_recv_connecting_client_invalid(sk, pkt); if (err) { skerr = -err; goto destroy; } break; case VMCI_TRANSPORT_PACKET_TYPE_RST: /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to * continue processing here after they sent an INVALID packet. * This meant that we got a RST after the INVALID. We ignore a * RST after an INVALID. The common code doesn't send the RST * ... so we can hang if an old version of the common code * fails between getting a REQUEST and sending an OFFER back. * Not much we can do about it... except hope that it doesn't * happen. */ if (vsk->ignore_connecting_rst) { vsk->ignore_connecting_rst = false; } else { skerr = ECONNRESET; err = 0; goto destroy; } break; default: /* Close and cleanup the connection. */ skerr = EPROTO; err = -EINVAL; goto destroy; } return 0; destroy: vmci_transport_send_reset(sk, pkt); sk->sk_state = TCP_CLOSE; sk->sk_err = skerr; sk->sk_error_report(sk); return err; } static int vmci_transport_recv_connecting_client_negotiate( struct sock *sk, struct vmci_transport_packet *pkt) { int err; struct vsock_sock *vsk; struct vmci_handle handle; struct vmci_qp *qpair; u32 detach_sub_id; bool is_local; u32 flags; bool old_proto = true; bool old_pkt_proto; u16 version; vsk = vsock_sk(sk); handle = VMCI_INVALID_HANDLE; detach_sub_id = VMCI_INVALID_ID; /* If we have gotten here then we should be past the point where old * linux vsock could have sent the bogus rst. */ vsk->sent_request = false; vsk->ignore_connecting_rst = false; /* Verify that we're OK with the proposed queue pair size */ if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size || pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) { err = -EINVAL; goto destroy; } /* At this point we know the CID the peer is using to talk to us. */ if (vsk->local_addr.svm_cid == VMADDR_CID_ANY) vsk->local_addr.svm_cid = pkt->dg.dst.context; /* Setup the notify ops to be the highest supported version that both * the server and the client support. */ if (vmci_transport_old_proto_override(&old_pkt_proto)) { old_proto = old_pkt_proto; } else { if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE) old_proto = true; else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2) old_proto = false; } if (old_proto) version = VSOCK_PROTO_INVALID; else version = pkt->proto; if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) { err = -EINVAL; goto destroy; } /* Subscribe to detach events first. * * XXX We attach once for each queue pair created for now so it is easy * to find the socket (it's provided), but later we should only * subscribe once and add a way to lookup sockets by queue pair handle. */ err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH, vmci_transport_peer_detach_cb, vmci_trans(vsk), &detach_sub_id); if (err < VMCI_SUCCESS) { err = vmci_transport_error_to_vsock_error(err); goto destroy; } /* Make VMCI select the handle for us. */ handle = VMCI_INVALID_HANDLE; is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid; flags = is_local ? VMCI_QPFLAG_LOCAL : 0; err = vmci_transport_queue_pair_alloc(&qpair, &handle, pkt->u.size, pkt->u.size, vsk->remote_addr.svm_cid, flags, vmci_transport_is_trusted( vsk, vsk-> remote_addr.svm_cid)); if (err < 0) goto destroy; err = vmci_transport_send_qp_offer(sk, handle); if (err < 0) { err = vmci_transport_error_to_vsock_error(err); goto destroy; } vmci_trans(vsk)->qp_handle = handle; vmci_trans(vsk)->qpair = qpair; vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = pkt->u.size; vmci_trans(vsk)->detach_sub_id = detach_sub_id; vmci_trans(vsk)->notify_ops->process_negotiate(sk); return 0; destroy: if (detach_sub_id != VMCI_INVALID_ID) vmci_event_unsubscribe(detach_sub_id); if (!vmci_handle_is_invalid(handle)) vmci_qpair_detach(&qpair); return err; } static int vmci_transport_recv_connecting_client_invalid(struct sock *sk, struct vmci_transport_packet *pkt) { int err = 0; struct vsock_sock *vsk = vsock_sk(sk); if (vsk->sent_request) { vsk->sent_request = false; vsk->ignore_connecting_rst = true; err = vmci_transport_send_conn_request( sk, vmci_trans(vsk)->queue_pair_size); if (err < 0) err = vmci_transport_error_to_vsock_error(err); else err = 0; } return err; } static int vmci_transport_recv_connected(struct sock *sk, struct vmci_transport_packet *pkt) { struct vsock_sock *vsk; bool pkt_processed = false; /* In cases where we are closing the connection, it's sufficient to * mark the state change (and maybe error) and wake up any waiting * threads. Since this is a connected socket, it's owned by a user * process and will be cleaned up when the failure is passed back on * the current or next system call. Our system call implementations * must therefore check for error and state changes on entry and when * being awoken. */ switch (pkt->type) { case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN: if (pkt->u.mode) { vsk = vsock_sk(sk); vsk->peer_shutdown |= pkt->u.mode; sk->sk_state_change(sk); } break; case VMCI_TRANSPORT_PACKET_TYPE_RST: vsk = vsock_sk(sk); /* It is possible that we sent our peer a message (e.g a * WAITING_READ) right before we got notified that the peer had * detached. If that happens then we can get a RST pkt back * from our peer even though there is data available for us to * read. In that case, don't shutdown the socket completely but * instead allow the local client to finish reading data off * the queuepair. Always treat a RST pkt in connected mode like * a clean shutdown. */ sock_set_flag(sk, SOCK_DONE); vsk->peer_shutdown = SHUTDOWN_MASK; if (vsock_stream_has_data(vsk) <= 0) sk->sk_state = TCP_CLOSING; sk->sk_state_change(sk); break; default: vsk = vsock_sk(sk); vmci_trans(vsk)->notify_ops->handle_notify_pkt( sk, pkt, false, NULL, NULL, &pkt_processed); if (!pkt_processed) return -EINVAL; break; } return 0; } static int vmci_transport_socket_init(struct vsock_sock *vsk, struct vsock_sock *psk) { vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL); if (!vsk->trans) return -ENOMEM; vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE; vmci_trans(vsk)->qpair = NULL; vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0; vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID; vmci_trans(vsk)->notify_ops = NULL; INIT_LIST_HEAD(&vmci_trans(vsk)->elem); vmci_trans(vsk)->sk = &vsk->sk; spin_lock_init(&vmci_trans(vsk)->lock); if (psk) { vmci_trans(vsk)->queue_pair_size = vmci_trans(psk)->queue_pair_size; vmci_trans(vsk)->queue_pair_min_size = vmci_trans(psk)->queue_pair_min_size; vmci_trans(vsk)->queue_pair_max_size = vmci_trans(psk)->queue_pair_max_size; } else { vmci_trans(vsk)->queue_pair_size = VMCI_TRANSPORT_DEFAULT_QP_SIZE; vmci_trans(vsk)->queue_pair_min_size = VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN; vmci_trans(vsk)->queue_pair_max_size = VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX; } return 0; } static void vmci_transport_free_resources(struct list_head *transport_list) { while (!list_empty(transport_list)) { struct vmci_transport *transport = list_first_entry(transport_list, struct vmci_transport, elem); list_del(&transport->elem); if (transport->detach_sub_id != VMCI_INVALID_ID) { vmci_event_unsubscribe(transport->detach_sub_id); transport->detach_sub_id = VMCI_INVALID_ID; } if (!vmci_handle_is_invalid(transport->qp_handle)) { vmci_qpair_detach(&transport->qpair); transport->qp_handle = VMCI_INVALID_HANDLE; transport->produce_size = 0; transport->consume_size = 0; } kfree(transport); } } static void vmci_transport_cleanup(struct work_struct *work) { LIST_HEAD(pending); spin_lock_bh(&vmci_transport_cleanup_lock); list_replace_init(&vmci_transport_cleanup_list, &pending); spin_unlock_bh(&vmci_transport_cleanup_lock); vmci_transport_free_resources(&pending); } static void vmci_transport_destruct(struct vsock_sock *vsk) { /* transport can be NULL if we hit a failure at init() time */ if (!vmci_trans(vsk)) return; /* Ensure that the detach callback doesn't use the sk/vsk * we are about to destruct. */ spin_lock_bh(&vmci_trans(vsk)->lock); vmci_trans(vsk)->sk = NULL; spin_unlock_bh(&vmci_trans(vsk)->lock); if (vmci_trans(vsk)->notify_ops) vmci_trans(vsk)->notify_ops->socket_destruct(vsk); spin_lock_bh(&vmci_transport_cleanup_lock); list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list); spin_unlock_bh(&vmci_transport_cleanup_lock); schedule_work(&vmci_transport_cleanup_work); vsk->trans = NULL; } static void vmci_transport_release(struct vsock_sock *vsk) { vsock_remove_sock(vsk); if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) { vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle); vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE; } } static int vmci_transport_dgram_bind(struct vsock_sock *vsk, struct sockaddr_vm *addr) { u32 port; u32 flags; int err; /* VMCI will select a resource ID for us if we provide * VMCI_INVALID_ID. */ port = addr->svm_port == VMADDR_PORT_ANY ? VMCI_INVALID_ID : addr->svm_port; if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE)) return -EACCES; flags = addr->svm_cid == VMADDR_CID_ANY ? VMCI_FLAG_ANYCID_DG_HND : 0; err = vmci_transport_datagram_create_hnd(port, flags, vmci_transport_recv_dgram_cb, &vsk->sk, &vmci_trans(vsk)->dg_handle); if (err < VMCI_SUCCESS) return vmci_transport_error_to_vsock_error(err); vsock_addr_init(&vsk->local_addr, addr->svm_cid, vmci_trans(vsk)->dg_handle.resource); return 0; } static int vmci_transport_dgram_enqueue( struct vsock_sock *vsk, struct sockaddr_vm *remote_addr, struct msghdr *msg, size_t len) { int err; struct vmci_datagram *dg; if (len > VMCI_MAX_DG_PAYLOAD_SIZE) return -EMSGSIZE; if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid)) return -EPERM; /* Allocate a buffer for the user's message and our packet header. */ dg = kmalloc(len + sizeof(*dg), GFP_KERNEL); if (!dg) return -ENOMEM; memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len); dg->dst = vmci_make_handle(remote_addr->svm_cid, remote_addr->svm_port); dg->src = vmci_make_handle(vsk->local_addr.svm_cid, vsk->local_addr.svm_port); dg->payload_size = len; err = vmci_datagram_send(dg); kfree(dg); if (err < 0) return vmci_transport_error_to_vsock_error(err); return err - sizeof(*dg); } static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk, struct msghdr *msg, size_t len, int flags) { int err; int noblock; struct vmci_datagram *dg; size_t payload_len; struct sk_buff *skb; noblock = flags & MSG_DONTWAIT; if (flags & MSG_OOB || flags & MSG_ERRQUEUE) return -EOPNOTSUPP; /* Retrieve the head sk_buff from the socket's receive queue. */ err = 0; skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err); if (!skb) return err; dg = (struct vmci_datagram *)skb->data; if (!dg) /* err is 0, meaning we read zero bytes. */ goto out; payload_len = dg->payload_size; /* Ensure the sk_buff matches the payload size claimed in the packet. */ if (payload_len != skb->len - sizeof(*dg)) { err = -EINVAL; goto out; } if (payload_len > len) { payload_len = len; msg->msg_flags |= MSG_TRUNC; } /* Place the datagram payload in the user's iovec. */ err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len); if (err) goto out; if (msg->msg_name) { /* Provide the address of the sender. */ DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name); vsock_addr_init(vm_addr, dg->src.context, dg->src.resource); msg->msg_namelen = sizeof(*vm_addr); } err = payload_len; out: skb_free_datagram(&vsk->sk, skb); return err; } static bool vmci_transport_dgram_allow(u32 cid, u32 port) { if (cid == VMADDR_CID_HYPERVISOR) { /* Registrations of PBRPC Servers do not modify VMX/Hypervisor * state and are allowed. */ return port == VMCI_UNITY_PBRPC_REGISTER; } return true; } static int vmci_transport_connect(struct vsock_sock *vsk) { int err; bool old_pkt_proto = false; struct sock *sk = &vsk->sk; if (vmci_transport_old_proto_override(&old_pkt_proto) && old_pkt_proto) { err = vmci_transport_send_conn_request( sk, vmci_trans(vsk)->queue_pair_size); if (err < 0) { sk->sk_state = TCP_CLOSE; return err; } } else { int supported_proto_versions = vmci_transport_new_proto_supported_versions(); err = vmci_transport_send_conn_request2( sk, vmci_trans(vsk)->queue_pair_size, supported_proto_versions); if (err < 0) { sk->sk_state = TCP_CLOSE; return err; } vsk->sent_request = true; } return err; } static ssize_t vmci_transport_stream_dequeue( struct vsock_sock *vsk, struct msghdr *msg, size_t len, int flags) { if (flags & MSG_PEEK) return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0); else return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0); } static ssize_t vmci_transport_stream_enqueue( struct vsock_sock *vsk, struct msghdr *msg, size_t len) { return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0); } static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk) { return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair); } static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk) { return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair); } static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk) { return vmci_trans(vsk)->consume_size; } static bool vmci_transport_stream_is_active(struct vsock_sock *vsk) { return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle); } static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk) { return vmci_trans(vsk)->queue_pair_size; } static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk) { return vmci_trans(vsk)->queue_pair_min_size; } static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk) { return vmci_trans(vsk)->queue_pair_max_size; } static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val) { if (val < vmci_trans(vsk)->queue_pair_min_size) vmci_trans(vsk)->queue_pair_min_size = val; if (val > vmci_trans(vsk)->queue_pair_max_size) vmci_trans(vsk)->queue_pair_max_size = val; vmci_trans(vsk)->queue_pair_size = val; } static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk, u64 val) { if (val > vmci_trans(vsk)->queue_pair_size) vmci_trans(vsk)->queue_pair_size = val; vmci_trans(vsk)->queue_pair_min_size = val; } static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk, u64 val) { if (val < vmci_trans(vsk)->queue_pair_size) vmci_trans(vsk)->queue_pair_size = val; vmci_trans(vsk)->queue_pair_max_size = val; } static int vmci_transport_notify_poll_in( struct vsock_sock *vsk, size_t target, bool *data_ready_now) { return vmci_trans(vsk)->notify_ops->poll_in( &vsk->sk, target, data_ready_now); } static int vmci_transport_notify_poll_out( struct vsock_sock *vsk, size_t target, bool *space_available_now) { return vmci_trans(vsk)->notify_ops->poll_out( &vsk->sk, target, space_available_now); } static int vmci_transport_notify_recv_init( struct vsock_sock *vsk, size_t target, struct vsock_transport_recv_notify_data *data) { return vmci_trans(vsk)->notify_ops->recv_init( &vsk->sk, target, (struct vmci_transport_recv_notify_data *)data); } static int vmci_transport_notify_recv_pre_block( struct vsock_sock *vsk, size_t target, struct vsock_transport_recv_notify_data *data) { return vmci_trans(vsk)->notify_ops->recv_pre_block( &vsk->sk, target, (struct vmci_transport_recv_notify_data *)data); } static int vmci_transport_notify_recv_pre_dequeue( struct vsock_sock *vsk, size_t target, struct vsock_transport_recv_notify_data *data) { return vmci_trans(vsk)->notify_ops->recv_pre_dequeue( &vsk->sk, target, (struct vmci_transport_recv_notify_data *)data); } static int vmci_transport_notify_recv_post_dequeue( struct vsock_sock *vsk, size_t target, ssize_t copied, bool data_read, struct vsock_transport_recv_notify_data *data) { return vmci_trans(vsk)->notify_ops->recv_post_dequeue( &vsk->sk, target, copied, data_read, (struct vmci_transport_recv_notify_data *)data); } static int vmci_transport_notify_send_init( struct vsock_sock *vsk, struct vsock_transport_send_notify_data *data) { return vmci_trans(vsk)->notify_ops->send_init( &vsk->sk, (struct vmci_transport_send_notify_data *)data); } static int vmci_transport_notify_send_pre_block( struct vsock_sock *vsk, struct vsock_transport_send_notify_data *data) { return vmci_trans(vsk)->notify_ops->send_pre_block( &vsk->sk, (struct vmci_transport_send_notify_data *)data); } static int vmci_transport_notify_send_pre_enqueue( struct vsock_sock *vsk, struct vsock_transport_send_notify_data *data) { return vmci_trans(vsk)->notify_ops->send_pre_enqueue( &vsk->sk, (struct vmci_transport_send_notify_data *)data); } static int vmci_transport_notify_send_post_enqueue( struct vsock_sock *vsk, ssize_t written, struct vsock_transport_send_notify_data *data) { return vmci_trans(vsk)->notify_ops->send_post_enqueue( &vsk->sk, written, (struct vmci_transport_send_notify_data *)data); } static bool vmci_transport_old_proto_override(bool *old_pkt_proto) { if (PROTOCOL_OVERRIDE != -1) { if (PROTOCOL_OVERRIDE == 0) *old_pkt_proto = true; else *old_pkt_proto = false; pr_info("Proto override in use\n"); return true; } return false; } static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto, bool old_pkt_proto) { struct vsock_sock *vsk = vsock_sk(sk); if (old_pkt_proto) { if (*proto != VSOCK_PROTO_INVALID) { pr_err("Can't set both an old and new protocol\n"); return false; } vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops; goto exit; } switch (*proto) { case VSOCK_PROTO_PKT_ON_NOTIFY: vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_q_state_ops; break; default: pr_err("Unknown notify protocol version\n"); return false; } exit: vmci_trans(vsk)->notify_ops->socket_init(sk); return true; } static u16 vmci_transport_new_proto_supported_versions(void) { if (PROTOCOL_OVERRIDE != -1) return PROTOCOL_OVERRIDE; return VSOCK_PROTO_ALL_SUPPORTED; } static u32 vmci_transport_get_local_cid(void) { return vmci_get_context_id(); } static const struct vsock_transport vmci_transport = { .init = vmci_transport_socket_init, .destruct = vmci_transport_destruct, .release = vmci_transport_release, .connect = vmci_transport_connect, .dgram_bind = vmci_transport_dgram_bind, .dgram_dequeue = vmci_transport_dgram_dequeue, .dgram_enqueue = vmci_transport_dgram_enqueue, .dgram_allow = vmci_transport_dgram_allow, .stream_dequeue = vmci_transport_stream_dequeue, .stream_enqueue = vmci_transport_stream_enqueue, .stream_has_data = vmci_transport_stream_has_data, .stream_has_space = vmci_transport_stream_has_space, .stream_rcvhiwat = vmci_transport_stream_rcvhiwat, .stream_is_active = vmci_transport_stream_is_active, .stream_allow = vmci_transport_stream_allow, .notify_poll_in = vmci_transport_notify_poll_in, .notify_poll_out = vmci_transport_notify_poll_out, .notify_recv_init = vmci_transport_notify_recv_init, .notify_recv_pre_block = vmci_transport_notify_recv_pre_block, .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue, .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue, .notify_send_init = vmci_transport_notify_send_init, .notify_send_pre_block = vmci_transport_notify_send_pre_block, .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue, .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue, .shutdown = vmci_transport_shutdown, .set_buffer_size = vmci_transport_set_buffer_size, .set_min_buffer_size = vmci_transport_set_min_buffer_size, .set_max_buffer_size = vmci_transport_set_max_buffer_size, .get_buffer_size = vmci_transport_get_buffer_size, .get_min_buffer_size = vmci_transport_get_min_buffer_size, .get_max_buffer_size = vmci_transport_get_max_buffer_size, .get_local_cid = vmci_transport_get_local_cid, }; static int __init vmci_transport_init(void) { int err; /* Create the datagram handle that we will use to send and receive all * VSocket control messages for this context. */ err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID, VMCI_FLAG_ANYCID_DG_HND, vmci_transport_recv_stream_cb, NULL, &vmci_transport_stream_handle); if (err < VMCI_SUCCESS) { pr_err("Unable to create datagram handle. (%d)\n", err); return vmci_transport_error_to_vsock_error(err); } err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED, vmci_transport_qp_resumed_cb, NULL, &vmci_transport_qp_resumed_sub_id); if (err < VMCI_SUCCESS) { pr_err("Unable to subscribe to resumed event. (%d)\n", err); err = vmci_transport_error_to_vsock_error(err); vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; goto err_destroy_stream_handle; } err = vsock_core_init(&vmci_transport); if (err < 0) goto err_unsubscribe; return 0; err_unsubscribe: vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); err_destroy_stream_handle: vmci_datagram_destroy_handle(vmci_transport_stream_handle); return err; } module_init(vmci_transport_init); static void __exit vmci_transport_exit(void) { cancel_work_sync(&vmci_transport_cleanup_work); vmci_transport_free_resources(&vmci_transport_cleanup_list); if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) { if (vmci_datagram_destroy_handle( vmci_transport_stream_handle) != VMCI_SUCCESS) pr_err("Couldn't destroy datagram handle\n"); vmci_transport_stream_handle = VMCI_INVALID_HANDLE; } if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) { vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id); vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID; } vsock_core_exit(); } module_exit(vmci_transport_exit); MODULE_AUTHOR("VMware, Inc."); MODULE_DESCRIPTION("VMCI transport for Virtual Sockets"); MODULE_VERSION("1.0.5.0-k"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("vmware_vsock"); MODULE_ALIAS_NETPROTO(PF_VSOCK);