/* * Security plug functions * * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/capability.h> #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/security.h> /* Boot-time LSM user choice */ static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; /* things that live in dummy.c */ extern struct security_operations dummy_security_ops; extern void security_fixup_ops(struct security_operations *ops); struct security_operations *security_ops; /* Initialized to NULL */ /* amount of vm to protect from userspace access */ unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; static inline int verify(struct security_operations *ops) { /* verify the security_operations structure exists */ if (!ops) return -EINVAL; security_fixup_ops(ops); return 0; } static void __init do_security_initcalls(void) { initcall_t *call; call = __security_initcall_start; while (call < __security_initcall_end) { (*call) (); call++; } } /** * security_init - initializes the security framework * * This should be called early in the kernel initialization sequence. */ int __init security_init(void) { printk(KERN_INFO "Security Framework initialized\n"); if (verify(&dummy_security_ops)) { printk(KERN_ERR "%s could not verify " "dummy_security_ops structure.\n", __func__); return -EIO; } security_ops = &dummy_security_ops; do_security_initcalls(); return 0; } /* Save user chosen LSM */ static int __init choose_lsm(char *str) { strncpy(chosen_lsm, str, SECURITY_NAME_MAX); return 1; } __setup("security=", choose_lsm); /** * security_module_enable - Load given security module on boot ? * @ops: a pointer to the struct security_operations that is to be checked. * * Each LSM must pass this method before registering its own operations * to avoid security registration races. This method may also be used * to check if your LSM is currently loaded during kernel initialization. * * Return true if: * -The passed LSM is the one chosen by user at boot time, * -or user didsn't specify a specific LSM and we're the first to ask * for registeration permissoin, * -or the passed LSM is currently loaded. * Otherwise, return false. */ int __init security_module_enable(struct security_operations *ops) { if (!*chosen_lsm) strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) return 0; return 1; } /** * register_security - registers a security framework with the kernel * @ops: a pointer to the struct security_options that is to be registered * * This function is to allow a security module to register itself with the * kernel security subsystem. Some rudimentary checking is done on the @ops * value passed to this function. You'll need to check first if your LSM * is allowed to register its @ops by calling security_module_enable(@ops). * * If there is already a security module registered with the kernel, * an error will be returned. Otherwise 0 is returned on success. */ int register_security(struct security_operations *ops) { if (verify(ops)) { printk(KERN_DEBUG "%s could not verify " "security_operations structure.\n", __func__); return -EINVAL; } if (security_ops != &dummy_security_ops) return -EAGAIN; security_ops = ops; return 0; } /** * mod_reg_security - allows security modules to be "stacked" * @name: a pointer to a string with the name of the security_options to be registered * @ops: a pointer to the struct security_options that is to be registered * * This function allows security modules to be stacked if the currently loaded * security module allows this to happen. It passes the @name and @ops to the * register_security function of the currently loaded security module. * * The return value depends on the currently loaded security module, with 0 as * success. */ int mod_reg_security(const char *name, struct security_operations *ops) { if (verify(ops)) { printk(KERN_INFO "%s could not verify " "security operations.\n", __func__); return -EINVAL; } if (ops == security_ops) { printk(KERN_INFO "%s security operations " "already registered.\n", __func__); return -EINVAL; } return security_ops->register_security(name, ops); } /* Security operations */ int security_ptrace(struct task_struct *parent, struct task_struct *child) { return security_ops->ptrace(parent, child); } int security_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return security_ops->capget(target, effective, inheritable, permitted); } int security_capset_check(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return security_ops->capset_check(target, effective, inheritable, permitted); } void security_capset_set(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { security_ops->capset_set(target, effective, inheritable, permitted); } int security_capable(struct task_struct *tsk, int cap) { return security_ops->capable(tsk, cap); } int security_acct(struct file *file) { return security_ops->acct(file); } int security_sysctl(struct ctl_table *table, int op) { return security_ops->sysctl(table, op); } int security_quotactl(int cmds, int type, int id, struct super_block *sb) { return security_ops->quotactl(cmds, type, id, sb); } int security_quota_on(struct dentry *dentry) { return security_ops->quota_on(dentry); } int security_syslog(int type) { return security_ops->syslog(type); } int security_settime(struct timespec *ts, struct timezone *tz) { return security_ops->settime(ts, tz); } int security_vm_enough_memory(long pages) { return security_ops->vm_enough_memory(current->mm, pages); } int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) { return security_ops->vm_enough_memory(mm, pages); } int security_bprm_alloc(struct linux_binprm *bprm) { return security_ops->bprm_alloc_security(bprm); } void security_bprm_free(struct linux_binprm *bprm) { security_ops->bprm_free_security(bprm); } void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) { security_ops->bprm_apply_creds(bprm, unsafe); } void security_bprm_post_apply_creds(struct linux_binprm *bprm) { security_ops->bprm_post_apply_creds(bprm); } int security_bprm_set(struct linux_binprm *bprm) { return security_ops->bprm_set_security(bprm); } int security_bprm_check(struct linux_binprm *bprm) { return security_ops->bprm_check_security(bprm); } int security_bprm_secureexec(struct linux_binprm *bprm) { return security_ops->bprm_secureexec(bprm); } int security_sb_alloc(struct super_block *sb) { return security_ops->sb_alloc_security(sb); } void security_sb_free(struct super_block *sb) { security_ops->sb_free_security(sb); } int security_sb_copy_data(char *orig, char *copy) { return security_ops->sb_copy_data(orig, copy); } EXPORT_SYMBOL(security_sb_copy_data); int security_sb_kern_mount(struct super_block *sb, void *data) { return security_ops->sb_kern_mount(sb, data); } int security_sb_statfs(struct dentry *dentry) { return security_ops->sb_statfs(dentry); } int security_sb_mount(char *dev_name, struct path *path, char *type, unsigned long flags, void *data) { return security_ops->sb_mount(dev_name, path, type, flags, data); } int security_sb_check_sb(struct vfsmount *mnt, struct path *path) { return security_ops->sb_check_sb(mnt, path); } int security_sb_umount(struct vfsmount *mnt, int flags) { return security_ops->sb_umount(mnt, flags); } void security_sb_umount_close(struct vfsmount *mnt) { security_ops->sb_umount_close(mnt); } void security_sb_umount_busy(struct vfsmount *mnt) { security_ops->sb_umount_busy(mnt); } void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) { security_ops->sb_post_remount(mnt, flags, data); } void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) { security_ops->sb_post_addmount(mnt, mountpoint); } int security_sb_pivotroot(struct path *old_path, struct path *new_path) { return security_ops->sb_pivotroot(old_path, new_path); } void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) { security_ops->sb_post_pivotroot(old_path, new_path); } int security_sb_get_mnt_opts(const struct super_block *sb, struct security_mnt_opts *opts) { return security_ops->sb_get_mnt_opts(sb, opts); } int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts *opts) { return security_ops->sb_set_mnt_opts(sb, opts); } EXPORT_SYMBOL(security_sb_set_mnt_opts); void security_sb_clone_mnt_opts(const struct super_block *oldsb, struct super_block *newsb) { security_ops->sb_clone_mnt_opts(oldsb, newsb); } EXPORT_SYMBOL(security_sb_clone_mnt_opts); int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) { return security_ops->sb_parse_opts_str(options, opts); } EXPORT_SYMBOL(security_sb_parse_opts_str); int security_inode_alloc(struct inode *inode) { inode->i_security = NULL; return security_ops->inode_alloc_security(inode); } void security_inode_free(struct inode *inode) { security_ops->inode_free_security(inode); } int security_inode_init_security(struct inode *inode, struct inode *dir, char **name, void **value, size_t *len) { if (unlikely(IS_PRIVATE(inode))) return -EOPNOTSUPP; return security_ops->inode_init_security(inode, dir, name, value, len); } EXPORT_SYMBOL(security_inode_init_security); int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) { if (unlikely(IS_PRIVATE(dir))) return 0; return security_ops->inode_create(dir, dentry, mode); } int security_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { if (unlikely(IS_PRIVATE(old_dentry->d_inode))) return 0; return security_ops->inode_link(old_dentry, dir, new_dentry); } int security_inode_unlink(struct inode *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(dentry->d_inode))) return 0; return security_ops->inode_unlink(dir, dentry); } int security_inode_symlink(struct inode *dir, struct dentry *dentry, const char *old_name) { if (unlikely(IS_PRIVATE(dir))) return 0; return security_ops->inode_symlink(dir, dentry, old_name); } int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) { if (unlikely(IS_PRIVATE(dir))) return 0; return security_ops->inode_mkdir(dir, dentry, mode); } int security_inode_rmdir(struct inode *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(dentry->d_inode))) return 0; return security_ops->inode_rmdir(dir, dentry); } int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) { if (unlikely(IS_PRIVATE(dir))) return 0; return security_ops->inode_mknod(dir, dentry, mode, dev); } int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { if (unlikely(IS_PRIVATE(old_dentry->d_inode) || (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) return 0; return security_ops->inode_rename(old_dir, old_dentry, new_dir, new_dentry); } int security_inode_readlink(struct dentry *dentry) { if (unlikely(IS_PRIVATE(dentry->d_inode))) return 0; return security_ops->inode_readlink(dentry); } int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) { if (unlikely(IS_PRIVATE(dentry->d_inode))) return 0; return security_ops->inode_follow_link(dentry, nd); } int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd) { if (unlikely(IS_PRIVATE(inode))) return 0; return security_ops->inode_permission(inode, mask, nd); } int security_inode_setattr(struct dentry *dentry, struct iattr *attr) { if (unlikely(IS_PRIVATE(dentry->d_inode))) return 0; return security_ops->inode_setattr(dentry, attr); } int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) { if (unlikely(IS_PRIVATE(dentry->d_inode))) return 0; return security_ops->inode_getattr(mnt, dentry); } void security_inode_delete(struct inode *inode) { if (unlikely(IS_PRIVATE(inode))) return; security_ops->inode_delete(inode); } int security_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags) { if (unlikely(IS_PRIVATE(dentry->d_inode))) return 0; return security_ops->inode_setxattr(dentry, name, value, size, flags); } void security_inode_post_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags) { if (unlikely(IS_PRIVATE(dentry->d_inode))) return; security_ops->inode_post_setxattr(dentry, name, value, size, flags); } int security_inode_getxattr(struct dentry *dentry, char *name) { if (unlikely(IS_PRIVATE(dentry->d_inode))) return 0; return security_ops->inode_getxattr(dentry, name); } int security_inode_listxattr(struct dentry *dentry) { if (unlikely(IS_PRIVATE(dentry->d_inode))) return 0; return security_ops->inode_listxattr(dentry); } int security_inode_removexattr(struct dentry *dentry, char *name) { if (unlikely(IS_PRIVATE(dentry->d_inode))) return 0; return security_ops->inode_removexattr(dentry, name); } int security_inode_need_killpriv(struct dentry *dentry) { return security_ops->inode_need_killpriv(dentry); } int security_inode_killpriv(struct dentry *dentry) { return security_ops->inode_killpriv(dentry); } int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) { if (unlikely(IS_PRIVATE(inode))) return 0; return security_ops->inode_getsecurity(inode, name, buffer, alloc); } int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) { if (unlikely(IS_PRIVATE(inode))) return 0; return security_ops->inode_setsecurity(inode, name, value, size, flags); } int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) { if (unlikely(IS_PRIVATE(inode))) return 0; return security_ops->inode_listsecurity(inode, buffer, buffer_size); } void security_inode_getsecid(const struct inode *inode, u32 *secid) { security_ops->inode_getsecid(inode, secid); } int security_file_permission(struct file *file, int mask) { return security_ops->file_permission(file, mask); } int security_file_alloc(struct file *file) { return security_ops->file_alloc_security(file); } void security_file_free(struct file *file) { security_ops->file_free_security(file); } int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return security_ops->file_ioctl(file, cmd, arg); } int security_file_mmap(struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags, unsigned long addr, unsigned long addr_only) { return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); } int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot) { return security_ops->file_mprotect(vma, reqprot, prot); } int security_file_lock(struct file *file, unsigned int cmd) { return security_ops->file_lock(file, cmd); } int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) { return security_ops->file_fcntl(file, cmd, arg); } int security_file_set_fowner(struct file *file) { return security_ops->file_set_fowner(file); } int security_file_send_sigiotask(struct task_struct *tsk, struct fown_struct *fown, int sig) { return security_ops->file_send_sigiotask(tsk, fown, sig); } int security_file_receive(struct file *file) { return security_ops->file_receive(file); } int security_dentry_open(struct file *file) { return security_ops->dentry_open(file); } int security_task_create(unsigned long clone_flags) { return security_ops->task_create(clone_flags); } int security_task_alloc(struct task_struct *p) { return security_ops->task_alloc_security(p); } void security_task_free(struct task_struct *p) { security_ops->task_free_security(p); } int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) { return security_ops->task_setuid(id0, id1, id2, flags); } int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags) { return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); } int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) { return security_ops->task_setgid(id0, id1, id2, flags); } int security_task_setpgid(struct task_struct *p, pid_t pgid) { return security_ops->task_setpgid(p, pgid); } int security_task_getpgid(struct task_struct *p) { return security_ops->task_getpgid(p); } int security_task_getsid(struct task_struct *p) { return security_ops->task_getsid(p); } void security_task_getsecid(struct task_struct *p, u32 *secid) { security_ops->task_getsecid(p, secid); } EXPORT_SYMBOL(security_task_getsecid); int security_task_setgroups(struct group_info *group_info) { return security_ops->task_setgroups(group_info); } int security_task_setnice(struct task_struct *p, int nice) { return security_ops->task_setnice(p, nice); } int security_task_setioprio(struct task_struct *p, int ioprio) { return security_ops->task_setioprio(p, ioprio); } int security_task_getioprio(struct task_struct *p) { return security_ops->task_getioprio(p); } int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) { return security_ops->task_setrlimit(resource, new_rlim); } int security_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) { return security_ops->task_setscheduler(p, policy, lp); } int security_task_getscheduler(struct task_struct *p) { return security_ops->task_getscheduler(p); } int security_task_movememory(struct task_struct *p) { return security_ops->task_movememory(p); } int security_task_kill(struct task_struct *p, struct siginfo *info, int sig, u32 secid) { return security_ops->task_kill(p, info, sig, secid); } int security_task_wait(struct task_struct *p) { return security_ops->task_wait(p); } int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); } void security_task_reparent_to_init(struct task_struct *p) { security_ops->task_reparent_to_init(p); } void security_task_to_inode(struct task_struct *p, struct inode *inode) { security_ops->task_to_inode(p, inode); } int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) { return security_ops->ipc_permission(ipcp, flag); } void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) { security_ops->ipc_getsecid(ipcp, secid); } int security_msg_msg_alloc(struct msg_msg *msg) { return security_ops->msg_msg_alloc_security(msg); } void security_msg_msg_free(struct msg_msg *msg) { security_ops->msg_msg_free_security(msg); } int security_msg_queue_alloc(struct msg_queue *msq) { return security_ops->msg_queue_alloc_security(msq); } void security_msg_queue_free(struct msg_queue *msq) { security_ops->msg_queue_free_security(msq); } int security_msg_queue_associate(struct msg_queue *msq, int msqflg) { return security_ops->msg_queue_associate(msq, msqflg); } int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) { return security_ops->msg_queue_msgctl(msq, cmd); } int security_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) { return security_ops->msg_queue_msgsnd(msq, msg, msqflg); } int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, struct task_struct *target, long type, int mode) { return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); } int security_shm_alloc(struct shmid_kernel *shp) { return security_ops->shm_alloc_security(shp); } void security_shm_free(struct shmid_kernel *shp) { security_ops->shm_free_security(shp); } int security_shm_associate(struct shmid_kernel *shp, int shmflg) { return security_ops->shm_associate(shp, shmflg); } int security_shm_shmctl(struct shmid_kernel *shp, int cmd) { return security_ops->shm_shmctl(shp, cmd); } int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) { return security_ops->shm_shmat(shp, shmaddr, shmflg); } int security_sem_alloc(struct sem_array *sma) { return security_ops->sem_alloc_security(sma); } void security_sem_free(struct sem_array *sma) { security_ops->sem_free_security(sma); } int security_sem_associate(struct sem_array *sma, int semflg) { return security_ops->sem_associate(sma, semflg); } int security_sem_semctl(struct sem_array *sma, int cmd) { return security_ops->sem_semctl(sma, cmd); } int security_sem_semop(struct sem_array *sma, struct sembuf *sops, unsigned nsops, int alter) { return security_ops->sem_semop(sma, sops, nsops, alter); } void security_d_instantiate(struct dentry *dentry, struct inode *inode) { if (unlikely(inode && IS_PRIVATE(inode))) return; security_ops->d_instantiate(dentry, inode); } EXPORT_SYMBOL(security_d_instantiate); int security_getprocattr(struct task_struct *p, char *name, char **value) { return security_ops->getprocattr(p, name, value); } int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) { return security_ops->setprocattr(p, name, value, size); } int security_netlink_send(struct sock *sk, struct sk_buff *skb) { return security_ops->netlink_send(sk, skb); } int security_netlink_recv(struct sk_buff *skb, int cap) { return security_ops->netlink_recv(skb, cap); } EXPORT_SYMBOL(security_netlink_recv); int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) { return security_ops->secid_to_secctx(secid, secdata, seclen); } EXPORT_SYMBOL(security_secid_to_secctx); int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid) { return security_ops->secctx_to_secid(secdata, seclen, secid); } EXPORT_SYMBOL(security_secctx_to_secid); void security_release_secctx(char *secdata, u32 seclen) { return security_ops->release_secctx(secdata, seclen); } EXPORT_SYMBOL(security_release_secctx); #ifdef CONFIG_SECURITY_NETWORK int security_unix_stream_connect(struct socket *sock, struct socket *other, struct sock *newsk) { return security_ops->unix_stream_connect(sock, other, newsk); } EXPORT_SYMBOL(security_unix_stream_connect); int security_unix_may_send(struct socket *sock, struct socket *other) { return security_ops->unix_may_send(sock, other); } EXPORT_SYMBOL(security_unix_may_send); int security_socket_create(int family, int type, int protocol, int kern) { return security_ops->socket_create(family, type, protocol, kern); } int security_socket_post_create(struct socket *sock, int family, int type, int protocol, int kern) { return security_ops->socket_post_create(sock, family, type, protocol, kern); } int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) { return security_ops->socket_bind(sock, address, addrlen); } int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) { return security_ops->socket_connect(sock, address, addrlen); } int security_socket_listen(struct socket *sock, int backlog) { return security_ops->socket_listen(sock, backlog); } int security_socket_accept(struct socket *sock, struct socket *newsock) { return security_ops->socket_accept(sock, newsock); } void security_socket_post_accept(struct socket *sock, struct socket *newsock) { security_ops->socket_post_accept(sock, newsock); } int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) { return security_ops->socket_sendmsg(sock, msg, size); } int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags) { return security_ops->socket_recvmsg(sock, msg, size, flags); } int security_socket_getsockname(struct socket *sock) { return security_ops->socket_getsockname(sock); } int security_socket_getpeername(struct socket *sock) { return security_ops->socket_getpeername(sock); } int security_socket_getsockopt(struct socket *sock, int level, int optname) { return security_ops->socket_getsockopt(sock, level, optname); } int security_socket_setsockopt(struct socket *sock, int level, int optname) { return security_ops->socket_setsockopt(sock, level, optname); } int security_socket_shutdown(struct socket *sock, int how) { return security_ops->socket_shutdown(sock, how); } int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) { return security_ops->socket_sock_rcv_skb(sk, skb); } EXPORT_SYMBOL(security_sock_rcv_skb); int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, int __user *optlen, unsigned len) { return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); } int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) { return security_ops->socket_getpeersec_dgram(sock, skb, secid); } EXPORT_SYMBOL(security_socket_getpeersec_dgram); int security_sk_alloc(struct sock *sk, int family, gfp_t priority) { return security_ops->sk_alloc_security(sk, family, priority); } void security_sk_free(struct sock *sk) { return security_ops->sk_free_security(sk); } void security_sk_clone(const struct sock *sk, struct sock *newsk) { return security_ops->sk_clone_security(sk, newsk); } void security_sk_classify_flow(struct sock *sk, struct flowi *fl) { security_ops->sk_getsecid(sk, &fl->secid); } EXPORT_SYMBOL(security_sk_classify_flow); void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) { security_ops->req_classify_flow(req, fl); } EXPORT_SYMBOL(security_req_classify_flow); void security_sock_graft(struct sock *sk, struct socket *parent) { security_ops->sock_graft(sk, parent); } EXPORT_SYMBOL(security_sock_graft); int security_inet_conn_request(struct sock *sk, struct sk_buff *skb, struct request_sock *req) { return security_ops->inet_conn_request(sk, skb, req); } EXPORT_SYMBOL(security_inet_conn_request); void security_inet_csk_clone(struct sock *newsk, const struct request_sock *req) { security_ops->inet_csk_clone(newsk, req); } void security_inet_conn_established(struct sock *sk, struct sk_buff *skb) { security_ops->inet_conn_established(sk, skb); } #endif /* CONFIG_SECURITY_NETWORK */ #ifdef CONFIG_SECURITY_NETWORK_XFRM int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) { return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); } EXPORT_SYMBOL(security_xfrm_policy_alloc); int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp) { return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); } void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) { security_ops->xfrm_policy_free_security(ctx); } EXPORT_SYMBOL(security_xfrm_policy_free); int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) { return security_ops->xfrm_policy_delete_security(ctx); } int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) { return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); } EXPORT_SYMBOL(security_xfrm_state_alloc); int security_xfrm_state_alloc_acquire(struct xfrm_state *x, struct xfrm_sec_ctx *polsec, u32 secid) { if (!polsec) return 0; /* * We want the context to be taken from secid which is usually * from the sock. */ return security_ops->xfrm_state_alloc_security(x, NULL, secid); } int security_xfrm_state_delete(struct xfrm_state *x) { return security_ops->xfrm_state_delete_security(x); } EXPORT_SYMBOL(security_xfrm_state_delete); void security_xfrm_state_free(struct xfrm_state *x) { security_ops->xfrm_state_free_security(x); } int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) { return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); } int security_xfrm_state_pol_flow_match(struct xfrm_state *x, struct xfrm_policy *xp, struct flowi *fl) { return security_ops->xfrm_state_pol_flow_match(x, xp, fl); } int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) { return security_ops->xfrm_decode_session(skb, secid, 1); } void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) { int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); BUG_ON(rc); } EXPORT_SYMBOL(security_skb_classify_flow); #endif /* CONFIG_SECURITY_NETWORK_XFRM */ #ifdef CONFIG_KEYS int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) { return security_ops->key_alloc(key, tsk, flags); } void security_key_free(struct key *key) { security_ops->key_free(key); } int security_key_permission(key_ref_t key_ref, struct task_struct *context, key_perm_t perm) { return security_ops->key_permission(key_ref, context, perm); } #endif /* CONFIG_KEYS */ #ifdef CONFIG_AUDIT int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) { return security_ops->audit_rule_init(field, op, rulestr, lsmrule); } int security_audit_rule_known(struct audit_krule *krule) { return security_ops->audit_rule_known(krule); } void security_audit_rule_free(void *lsmrule) { security_ops->audit_rule_free(lsmrule); } int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, struct audit_context *actx) { return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); } #endif /* CONFIG_AUDIT */