// SPDX-License-Identifier: GPL-2.0-or-later /* * HD audio interface patch for Cirrus Logic CS420x chip * * Copyright (c) 2009 Takashi Iwai */ #include #include #include #include #include #include #include #include #include "hda_local.h" #include "hda_auto_parser.h" #include "hda_jack.h" #include "hda_generic.h" /* */ #define CS42L42_HP_CH (2U) #define CS42L42_HS_MIC_CH (1U) struct cs_spec { struct hda_gen_spec gen; unsigned int gpio_mask; unsigned int gpio_dir; unsigned int gpio_data; unsigned int gpio_eapd_hp; /* EAPD GPIO bit for headphones */ unsigned int gpio_eapd_speaker; /* EAPD GPIO bit for speakers */ /* CS421x */ unsigned int spdif_detect:1; unsigned int spdif_present:1; unsigned int sense_b:1; hda_nid_t vendor_nid; /* for MBP SPDIF control */ int (*spdif_sw_put)(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); unsigned int cs42l42_hp_jack_in:1; unsigned int cs42l42_mic_jack_in:1; unsigned int cs42l42_volume_init:1; char cs42l42_hp_volume[CS42L42_HP_CH]; char cs42l42_hs_mic_volume[CS42L42_HS_MIC_CH]; struct mutex cs8409_i2c_mux; /* verb exec op override */ int (*exec_verb)(struct hdac_device *dev, unsigned int cmd, unsigned int flags, unsigned int *res); }; /* available models with CS420x */ enum { CS420X_MBP53, CS420X_MBP55, CS420X_IMAC27, CS420X_GPIO_13, CS420X_GPIO_23, CS420X_MBP101, CS420X_MBP81, CS420X_MBA42, CS420X_AUTO, /* aliases */ CS420X_IMAC27_122 = CS420X_GPIO_23, CS420X_APPLE = CS420X_GPIO_13, }; /* CS421x boards */ enum { CS421X_CDB4210, CS421X_SENSE_B, CS421X_STUMPY, }; /* Vendor-specific processing widget */ #define CS420X_VENDOR_NID 0x11 #define CS_DIG_OUT1_PIN_NID 0x10 #define CS_DIG_OUT2_PIN_NID 0x15 #define CS_DMIC1_PIN_NID 0x0e #define CS_DMIC2_PIN_NID 0x12 /* coef indices */ #define IDX_SPDIF_STAT 0x0000 #define IDX_SPDIF_CTL 0x0001 #define IDX_ADC_CFG 0x0002 /* SZC bitmask, 4 modes below: * 0 = immediate, * 1 = digital immediate, analog zero-cross * 2 = digtail & analog soft-ramp * 3 = digital soft-ramp, analog zero-cross */ #define CS_COEF_ADC_SZC_MASK (3 << 0) #define CS_COEF_ADC_MIC_SZC_MODE (3 << 0) /* SZC setup for mic */ #define CS_COEF_ADC_LI_SZC_MODE (3 << 0) /* SZC setup for line-in */ /* PGA mode: 0 = differential, 1 = signle-ended */ #define CS_COEF_ADC_MIC_PGA_MODE (1 << 5) /* PGA setup for mic */ #define CS_COEF_ADC_LI_PGA_MODE (1 << 6) /* PGA setup for line-in */ #define IDX_DAC_CFG 0x0003 /* SZC bitmask, 4 modes below: * 0 = Immediate * 1 = zero-cross * 2 = soft-ramp * 3 = soft-ramp on zero-cross */ #define CS_COEF_DAC_HP_SZC_MODE (3 << 0) /* nid 0x02 */ #define CS_COEF_DAC_LO_SZC_MODE (3 << 2) /* nid 0x03 */ #define CS_COEF_DAC_SPK_SZC_MODE (3 << 4) /* nid 0x04 */ #define IDX_BEEP_CFG 0x0004 /* 0x0008 - test reg key */ /* 0x0009 - 0x0014 -> 12 test regs */ /* 0x0015 - visibility reg */ /* Cirrus Logic CS4208 */ #define CS4208_VENDOR_NID 0x24 /* * Cirrus Logic CS4210 * * 1 DAC => HP(sense) / Speakers, * 1 ADC <= LineIn(sense) / MicIn / DMicIn, * 1 SPDIF OUT => SPDIF Trasmitter(sense) */ #define CS4210_DAC_NID 0x02 #define CS4210_ADC_NID 0x03 #define CS4210_VENDOR_NID 0x0B #define CS421X_DMIC_PIN_NID 0x09 /* Port E */ #define CS421X_SPDIF_PIN_NID 0x0A /* Port H */ #define CS421X_IDX_DEV_CFG 0x01 #define CS421X_IDX_ADC_CFG 0x02 #define CS421X_IDX_DAC_CFG 0x03 #define CS421X_IDX_SPK_CTL 0x04 /* Cirrus Logic CS4213 is like CS4210 but does not have SPDIF input/output */ #define CS4213_VENDOR_NID 0x09 static inline int cs_vendor_coef_get(struct hda_codec *codec, unsigned int idx) { struct cs_spec *spec = codec->spec; snd_hda_codec_write(codec, spec->vendor_nid, 0, AC_VERB_SET_COEF_INDEX, idx); return snd_hda_codec_read(codec, spec->vendor_nid, 0, AC_VERB_GET_PROC_COEF, 0); } static inline void cs_vendor_coef_set(struct hda_codec *codec, unsigned int idx, unsigned int coef) { struct cs_spec *spec = codec->spec; snd_hda_codec_write(codec, spec->vendor_nid, 0, AC_VERB_SET_COEF_INDEX, idx); snd_hda_codec_write(codec, spec->vendor_nid, 0, AC_VERB_SET_PROC_COEF, coef); } /* * auto-mute and auto-mic switching * CS421x auto-output redirecting * HP/SPK/SPDIF */ static void cs_automute(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; /* mute HPs if spdif jack (SENSE_B) is present */ spec->gen.master_mute = !!(spec->spdif_present && spec->sense_b); snd_hda_gen_update_outputs(codec); if (spec->gpio_eapd_hp || spec->gpio_eapd_speaker) { if (spec->gen.automute_speaker) spec->gpio_data = spec->gen.hp_jack_present ? spec->gpio_eapd_hp : spec->gpio_eapd_speaker; else spec->gpio_data = spec->gpio_eapd_hp | spec->gpio_eapd_speaker; snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA, spec->gpio_data); } } static bool is_active_pin(struct hda_codec *codec, hda_nid_t nid) { unsigned int val; val = snd_hda_codec_get_pincfg(codec, nid); return (get_defcfg_connect(val) != AC_JACK_PORT_NONE); } static void init_input_coef(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; unsigned int coef; /* CS420x has multiple ADC, CS421x has single ADC */ if (spec->vendor_nid == CS420X_VENDOR_NID) { coef = cs_vendor_coef_get(codec, IDX_BEEP_CFG); if (is_active_pin(codec, CS_DMIC2_PIN_NID)) coef |= 1 << 4; /* DMIC2 2 chan on, GPIO1 off */ if (is_active_pin(codec, CS_DMIC1_PIN_NID)) coef |= 1 << 3; /* DMIC1 2 chan on, GPIO0 off * No effect if SPDIF_OUT2 is * selected in IDX_SPDIF_CTL. */ cs_vendor_coef_set(codec, IDX_BEEP_CFG, coef); } } static const struct hda_verb cs_coef_init_verbs[] = { {0x11, AC_VERB_SET_PROC_STATE, 1}, {0x11, AC_VERB_SET_COEF_INDEX, IDX_DAC_CFG}, {0x11, AC_VERB_SET_PROC_COEF, (0x002a /* DAC1/2/3 SZCMode Soft Ramp */ | 0x0040 /* Mute DACs on FIFO error */ | 0x1000 /* Enable DACs High Pass Filter */ | 0x0400 /* Disable Coefficient Auto increment */ )}, /* ADC1/2 - Digital and Analog Soft Ramp */ {0x11, AC_VERB_SET_COEF_INDEX, IDX_ADC_CFG}, {0x11, AC_VERB_SET_PROC_COEF, 0x000a}, /* Beep */ {0x11, AC_VERB_SET_COEF_INDEX, IDX_BEEP_CFG}, {0x11, AC_VERB_SET_PROC_COEF, 0x0007}, /* Enable Beep thru DAC1/2/3 */ {} /* terminator */ }; static const struct hda_verb cs4208_coef_init_verbs[] = { {0x01, AC_VERB_SET_POWER_STATE, 0x00}, /* AFG: D0 */ {0x24, AC_VERB_SET_PROC_STATE, 0x01}, /* VPW: processing on */ {0x24, AC_VERB_SET_COEF_INDEX, 0x0033}, {0x24, AC_VERB_SET_PROC_COEF, 0x0001}, /* A1 ICS */ {0x24, AC_VERB_SET_COEF_INDEX, 0x0034}, {0x24, AC_VERB_SET_PROC_COEF, 0x1C01}, /* A1 Enable, A Thresh = 300mV */ {} /* terminator */ }; /* Errata: CS4207 rev C0/C1/C2 Silicon * * http://www.cirrus.com/en/pubs/errata/ER880C3.pdf * * 6. At high temperature (TA > +85°C), the digital supply current (IVD) * may be excessive (up to an additional 200 μA), which is most easily * observed while the part is being held in reset (RESET# active low). * * Root Cause: At initial powerup of the device, the logic that drives * the clock and write enable to the S/PDIF SRC RAMs is not properly * initialized. * Certain random patterns will cause a steady leakage current in those * RAM cells. The issue will resolve once the SRCs are used (turned on). * * Workaround: The following verb sequence briefly turns on the S/PDIF SRC * blocks, which will alleviate the issue. */ static const struct hda_verb cs_errata_init_verbs[] = { {0x01, AC_VERB_SET_POWER_STATE, 0x00}, /* AFG: D0 */ {0x11, AC_VERB_SET_PROC_STATE, 0x01}, /* VPW: processing on */ {0x11, AC_VERB_SET_COEF_INDEX, 0x0008}, {0x11, AC_VERB_SET_PROC_COEF, 0x9999}, {0x11, AC_VERB_SET_COEF_INDEX, 0x0017}, {0x11, AC_VERB_SET_PROC_COEF, 0xa412}, {0x11, AC_VERB_SET_COEF_INDEX, 0x0001}, {0x11, AC_VERB_SET_PROC_COEF, 0x0009}, {0x07, AC_VERB_SET_POWER_STATE, 0x00}, /* S/PDIF Rx: D0 */ {0x08, AC_VERB_SET_POWER_STATE, 0x00}, /* S/PDIF Tx: D0 */ {0x11, AC_VERB_SET_COEF_INDEX, 0x0017}, {0x11, AC_VERB_SET_PROC_COEF, 0x2412}, {0x11, AC_VERB_SET_COEF_INDEX, 0x0008}, {0x11, AC_VERB_SET_PROC_COEF, 0x0000}, {0x11, AC_VERB_SET_COEF_INDEX, 0x0001}, {0x11, AC_VERB_SET_PROC_COEF, 0x0008}, {0x11, AC_VERB_SET_PROC_STATE, 0x00}, {} /* terminator */ }; /* SPDIF setup */ static void init_digital_coef(struct hda_codec *codec) { unsigned int coef; coef = 0x0002; /* SRC_MUTE soft-mute on SPDIF (if no lock) */ coef |= 0x0008; /* Replace with mute on error */ if (is_active_pin(codec, CS_DIG_OUT2_PIN_NID)) coef |= 0x4000; /* RX to TX1 or TX2 Loopthru / SPDIF2 * SPDIF_OUT2 is shared with GPIO1 and * DMIC_SDA2. */ cs_vendor_coef_set(codec, IDX_SPDIF_CTL, coef); } static int cs_init(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; if (spec->vendor_nid == CS420X_VENDOR_NID) { /* init_verb sequence for C0/C1/C2 errata*/ snd_hda_sequence_write(codec, cs_errata_init_verbs); snd_hda_sequence_write(codec, cs_coef_init_verbs); } else if (spec->vendor_nid == CS4208_VENDOR_NID) { snd_hda_sequence_write(codec, cs4208_coef_init_verbs); } snd_hda_gen_init(codec); if (spec->gpio_mask) { snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_MASK, spec->gpio_mask); snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DIRECTION, spec->gpio_dir); snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA, spec->gpio_data); } if (spec->vendor_nid == CS420X_VENDOR_NID) { init_input_coef(codec); init_digital_coef(codec); } return 0; } static int cs_build_controls(struct hda_codec *codec) { int err; err = snd_hda_gen_build_controls(codec); if (err < 0) return err; snd_hda_apply_fixup(codec, HDA_FIXUP_ACT_BUILD); return 0; } #define cs_free snd_hda_gen_free static const struct hda_codec_ops cs_patch_ops = { .build_controls = cs_build_controls, .build_pcms = snd_hda_gen_build_pcms, .init = cs_init, .free = cs_free, .unsol_event = snd_hda_jack_unsol_event, }; static int cs_parse_auto_config(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; int err; int i; err = snd_hda_parse_pin_defcfg(codec, &spec->gen.autocfg, NULL, 0); if (err < 0) return err; err = snd_hda_gen_parse_auto_config(codec, &spec->gen.autocfg); if (err < 0) return err; /* keep the ADCs powered up when it's dynamically switchable */ if (spec->gen.dyn_adc_switch) { unsigned int done = 0; for (i = 0; i < spec->gen.input_mux.num_items; i++) { int idx = spec->gen.dyn_adc_idx[i]; if (done & (1 << idx)) continue; snd_hda_gen_fix_pin_power(codec, spec->gen.adc_nids[idx]); done |= 1 << idx; } } return 0; } static const struct hda_model_fixup cs420x_models[] = { { .id = CS420X_MBP53, .name = "mbp53" }, { .id = CS420X_MBP55, .name = "mbp55" }, { .id = CS420X_IMAC27, .name = "imac27" }, { .id = CS420X_IMAC27_122, .name = "imac27_122" }, { .id = CS420X_APPLE, .name = "apple" }, { .id = CS420X_MBP101, .name = "mbp101" }, { .id = CS420X_MBP81, .name = "mbp81" }, { .id = CS420X_MBA42, .name = "mba42" }, {} }; static const struct snd_pci_quirk cs420x_fixup_tbl[] = { SND_PCI_QUIRK(0x10de, 0x0ac0, "MacBookPro 5,3", CS420X_MBP53), SND_PCI_QUIRK(0x10de, 0x0d94, "MacBookAir 3,1(2)", CS420X_MBP55), SND_PCI_QUIRK(0x10de, 0xcb79, "MacBookPro 5,5", CS420X_MBP55), SND_PCI_QUIRK(0x10de, 0xcb89, "MacBookPro 7,1", CS420X_MBP55), /* this conflicts with too many other models */ /*SND_PCI_QUIRK(0x8086, 0x7270, "IMac 27 Inch", CS420X_IMAC27),*/ /* codec SSID */ SND_PCI_QUIRK(0x106b, 0x0600, "iMac 14,1", CS420X_IMAC27_122), SND_PCI_QUIRK(0x106b, 0x1c00, "MacBookPro 8,1", CS420X_MBP81), SND_PCI_QUIRK(0x106b, 0x2000, "iMac 12,2", CS420X_IMAC27_122), SND_PCI_QUIRK(0x106b, 0x2800, "MacBookPro 10,1", CS420X_MBP101), SND_PCI_QUIRK(0x106b, 0x5600, "MacBookAir 5,2", CS420X_MBP81), SND_PCI_QUIRK(0x106b, 0x5b00, "MacBookAir 4,2", CS420X_MBA42), SND_PCI_QUIRK_VENDOR(0x106b, "Apple", CS420X_APPLE), {} /* terminator */ }; static const struct hda_pintbl mbp53_pincfgs[] = { { 0x09, 0x012b4050 }, { 0x0a, 0x90100141 }, { 0x0b, 0x90100140 }, { 0x0c, 0x018b3020 }, { 0x0d, 0x90a00110 }, { 0x0e, 0x400000f0 }, { 0x0f, 0x01cbe030 }, { 0x10, 0x014be060 }, { 0x12, 0x400000f0 }, { 0x15, 0x400000f0 }, {} /* terminator */ }; static const struct hda_pintbl mbp55_pincfgs[] = { { 0x09, 0x012b4030 }, { 0x0a, 0x90100121 }, { 0x0b, 0x90100120 }, { 0x0c, 0x400000f0 }, { 0x0d, 0x90a00110 }, { 0x0e, 0x400000f0 }, { 0x0f, 0x400000f0 }, { 0x10, 0x014be040 }, { 0x12, 0x400000f0 }, { 0x15, 0x400000f0 }, {} /* terminator */ }; static const struct hda_pintbl imac27_pincfgs[] = { { 0x09, 0x012b4050 }, { 0x0a, 0x90100140 }, { 0x0b, 0x90100142 }, { 0x0c, 0x018b3020 }, { 0x0d, 0x90a00110 }, { 0x0e, 0x400000f0 }, { 0x0f, 0x01cbe030 }, { 0x10, 0x014be060 }, { 0x12, 0x01ab9070 }, { 0x15, 0x400000f0 }, {} /* terminator */ }; static const struct hda_pintbl mbp101_pincfgs[] = { { 0x0d, 0x40ab90f0 }, { 0x0e, 0x90a600f0 }, { 0x12, 0x50a600f0 }, {} /* terminator */ }; static const struct hda_pintbl mba42_pincfgs[] = { { 0x09, 0x012b4030 }, /* HP */ { 0x0a, 0x400000f0 }, { 0x0b, 0x90100120 }, /* speaker */ { 0x0c, 0x400000f0 }, { 0x0d, 0x90a00110 }, /* mic */ { 0x0e, 0x400000f0 }, { 0x0f, 0x400000f0 }, { 0x10, 0x400000f0 }, { 0x12, 0x400000f0 }, { 0x15, 0x400000f0 }, {} /* terminator */ }; static const struct hda_pintbl mba6_pincfgs[] = { { 0x10, 0x032120f0 }, /* HP */ { 0x11, 0x500000f0 }, { 0x12, 0x90100010 }, /* Speaker */ { 0x13, 0x500000f0 }, { 0x14, 0x500000f0 }, { 0x15, 0x770000f0 }, { 0x16, 0x770000f0 }, { 0x17, 0x430000f0 }, { 0x18, 0x43ab9030 }, /* Mic */ { 0x19, 0x770000f0 }, { 0x1a, 0x770000f0 }, { 0x1b, 0x770000f0 }, { 0x1c, 0x90a00090 }, { 0x1d, 0x500000f0 }, { 0x1e, 0x500000f0 }, { 0x1f, 0x500000f0 }, { 0x20, 0x500000f0 }, { 0x21, 0x430000f0 }, { 0x22, 0x430000f0 }, {} /* terminator */ }; static void cs420x_fixup_gpio_13(struct hda_codec *codec, const struct hda_fixup *fix, int action) { if (action == HDA_FIXUP_ACT_PRE_PROBE) { struct cs_spec *spec = codec->spec; spec->gpio_eapd_hp = 2; /* GPIO1 = headphones */ spec->gpio_eapd_speaker = 8; /* GPIO3 = speakers */ spec->gpio_mask = spec->gpio_dir = spec->gpio_eapd_hp | spec->gpio_eapd_speaker; } } static void cs420x_fixup_gpio_23(struct hda_codec *codec, const struct hda_fixup *fix, int action) { if (action == HDA_FIXUP_ACT_PRE_PROBE) { struct cs_spec *spec = codec->spec; spec->gpio_eapd_hp = 4; /* GPIO2 = headphones */ spec->gpio_eapd_speaker = 8; /* GPIO3 = speakers */ spec->gpio_mask = spec->gpio_dir = spec->gpio_eapd_hp | spec->gpio_eapd_speaker; } } static const struct hda_fixup cs420x_fixups[] = { [CS420X_MBP53] = { .type = HDA_FIXUP_PINS, .v.pins = mbp53_pincfgs, .chained = true, .chain_id = CS420X_APPLE, }, [CS420X_MBP55] = { .type = HDA_FIXUP_PINS, .v.pins = mbp55_pincfgs, .chained = true, .chain_id = CS420X_GPIO_13, }, [CS420X_IMAC27] = { .type = HDA_FIXUP_PINS, .v.pins = imac27_pincfgs, .chained = true, .chain_id = CS420X_GPIO_13, }, [CS420X_GPIO_13] = { .type = HDA_FIXUP_FUNC, .v.func = cs420x_fixup_gpio_13, }, [CS420X_GPIO_23] = { .type = HDA_FIXUP_FUNC, .v.func = cs420x_fixup_gpio_23, }, [CS420X_MBP101] = { .type = HDA_FIXUP_PINS, .v.pins = mbp101_pincfgs, .chained = true, .chain_id = CS420X_GPIO_13, }, [CS420X_MBP81] = { .type = HDA_FIXUP_VERBS, .v.verbs = (const struct hda_verb[]) { /* internal mic ADC2: right only, single ended */ {0x11, AC_VERB_SET_COEF_INDEX, IDX_ADC_CFG}, {0x11, AC_VERB_SET_PROC_COEF, 0x102a}, {} }, .chained = true, .chain_id = CS420X_GPIO_13, }, [CS420X_MBA42] = { .type = HDA_FIXUP_PINS, .v.pins = mba42_pincfgs, .chained = true, .chain_id = CS420X_GPIO_13, }, }; static struct cs_spec *cs_alloc_spec(struct hda_codec *codec, int vendor_nid) { struct cs_spec *spec; spec = kzalloc(sizeof(*spec), GFP_KERNEL); if (!spec) return NULL; codec->spec = spec; spec->vendor_nid = vendor_nid; codec->power_save_node = 1; snd_hda_gen_spec_init(&spec->gen); return spec; } static int patch_cs420x(struct hda_codec *codec) { struct cs_spec *spec; int err; spec = cs_alloc_spec(codec, CS420X_VENDOR_NID); if (!spec) return -ENOMEM; codec->patch_ops = cs_patch_ops; spec->gen.automute_hook = cs_automute; codec->single_adc_amp = 1; snd_hda_pick_fixup(codec, cs420x_models, cs420x_fixup_tbl, cs420x_fixups); snd_hda_apply_fixup(codec, HDA_FIXUP_ACT_PRE_PROBE); err = cs_parse_auto_config(codec); if (err < 0) goto error; snd_hda_apply_fixup(codec, HDA_FIXUP_ACT_PROBE); return 0; error: cs_free(codec); return err; } /* * CS4208 support: * Its layout is no longer compatible with CS4206/CS4207 */ enum { CS4208_MAC_AUTO, CS4208_MBA6, CS4208_MBP11, CS4208_MACMINI, CS4208_GPIO0, }; static const struct hda_model_fixup cs4208_models[] = { { .id = CS4208_GPIO0, .name = "gpio0" }, { .id = CS4208_MBA6, .name = "mba6" }, { .id = CS4208_MBP11, .name = "mbp11" }, { .id = CS4208_MACMINI, .name = "macmini" }, {} }; static const struct snd_pci_quirk cs4208_fixup_tbl[] = { SND_PCI_QUIRK_VENDOR(0x106b, "Apple", CS4208_MAC_AUTO), {} /* terminator */ }; /* codec SSID matching */ static const struct snd_pci_quirk cs4208_mac_fixup_tbl[] = { SND_PCI_QUIRK(0x106b, 0x5e00, "MacBookPro 11,2", CS4208_MBP11), SND_PCI_QUIRK(0x106b, 0x6c00, "MacMini 7,1", CS4208_MACMINI), SND_PCI_QUIRK(0x106b, 0x7100, "MacBookAir 6,1", CS4208_MBA6), SND_PCI_QUIRK(0x106b, 0x7200, "MacBookAir 6,2", CS4208_MBA6), SND_PCI_QUIRK(0x106b, 0x7b00, "MacBookPro 12,1", CS4208_MBP11), {} /* terminator */ }; static void cs4208_fixup_gpio0(struct hda_codec *codec, const struct hda_fixup *fix, int action) { if (action == HDA_FIXUP_ACT_PRE_PROBE) { struct cs_spec *spec = codec->spec; spec->gpio_eapd_hp = 0; spec->gpio_eapd_speaker = 1; spec->gpio_mask = spec->gpio_dir = spec->gpio_eapd_hp | spec->gpio_eapd_speaker; } } static const struct hda_fixup cs4208_fixups[]; /* remap the fixup from codec SSID and apply it */ static void cs4208_fixup_mac(struct hda_codec *codec, const struct hda_fixup *fix, int action) { if (action != HDA_FIXUP_ACT_PRE_PROBE) return; codec->fixup_id = HDA_FIXUP_ID_NOT_SET; snd_hda_pick_fixup(codec, NULL, cs4208_mac_fixup_tbl, cs4208_fixups); if (codec->fixup_id == HDA_FIXUP_ID_NOT_SET) codec->fixup_id = CS4208_GPIO0; /* default fixup */ snd_hda_apply_fixup(codec, action); } /* MacMini 7,1 has the inverted jack detection */ static void cs4208_fixup_macmini(struct hda_codec *codec, const struct hda_fixup *fix, int action) { static const struct hda_pintbl pincfgs[] = { { 0x18, 0x00ab9150 }, /* mic (audio-in) jack: disable detect */ { 0x21, 0x004be140 }, /* SPDIF: disable detect */ { } }; if (action == HDA_FIXUP_ACT_PRE_PROBE) { /* HP pin (0x10) has an inverted detection */ codec->inv_jack_detect = 1; /* disable the bogus Mic and SPDIF jack detections */ snd_hda_apply_pincfgs(codec, pincfgs); } } static int cs4208_spdif_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct cs_spec *spec = codec->spec; hda_nid_t pin = spec->gen.autocfg.dig_out_pins[0]; int pinctl = ucontrol->value.integer.value[0] ? PIN_OUT : 0; snd_hda_set_pin_ctl_cache(codec, pin, pinctl); return spec->spdif_sw_put(kcontrol, ucontrol); } /* hook the SPDIF switch */ static void cs4208_fixup_spdif_switch(struct hda_codec *codec, const struct hda_fixup *fix, int action) { if (action == HDA_FIXUP_ACT_BUILD) { struct cs_spec *spec = codec->spec; struct snd_kcontrol *kctl; if (!spec->gen.autocfg.dig_out_pins[0]) return; kctl = snd_hda_find_mixer_ctl(codec, "IEC958 Playback Switch"); if (!kctl) return; spec->spdif_sw_put = kctl->put; kctl->put = cs4208_spdif_sw_put; } } static const struct hda_fixup cs4208_fixups[] = { [CS4208_MBA6] = { .type = HDA_FIXUP_PINS, .v.pins = mba6_pincfgs, .chained = true, .chain_id = CS4208_GPIO0, }, [CS4208_MBP11] = { .type = HDA_FIXUP_FUNC, .v.func = cs4208_fixup_spdif_switch, .chained = true, .chain_id = CS4208_GPIO0, }, [CS4208_MACMINI] = { .type = HDA_FIXUP_FUNC, .v.func = cs4208_fixup_macmini, .chained = true, .chain_id = CS4208_GPIO0, }, [CS4208_GPIO0] = { .type = HDA_FIXUP_FUNC, .v.func = cs4208_fixup_gpio0, }, [CS4208_MAC_AUTO] = { .type = HDA_FIXUP_FUNC, .v.func = cs4208_fixup_mac, }, }; /* correct the 0dB offset of input pins */ static void cs4208_fix_amp_caps(struct hda_codec *codec, hda_nid_t adc) { unsigned int caps; caps = query_amp_caps(codec, adc, HDA_INPUT); caps &= ~(AC_AMPCAP_OFFSET); caps |= 0x02; snd_hda_override_amp_caps(codec, adc, HDA_INPUT, caps); } static int patch_cs4208(struct hda_codec *codec) { struct cs_spec *spec; int err; spec = cs_alloc_spec(codec, CS4208_VENDOR_NID); if (!spec) return -ENOMEM; codec->patch_ops = cs_patch_ops; spec->gen.automute_hook = cs_automute; /* exclude NID 0x10 (HP) from output volumes due to different steps */ spec->gen.out_vol_mask = 1ULL << 0x10; snd_hda_pick_fixup(codec, cs4208_models, cs4208_fixup_tbl, cs4208_fixups); snd_hda_apply_fixup(codec, HDA_FIXUP_ACT_PRE_PROBE); snd_hda_override_wcaps(codec, 0x18, get_wcaps(codec, 0x18) | AC_WCAP_STEREO); cs4208_fix_amp_caps(codec, 0x18); cs4208_fix_amp_caps(codec, 0x1b); cs4208_fix_amp_caps(codec, 0x1c); err = cs_parse_auto_config(codec); if (err < 0) goto error; snd_hda_apply_fixup(codec, HDA_FIXUP_ACT_PROBE); return 0; error: cs_free(codec); return err; } /* * Cirrus Logic CS4210 * * 1 DAC => HP(sense) / Speakers, * 1 ADC <= LineIn(sense) / MicIn / DMicIn, * 1 SPDIF OUT => SPDIF Trasmitter(sense) */ /* CS4210 board names */ static const struct hda_model_fixup cs421x_models[] = { { .id = CS421X_CDB4210, .name = "cdb4210" }, { .id = CS421X_STUMPY, .name = "stumpy" }, {} }; static const struct snd_pci_quirk cs421x_fixup_tbl[] = { /* Test Intel board + CDB2410 */ SND_PCI_QUIRK(0x8086, 0x5001, "DP45SG/CDB4210", CS421X_CDB4210), {} /* terminator */ }; /* CS4210 board pinconfigs */ /* Default CS4210 (CDB4210)*/ static const struct hda_pintbl cdb4210_pincfgs[] = { { 0x05, 0x0321401f }, { 0x06, 0x90170010 }, { 0x07, 0x03813031 }, { 0x08, 0xb7a70037 }, { 0x09, 0xb7a6003e }, { 0x0a, 0x034510f0 }, {} /* terminator */ }; /* Stumpy ChromeBox */ static const struct hda_pintbl stumpy_pincfgs[] = { { 0x05, 0x022120f0 }, { 0x06, 0x901700f0 }, { 0x07, 0x02a120f0 }, { 0x08, 0x77a70037 }, { 0x09, 0x77a6003e }, { 0x0a, 0x434510f0 }, {} /* terminator */ }; /* Setup GPIO/SENSE for each board (if used) */ static void cs421x_fixup_sense_b(struct hda_codec *codec, const struct hda_fixup *fix, int action) { struct cs_spec *spec = codec->spec; if (action == HDA_FIXUP_ACT_PRE_PROBE) spec->sense_b = 1; } static const struct hda_fixup cs421x_fixups[] = { [CS421X_CDB4210] = { .type = HDA_FIXUP_PINS, .v.pins = cdb4210_pincfgs, .chained = true, .chain_id = CS421X_SENSE_B, }, [CS421X_SENSE_B] = { .type = HDA_FIXUP_FUNC, .v.func = cs421x_fixup_sense_b, }, [CS421X_STUMPY] = { .type = HDA_FIXUP_PINS, .v.pins = stumpy_pincfgs, }, }; static const struct hda_verb cs421x_coef_init_verbs[] = { {0x0B, AC_VERB_SET_PROC_STATE, 1}, {0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_DEV_CFG}, /* * Disable Coefficient Index Auto-Increment(DAI)=1, * PDREF=0 */ {0x0B, AC_VERB_SET_PROC_COEF, 0x0001 }, {0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_ADC_CFG}, /* ADC SZCMode = Digital Soft Ramp */ {0x0B, AC_VERB_SET_PROC_COEF, 0x0002 }, {0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_DAC_CFG}, {0x0B, AC_VERB_SET_PROC_COEF, (0x0002 /* DAC SZCMode = Digital Soft Ramp */ | 0x0004 /* Mute DAC on FIFO error */ | 0x0008 /* Enable DAC High Pass Filter */ )}, {} /* terminator */ }; /* Errata: CS4210 rev A1 Silicon * * http://www.cirrus.com/en/pubs/errata/ * * Description: * 1. Performance degredation is present in the ADC. * 2. Speaker output is not completely muted upon HP detect. * 3. Noise is present when clipping occurs on the amplified * speaker outputs. * * Workaround: * The following verb sequence written to the registers during * initialization will correct the issues listed above. */ static const struct hda_verb cs421x_coef_init_verbs_A1_silicon_fixes[] = { {0x0B, AC_VERB_SET_PROC_STATE, 0x01}, /* VPW: processing on */ {0x0B, AC_VERB_SET_COEF_INDEX, 0x0006}, {0x0B, AC_VERB_SET_PROC_COEF, 0x9999}, /* Test mode: on */ {0x0B, AC_VERB_SET_COEF_INDEX, 0x000A}, {0x0B, AC_VERB_SET_PROC_COEF, 0x14CB}, /* Chop double */ {0x0B, AC_VERB_SET_COEF_INDEX, 0x0011}, {0x0B, AC_VERB_SET_PROC_COEF, 0xA2D0}, /* Increase ADC current */ {0x0B, AC_VERB_SET_COEF_INDEX, 0x001A}, {0x0B, AC_VERB_SET_PROC_COEF, 0x02A9}, /* Mute speaker */ {0x0B, AC_VERB_SET_COEF_INDEX, 0x001B}, {0x0B, AC_VERB_SET_PROC_COEF, 0X1006}, /* Remove noise */ {} /* terminator */ }; /* Speaker Amp Gain is controlled by the vendor widget's coef 4 */ static const DECLARE_TLV_DB_SCALE(cs421x_speaker_boost_db_scale, 900, 300, 0); static int cs421x_boost_vol_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 3; return 0; } static int cs421x_boost_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = cs_vendor_coef_get(codec, CS421X_IDX_SPK_CTL) & 0x0003; return 0; } static int cs421x_boost_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); unsigned int vol = ucontrol->value.integer.value[0]; unsigned int coef = cs_vendor_coef_get(codec, CS421X_IDX_SPK_CTL); unsigned int original_coef = coef; coef &= ~0x0003; coef |= (vol & 0x0003); if (original_coef != coef) { cs_vendor_coef_set(codec, CS421X_IDX_SPK_CTL, coef); return 1; } return 0; } static const struct snd_kcontrol_new cs421x_speaker_boost_ctl = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ), .name = "Speaker Boost Playback Volume", .info = cs421x_boost_vol_info, .get = cs421x_boost_vol_get, .put = cs421x_boost_vol_put, .tlv = { .p = cs421x_speaker_boost_db_scale }, }; static void cs4210_pinmux_init(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; unsigned int def_conf, coef; /* GPIO, DMIC_SCL, DMIC_SDA and SENSE_B are multiplexed */ coef = cs_vendor_coef_get(codec, CS421X_IDX_DEV_CFG); if (spec->gpio_mask) coef |= 0x0008; /* B1,B2 are GPIOs */ else coef &= ~0x0008; if (spec->sense_b) coef |= 0x0010; /* B2 is SENSE_B, not inverted */ else coef &= ~0x0010; cs_vendor_coef_set(codec, CS421X_IDX_DEV_CFG, coef); if ((spec->gpio_mask || spec->sense_b) && is_active_pin(codec, CS421X_DMIC_PIN_NID)) { /* * GPIO or SENSE_B forced - disconnect the DMIC pin. */ def_conf = snd_hda_codec_get_pincfg(codec, CS421X_DMIC_PIN_NID); def_conf &= ~AC_DEFCFG_PORT_CONN; def_conf |= (AC_JACK_PORT_NONE << AC_DEFCFG_PORT_CONN_SHIFT); snd_hda_codec_set_pincfg(codec, CS421X_DMIC_PIN_NID, def_conf); } } static void cs4210_spdif_automute(struct hda_codec *codec, struct hda_jack_callback *tbl) { struct cs_spec *spec = codec->spec; bool spdif_present = false; hda_nid_t spdif_pin = spec->gen.autocfg.dig_out_pins[0]; /* detect on spdif is specific to CS4210 */ if (!spec->spdif_detect || spec->vendor_nid != CS4210_VENDOR_NID) return; spdif_present = snd_hda_jack_detect(codec, spdif_pin); if (spdif_present == spec->spdif_present) return; spec->spdif_present = spdif_present; /* SPDIF TX on/off */ snd_hda_set_pin_ctl(codec, spdif_pin, spdif_present ? PIN_OUT : 0); cs_automute(codec); } static void parse_cs421x_digital(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; struct auto_pin_cfg *cfg = &spec->gen.autocfg; int i; for (i = 0; i < cfg->dig_outs; i++) { hda_nid_t nid = cfg->dig_out_pins[i]; if (get_wcaps(codec, nid) & AC_WCAP_UNSOL_CAP) { spec->spdif_detect = 1; snd_hda_jack_detect_enable_callback(codec, nid, cs4210_spdif_automute); } } } static int cs421x_init(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; if (spec->vendor_nid == CS4210_VENDOR_NID) { snd_hda_sequence_write(codec, cs421x_coef_init_verbs); snd_hda_sequence_write(codec, cs421x_coef_init_verbs_A1_silicon_fixes); cs4210_pinmux_init(codec); } snd_hda_gen_init(codec); if (spec->gpio_mask) { snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_MASK, spec->gpio_mask); snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DIRECTION, spec->gpio_dir); snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA, spec->gpio_data); } init_input_coef(codec); cs4210_spdif_automute(codec, NULL); return 0; } static void fix_volume_caps(struct hda_codec *codec, hda_nid_t dac) { unsigned int caps; /* set the upper-limit for mixer amp to 0dB */ caps = query_amp_caps(codec, dac, HDA_OUTPUT); caps &= ~(0x7f << AC_AMPCAP_NUM_STEPS_SHIFT); caps |= ((caps >> AC_AMPCAP_OFFSET_SHIFT) & 0x7f) << AC_AMPCAP_NUM_STEPS_SHIFT; snd_hda_override_amp_caps(codec, dac, HDA_OUTPUT, caps); } static int cs421x_parse_auto_config(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; hda_nid_t dac = CS4210_DAC_NID; int err; fix_volume_caps(codec, dac); err = snd_hda_parse_pin_defcfg(codec, &spec->gen.autocfg, NULL, 0); if (err < 0) return err; err = snd_hda_gen_parse_auto_config(codec, &spec->gen.autocfg); if (err < 0) return err; parse_cs421x_digital(codec); if (spec->gen.autocfg.speaker_outs && spec->vendor_nid == CS4210_VENDOR_NID) { if (!snd_hda_gen_add_kctl(&spec->gen, NULL, &cs421x_speaker_boost_ctl)) return -ENOMEM; } return 0; } #ifdef CONFIG_PM /* * Manage PDREF, when transitioning to D3hot * (DAC,ADC) -> D3, PDREF=1, AFG->D3 */ static int cs421x_suspend(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; unsigned int coef; snd_hda_shutup_pins(codec); snd_hda_codec_write(codec, CS4210_DAC_NID, 0, AC_VERB_SET_POWER_STATE, AC_PWRST_D3); snd_hda_codec_write(codec, CS4210_ADC_NID, 0, AC_VERB_SET_POWER_STATE, AC_PWRST_D3); if (spec->vendor_nid == CS4210_VENDOR_NID) { coef = cs_vendor_coef_get(codec, CS421X_IDX_DEV_CFG); coef |= 0x0004; /* PDREF */ cs_vendor_coef_set(codec, CS421X_IDX_DEV_CFG, coef); } return 0; } #endif static const struct hda_codec_ops cs421x_patch_ops = { .build_controls = snd_hda_gen_build_controls, .build_pcms = snd_hda_gen_build_pcms, .init = cs421x_init, .free = cs_free, .unsol_event = snd_hda_jack_unsol_event, #ifdef CONFIG_PM .suspend = cs421x_suspend, #endif }; static int patch_cs4210(struct hda_codec *codec) { struct cs_spec *spec; int err; spec = cs_alloc_spec(codec, CS4210_VENDOR_NID); if (!spec) return -ENOMEM; codec->patch_ops = cs421x_patch_ops; spec->gen.automute_hook = cs_automute; snd_hda_pick_fixup(codec, cs421x_models, cs421x_fixup_tbl, cs421x_fixups); snd_hda_apply_fixup(codec, HDA_FIXUP_ACT_PRE_PROBE); /* * Update the GPIO/DMIC/SENSE_B pinmux before the configuration * is auto-parsed. If GPIO or SENSE_B is forced, DMIC input * is disabled. */ cs4210_pinmux_init(codec); err = cs421x_parse_auto_config(codec); if (err < 0) goto error; snd_hda_apply_fixup(codec, HDA_FIXUP_ACT_PROBE); return 0; error: cs_free(codec); return err; } static int patch_cs4213(struct hda_codec *codec) { struct cs_spec *spec; int err; spec = cs_alloc_spec(codec, CS4213_VENDOR_NID); if (!spec) return -ENOMEM; codec->patch_ops = cs421x_patch_ops; err = cs421x_parse_auto_config(codec); if (err < 0) goto error; return 0; error: cs_free(codec); return err; } /* Cirrus Logic CS8409 HDA bridge with * companion codec CS42L42 */ #define CS8409_VENDOR_NID 0x47 #define CS8409_CS42L42_HP_PIN_NID 0x24 #define CS8409_CS42L42_SPK_PIN_NID 0x2c #define CS8409_CS42L42_AMIC_PIN_NID 0x34 #define CS8409_CS42L42_DMIC_PIN_NID 0x44 #define CS8409_CS42L42_DMIC_ADC_PIN_NID 0x22 #define CS42L42_HSDET_AUTO_DONE 0x02 #define CS42L42_HSTYPE_MASK 0x03 #define CS42L42_JACK_INSERTED 0x0C #define CS42L42_JACK_REMOVED 0x00 #define GPIO3_INT (1 << 3) #define GPIO4_INT (1 << 4) #define GPIO5_INT (1 << 5) #define CS42L42_I2C_ADDR (0x48 << 1) #define CIR_I2C_ADDR 0x0059 #define CIR_I2C_DATA 0x005A #define CIR_I2C_CTRL 0x005B #define CIR_I2C_STATUS 0x005C #define CIR_I2C_QWRITE 0x005D #define CIR_I2C_QREAD 0x005E #define CS8409_CS42L42_HP_VOL_REAL_MIN (-63) #define CS8409_CS42L42_HP_VOL_REAL_MAX (0) #define CS8409_CS42L42_AMIC_VOL_REAL_MIN (-97) #define CS8409_CS42L42_AMIC_VOL_REAL_MAX (12) #define CS8409_CS42L42_REG_HS_VOLUME_CHA (0x2301) #define CS8409_CS42L42_REG_HS_VOLUME_CHB (0x2303) #define CS8409_CS42L42_REG_AMIC_VOLUME (0x1D03) struct cs8409_i2c_param { unsigned int addr; unsigned int reg; }; struct cs8409_cir_param { unsigned int nid; unsigned int cir; unsigned int coeff; }; enum { CS8409_BULLSEYE, CS8409_WARLOCK, CS8409_CYBORG, CS8409_FIXUPS, }; static void cs8409_cs42l42_fixups(struct hda_codec *codec, const struct hda_fixup *fix, int action); static int cs8409_cs42l42_exec_verb(struct hdac_device *dev, unsigned int cmd, unsigned int flags, unsigned int *res); /* Dell Inspiron models with cs8409/cs42l42 */ static const struct hda_model_fixup cs8409_models[] = { { .id = CS8409_BULLSEYE, .name = "bullseye" }, { .id = CS8409_WARLOCK, .name = "warlock" }, { .id = CS8409_CYBORG, .name = "cyborg" }, {} }; /* Dell Inspiron platforms * with cs8409 bridge and cs42l42 codec */ static const struct snd_pci_quirk cs8409_fixup_tbl[] = { SND_PCI_QUIRK(0x1028, 0x0A11, "Bullseye", CS8409_BULLSEYE), SND_PCI_QUIRK(0x1028, 0x0A12, "Bullseye", CS8409_BULLSEYE), SND_PCI_QUIRK(0x1028, 0x0A23, "Bullseye", CS8409_BULLSEYE), SND_PCI_QUIRK(0x1028, 0x0A24, "Bullseye", CS8409_BULLSEYE), SND_PCI_QUIRK(0x1028, 0x0A25, "Bullseye", CS8409_BULLSEYE), SND_PCI_QUIRK(0x1028, 0x0A29, "Bullseye", CS8409_BULLSEYE), SND_PCI_QUIRK(0x1028, 0x0A2A, "Bullseye", CS8409_BULLSEYE), SND_PCI_QUIRK(0x1028, 0x0A2B, "Bullseye", CS8409_BULLSEYE), SND_PCI_QUIRK(0x1028, 0x0AB0, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0AB2, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0AB1, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0AB3, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0AB4, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0AB5, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0AD9, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0ADA, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0ADB, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0ADC, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0AF4, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0AF5, "Warlock", CS8409_WARLOCK), SND_PCI_QUIRK(0x1028, 0x0A77, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0A78, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0A79, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0A7A, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0A7D, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0A7E, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0A7F, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0A80, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0ADF, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0AE0, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0AE1, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0AE2, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0AE9, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0AEA, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0AEB, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0AEC, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0AED, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0AEE, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0AEF, "Cyborg", CS8409_CYBORG), SND_PCI_QUIRK(0x1028, 0x0AF0, "Cyborg", CS8409_CYBORG), {} /* terminator */ }; static const struct hda_verb cs8409_cs42l42_init_verbs[] = { { 0x01, AC_VERB_SET_GPIO_WAKE_MASK, 0x0018 }, /* WAKE from GPIO 3,4 */ { 0x47, AC_VERB_SET_PROC_STATE, 0x0001 }, /* Enable VPW processing */ { 0x47, AC_VERB_SET_COEF_INDEX, 0x0002 }, /* Configure GPIO 6,7 */ { 0x47, AC_VERB_SET_PROC_COEF, 0x0080 }, /* I2C mode */ { 0x47, AC_VERB_SET_COEF_INDEX, 0x005b }, /* Set I2C bus speed */ { 0x47, AC_VERB_SET_PROC_COEF, 0x0200 }, /* 100kHz I2C_STO = 2 */ {} /* terminator */ }; static const struct hda_pintbl cs8409_cs42l42_pincfgs[] = { { 0x24, 0x042120f0 }, /* ASP-1-TX */ { 0x34, 0x04a12050 }, /* ASP-1-RX */ { 0x2c, 0x901000f0 }, /* ASP-2-TX */ { 0x44, 0x90a00090 }, /* DMIC-1 */ {} /* terminator */ }; static const struct hda_fixup cs8409_fixups[] = { [CS8409_BULLSEYE] = { .type = HDA_FIXUP_PINS, .v.pins = cs8409_cs42l42_pincfgs, .chained = true, .chain_id = CS8409_FIXUPS, }, [CS8409_WARLOCK] = { .type = HDA_FIXUP_PINS, .v.pins = cs8409_cs42l42_pincfgs, .chained = true, .chain_id = CS8409_FIXUPS, }, [CS8409_CYBORG] = { .type = HDA_FIXUP_PINS, .v.pins = cs8409_cs42l42_pincfgs, .chained = true, .chain_id = CS8409_FIXUPS, }, [CS8409_FIXUPS] = { .type = HDA_FIXUP_FUNC, .v.func = cs8409_cs42l42_fixups, }, }; /* Vendor specific HW configuration for CS42L42 */ static const struct cs8409_i2c_param cs42l42_init_reg_seq[] = { { 0x1010, 0xB0 }, { 0x1D01, 0x00 }, { 0x1D02, 0x06 }, { 0x1D03, 0x00 }, { 0x1107, 0x01 }, { 0x1009, 0x02 }, { 0x1007, 0x03 }, { 0x1201, 0x00 }, { 0x1208, 0x13 }, { 0x1205, 0xFF }, { 0x1206, 0x00 }, { 0x1207, 0x20 }, { 0x1202, 0x0D }, { 0x2A02, 0x02 }, { 0x2A03, 0x00 }, { 0x2A04, 0x00 }, { 0x2A05, 0x02 }, { 0x2A06, 0x00 }, { 0x2A07, 0x20 }, { 0x2A08, 0x02 }, { 0x2A09, 0x00 }, { 0x2A0A, 0x80 }, { 0x2A0B, 0x02 }, { 0x2A0C, 0x00 }, { 0x2A0D, 0xA0 }, { 0x2A01, 0x0C }, { 0x2902, 0x01 }, { 0x2903, 0x02 }, { 0x2904, 0x00 }, { 0x2905, 0x00 }, { 0x2901, 0x01 }, { 0x1101, 0x0A }, { 0x1102, 0x84 }, { 0x2301, 0x00 }, { 0x2303, 0x00 }, { 0x2302, 0x3f }, { 0x2001, 0x03 }, { 0x1B75, 0xB6 }, { 0x1B73, 0xC2 }, { 0x1129, 0x01 }, { 0x1121, 0xF3 }, { 0x1103, 0x20 }, { 0x1105, 0x00 }, { 0x1112, 0xC0 }, { 0x1113, 0x80 }, { 0x1C03, 0xC0 }, { 0x1105, 0x00 }, { 0x1112, 0xC0 }, { 0x1101, 0x02 }, {} /* Terminator */ }; /* Vendor specific hw configuration for CS8409 */ static const struct cs8409_cir_param cs8409_cs42l42_hw_cfg[] = { { 0x47, 0x00, 0xb008 }, /* +PLL1/2_EN, +I2C_EN */ { 0x47, 0x01, 0x0002 }, /* ASP1/2_EN=0, ASP1_STP=1 */ { 0x47, 0x02, 0x0a80 }, /* ASP1/2_BUS_IDLE=10, +GPIO_I2C */ { 0x47, 0x19, 0x0800 }, /* ASP1.A: TX.LAP=0, TX.LSZ=24 bits, TX.LCS=0 */ { 0x47, 0x1a, 0x0820 }, /* ASP1.A: TX.RAP=0, TX.RSZ=24 bits, TX.RCS=32 */ { 0x47, 0x29, 0x0800 }, /* ASP2.A: TX.LAP=0, TX.LSZ=24 bits, TX.LCS=0 */ { 0x47, 0x2a, 0x2800 }, /* ASP2.A: TX.RAP=1, TX.RSZ=24 bits, TX.RCS=0 */ { 0x47, 0x39, 0x0800 }, /* ASP1.A: RX.LAP=0, RX.LSZ=24 bits, RX.LCS=0 */ { 0x47, 0x3a, 0x0800 }, /* ASP1.A: RX.RAP=0, RX.RSZ=24 bits, RX.RCS=0 */ { 0x47, 0x03, 0x8000 }, /* ASP1: LCHI = 00h */ { 0x47, 0x04, 0x28ff }, /* ASP1: MC/SC_SRCSEL=PLL1, LCPR=FFh */ { 0x47, 0x05, 0x0062 }, /* ASP1: MCEN=0, FSD=011, SCPOL_IN/OUT=0, SCDIV=1:4 */ { 0x47, 0x06, 0x801f }, /* ASP2: LCHI=1Fh */ { 0x47, 0x07, 0x283f }, /* ASP2: MC/SC_SRCSEL=PLL1, LCPR=3Fh */ { 0x47, 0x08, 0x805c }, /* ASP2: 5050=1, MCEN=0, FSD=010, SCPOL_IN/OUT=1, SCDIV=1:16 */ { 0x47, 0x09, 0x0023 }, /* DMIC1_MO=10b, DMIC1/2_SR=1 */ { 0x47, 0x0a, 0x0000 }, /* ASP1/2_BEEP=0 */ { 0x47, 0x01, 0x0062 }, /* ASP1/2_EN=1, ASP1_STP=1 */ { 0x47, 0x00, 0x9008 }, /* -PLL2_EN */ { 0x47, 0x68, 0x0000 }, /* TX2.A: pre-scale att.=0 dB */ { 0x47, 0x82, 0xfc03 }, /* ASP1/2_xxx_EN=1, ASP1/2_MCLK_EN=0, DMIC1_SCL_EN=1 */ { 0x47, 0xc0, 0x9999 }, /* test mode on */ { 0x47, 0xc5, 0x0000 }, /* GPIO hysteresis = 30 us */ { 0x47, 0xc0, 0x0000 }, /* test mode off */ {} /* Terminator */ }; static const struct cs8409_cir_param cs8409_cs42l42_bullseye_atn[] = { { 0x47, 0x65, 0x4000 }, /* EQ_SEL=1, EQ1/2_EN=0 */ { 0x47, 0x64, 0x4000 }, /* +EQ_ACC */ { 0x47, 0x65, 0x4010 }, /* +EQ2_EN */ { 0x47, 0x63, 0x0647 }, /* EQ_DATA_HI=0x0647 */ { 0x47, 0x64, 0xc0c7 }, /* +EQ_WRT, +EQ_ACC, EQ_ADR=0, EQ_DATA_LO=0x67 */ { 0x47, 0x63, 0x0647 }, /* EQ_DATA_HI=0x0647 */ { 0x47, 0x64, 0xc1c7 }, /* +EQ_WRT, +EQ_ACC, EQ_ADR=1, EQ_DATA_LO=0x67 */ { 0x47, 0x63, 0xf370 }, /* EQ_DATA_HI=0xf370 */ { 0x47, 0x64, 0xc271 }, /* +EQ_WRT, +EQ_ACC, EQ_ADR=2, EQ_DATA_LO=0x71 */ { 0x47, 0x63, 0x1ef8 }, /* EQ_DATA_HI=0x1ef8 */ { 0x47, 0x64, 0xc348 }, /* +EQ_WRT, +EQ_ACC, EQ_ADR=3, EQ_DATA_LO=0x48 */ { 0x47, 0x63, 0xc110 }, /* EQ_DATA_HI=0xc110 */ { 0x47, 0x64, 0xc45a }, /* +EQ_WRT, +EQ_ACC, EQ_ADR=4, EQ_DATA_LO=0x5a */ { 0x47, 0x63, 0x1f29 }, /* EQ_DATA_HI=0x1f29 */ { 0x47, 0x64, 0xc574 }, /* +EQ_WRT, +EQ_ACC, EQ_ADR=5, EQ_DATA_LO=0x74 */ { 0x47, 0x63, 0x1d7a }, /* EQ_DATA_HI=0x1d7a */ { 0x47, 0x64, 0xc653 }, /* +EQ_WRT, +EQ_ACC, EQ_ADR=6, EQ_DATA_LO=0x53 */ { 0x47, 0x63, 0xc38c }, /* EQ_DATA_HI=0xc38c */ { 0x47, 0x64, 0xc714 }, /* +EQ_WRT, +EQ_ACC, EQ_ADR=7, EQ_DATA_LO=0x14 */ { 0x47, 0x63, 0x1ca3 }, /* EQ_DATA_HI=0x1ca3 */ { 0x47, 0x64, 0xc8c7 }, /* +EQ_WRT, +EQ_ACC, EQ_ADR=8, EQ_DATA_LO=0xc7 */ { 0x47, 0x63, 0xc38c }, /* EQ_DATA_HI=0xc38c */ { 0x47, 0x64, 0xc914 }, /* +EQ_WRT, +EQ_ACC, EQ_ADR=9, EQ_DATA_LO=0x14 */ { 0x47, 0x64, 0x0000 }, /* -EQ_ACC, -EQ_WRT */ {} /* Terminator */ }; /** * cs8409_enable_i2c_clock - Enable I2C clocks * @codec: the codec instance * @enable: Enable or disable I2C clocks * * Enable or Disable I2C clocks. */ static void cs8409_enable_i2c_clock(struct hda_codec *codec, unsigned int enable) { unsigned int retval; unsigned int newval; retval = cs_vendor_coef_get(codec, 0x0); newval = (enable) ? (retval | 0x8) : (retval & 0xfffffff7); cs_vendor_coef_set(codec, 0x0, newval); } /** * cs8409_i2c_wait_complete - Wait for I2C transaction * @codec: the codec instance * * Wait for I2C transaction to complete. * Return -1 if transaction wait times out. */ static int cs8409_i2c_wait_complete(struct hda_codec *codec) { int repeat = 5; unsigned int retval; do { retval = cs_vendor_coef_get(codec, CIR_I2C_STATUS); if ((retval & 0x18) != 0x18) { usleep_range(2000, 4000); --repeat; } else return 0; } while (repeat); return -1; } /** * cs8409_i2c_read - CS8409 I2C Read. * @codec: the codec instance * @i2c_address: I2C Address * @i2c_reg: Register to read * @paged: Is a paged transaction * * CS8409 I2C Read. * Returns negative on error, otherwise returns read value in bits 0-7. */ static int cs8409_i2c_read(struct hda_codec *codec, unsigned int i2c_address, unsigned int i2c_reg, unsigned int paged) { unsigned int i2c_reg_data; unsigned int read_data; cs8409_enable_i2c_clock(codec, 1); cs_vendor_coef_set(codec, CIR_I2C_ADDR, i2c_address); if (paged) { cs_vendor_coef_set(codec, CIR_I2C_QWRITE, i2c_reg >> 8); if (cs8409_i2c_wait_complete(codec) < 0) { codec_err(codec, "%s() Paged Transaction Failed 0x%02x : 0x%04x\n", __func__, i2c_address, i2c_reg); return -EIO; } } i2c_reg_data = (i2c_reg << 8) & 0x0ffff; cs_vendor_coef_set(codec, CIR_I2C_QREAD, i2c_reg_data); if (cs8409_i2c_wait_complete(codec) < 0) { codec_err(codec, "%s() Transaction Failed 0x%02x : 0x%04x\n", __func__, i2c_address, i2c_reg); return -EIO; } /* Register in bits 15-8 and the data in 7-0 */ read_data = cs_vendor_coef_get(codec, CIR_I2C_QREAD); cs8409_enable_i2c_clock(codec, 0); return read_data & 0x0ff; } /** * cs8409_i2c_write - CS8409 I2C Write. * @codec: the codec instance * @i2c_address: I2C Address * @i2c_reg: Register to write to * @i2c_data: Data to write * @paged: Is a paged transaction * * CS8409 I2C Write. * Returns negative on error, otherwise returns 0. */ static int cs8409_i2c_write(struct hda_codec *codec, unsigned int i2c_address, unsigned int i2c_reg, unsigned int i2c_data, unsigned int paged) { unsigned int i2c_reg_data; cs8409_enable_i2c_clock(codec, 1); cs_vendor_coef_set(codec, CIR_I2C_ADDR, i2c_address); if (paged) { cs_vendor_coef_set(codec, CIR_I2C_QWRITE, i2c_reg >> 8); if (cs8409_i2c_wait_complete(codec) < 0) { codec_err(codec, "%s() Paged Transaction Failed 0x%02x : 0x%04x\n", __func__, i2c_address, i2c_reg); return -EIO; } } i2c_reg_data = ((i2c_reg << 8) & 0x0ff00) | (i2c_data & 0x0ff); cs_vendor_coef_set(codec, CIR_I2C_QWRITE, i2c_reg_data); if (cs8409_i2c_wait_complete(codec) < 0) { codec_err(codec, "%s() Transaction Failed 0x%02x : 0x%04x\n", __func__, i2c_address, i2c_reg); return -EIO; } cs8409_enable_i2c_clock(codec, 0); return 0; } static int cs8409_cs42l42_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); u16 nid = get_amp_nid(kcontrol); u8 chs = get_amp_channels(kcontrol); codec_dbg(codec, "%s() nid: %d\n", __func__, nid); switch (nid) { case CS8409_CS42L42_HP_PIN_NID: uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = chs == 3 ? 2 : 1; uinfo->value.integer.min = CS8409_CS42L42_HP_VOL_REAL_MIN; uinfo->value.integer.max = CS8409_CS42L42_HP_VOL_REAL_MAX; break; case CS8409_CS42L42_AMIC_PIN_NID: uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = chs == 3 ? 2 : 1; uinfo->value.integer.min = CS8409_CS42L42_AMIC_VOL_REAL_MIN; uinfo->value.integer.max = CS8409_CS42L42_AMIC_VOL_REAL_MAX; break; default: break; } return 0; } static void cs8409_cs42l42_update_volume(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; int data; mutex_lock(&spec->cs8409_i2c_mux); data = cs8409_i2c_read(codec, CS42L42_I2C_ADDR, CS8409_CS42L42_REG_HS_VOLUME_CHA, 1); if (data >= 0) spec->cs42l42_hp_volume[0] = -data; else spec->cs42l42_hp_volume[0] = CS8409_CS42L42_HP_VOL_REAL_MIN; data = cs8409_i2c_read(codec, CS42L42_I2C_ADDR, CS8409_CS42L42_REG_HS_VOLUME_CHB, 1); if (data >= 0) spec->cs42l42_hp_volume[1] = -data; else spec->cs42l42_hp_volume[1] = CS8409_CS42L42_HP_VOL_REAL_MIN; data = cs8409_i2c_read(codec, CS42L42_I2C_ADDR, CS8409_CS42L42_REG_AMIC_VOLUME, 1); if (data >= 0) spec->cs42l42_hs_mic_volume[0] = -data; else spec->cs42l42_hs_mic_volume[0] = CS8409_CS42L42_AMIC_VOL_REAL_MIN; mutex_unlock(&spec->cs8409_i2c_mux); spec->cs42l42_volume_init = 1; } static int cs8409_cs42l42_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct cs_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); int chs = get_amp_channels(kcontrol); long *valp = ucontrol->value.integer.value; if (!spec->cs42l42_volume_init) { snd_hda_power_up(codec); cs8409_cs42l42_update_volume(codec); snd_hda_power_down(codec); } switch (nid) { case CS8409_CS42L42_HP_PIN_NID: if (chs & BIT(0)) *valp++ = spec->cs42l42_hp_volume[0]; if (chs & BIT(1)) *valp++ = spec->cs42l42_hp_volume[1]; break; case CS8409_CS42L42_AMIC_PIN_NID: if (chs & BIT(0)) *valp++ = spec->cs42l42_hs_mic_volume[0]; break; default: break; } return 0; } static int cs8409_cs42l42_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct cs_spec *spec = codec->spec; hda_nid_t nid = get_amp_nid(kcontrol); int chs = get_amp_channels(kcontrol); long *valp = ucontrol->value.integer.value; int change = 0; char vol; snd_hda_power_up(codec); switch (nid) { case CS8409_CS42L42_HP_PIN_NID: mutex_lock(&spec->cs8409_i2c_mux); if (chs & BIT(0)) { vol = -(*valp); change = cs8409_i2c_write(codec, CS42L42_I2C_ADDR, CS8409_CS42L42_REG_HS_VOLUME_CHA, vol, 1); valp++; } if (chs & BIT(1)) { vol = -(*valp); change |= cs8409_i2c_write(codec, CS42L42_I2C_ADDR, CS8409_CS42L42_REG_HS_VOLUME_CHB, vol, 1); } mutex_unlock(&spec->cs8409_i2c_mux); break; case CS8409_CS42L42_AMIC_PIN_NID: mutex_lock(&spec->cs8409_i2c_mux); if (chs & BIT(0)) { change = cs8409_i2c_write( codec, CS42L42_I2C_ADDR, CS8409_CS42L42_REG_AMIC_VOLUME, (char)*valp, 1); valp++; } mutex_unlock(&spec->cs8409_i2c_mux); break; default: break; } cs8409_cs42l42_update_volume(codec); snd_hda_power_down(codec); return change; } static const DECLARE_TLV_DB_SCALE( cs8409_cs42l42_hp_db_scale, CS8409_CS42L42_HP_VOL_REAL_MIN * 100, 100, 1); static const DECLARE_TLV_DB_SCALE( cs8409_cs42l42_amic_db_scale, CS8409_CS42L42_AMIC_VOL_REAL_MIN * 100, 100, 1); static const struct snd_kcontrol_new cs8409_cs42l42_hp_volume_mixer = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .index = 0, .name = "Headphone Playback Volume", .subdevice = (HDA_SUBDEV_AMP_FLAG | HDA_SUBDEV_NID_FLAG), .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ), .info = cs8409_cs42l42_volume_info, .get = cs8409_cs42l42_volume_get, .put = cs8409_cs42l42_volume_put, .tlv = { .p = cs8409_cs42l42_hp_db_scale }, .private_value = HDA_COMPOSE_AMP_VAL( CS8409_CS42L42_HP_PIN_NID, 3, 0, HDA_OUTPUT) | HDA_AMP_VAL_MIN_MUTE }; static const struct snd_kcontrol_new cs8409_cs42l42_amic_volume_mixer = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .index = 0, .name = "Mic Capture Volume", .subdevice = (HDA_SUBDEV_AMP_FLAG | HDA_SUBDEV_NID_FLAG), .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ), .info = cs8409_cs42l42_volume_info, .get = cs8409_cs42l42_volume_get, .put = cs8409_cs42l42_volume_put, .tlv = { .p = cs8409_cs42l42_amic_db_scale }, .private_value = HDA_COMPOSE_AMP_VAL( CS8409_CS42L42_AMIC_PIN_NID, 1, 0, HDA_INPUT) | HDA_AMP_VAL_MIN_MUTE }; /* Assert/release RTS# line to CS42L42 */ static void cs8409_cs42l42_reset(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; /* Assert RTS# line */ snd_hda_codec_write(codec, codec->core.afg, 0, AC_VERB_SET_GPIO_DATA, 0); /* wait ~10ms */ usleep_range(10000, 15000); /* Release RTS# line */ snd_hda_codec_write(codec, codec->core.afg, 0, AC_VERB_SET_GPIO_DATA, GPIO5_INT); /* wait ~10ms */ usleep_range(10000, 15000); mutex_lock(&spec->cs8409_i2c_mux); /* Clear interrupts, by reading interrupt status registers */ cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x1308, 1); cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x1309, 1); cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x130A, 1); cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x130F, 1); mutex_unlock(&spec->cs8409_i2c_mux); } /* Configure CS42L42 slave codec for jack autodetect */ static void cs8409_cs42l42_enable_jack_detect(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; mutex_lock(&spec->cs8409_i2c_mux); /* Set TIP_SENSE_EN for analog front-end of tip sense. */ cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x1b70, 0x0020, 1); /* Clear WAKE# */ cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x1b71, 0x0001, 1); /* Wait ~2.5ms */ usleep_range(2500, 3000); /* Set mode WAKE# output follows the combination logic directly */ cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x1b71, 0x0020, 1); /* Clear interrupts status */ cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x130f, 1); cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x1b7b, 1); /* Enable interrupt */ cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x1320, 0x03, 1); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x1b79, 0x00, 1); mutex_unlock(&spec->cs8409_i2c_mux); } /* Enable and run CS42L42 slave codec jack auto detect */ static void cs8409_cs42l42_run_jack_detect(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; mutex_lock(&spec->cs8409_i2c_mux); /* Clear interrupts */ cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x1308, 1); cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x1b77, 1); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x1102, 0x87, 1); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x1f06, 0x86, 1); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x1b74, 0x07, 1); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x131b, 0x01, 1); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x1120, 0x80, 1); /* Wait ~110ms*/ usleep_range(110000, 200000); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x111f, 0x77, 1); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x1120, 0xc0, 1); /* Wait ~10ms */ usleep_range(10000, 25000); mutex_unlock(&spec->cs8409_i2c_mux); } static void cs8409_cs42l42_reg_setup(struct hda_codec *codec) { const struct cs8409_i2c_param *seq = cs42l42_init_reg_seq; struct cs_spec *spec = codec->spec; mutex_lock(&spec->cs8409_i2c_mux); for (; seq->addr; seq++) cs8409_i2c_write(codec, CS42L42_I2C_ADDR, seq->addr, seq->reg, 1); mutex_unlock(&spec->cs8409_i2c_mux); } /* * In the case of CS8409 we do not have unsolicited events from NID's 0x24 * and 0x34 where hs mic and hp are connected. Companion codec CS42L42 will * generate interrupt via gpio 4 to notify jack events. We have to overwrite * generic snd_hda_jack_unsol_event(), read CS42L42 jack detect status registers * and then notify status via generic snd_hda_jack_unsol_event() call. */ static void cs8409_jack_unsol_event(struct hda_codec *codec, unsigned int res) { struct cs_spec *spec = codec->spec; int status_changed = 0; int reg_cdc_status; int reg_hs_status; int reg_ts_status; int type; struct hda_jack_tbl *jk; /* jack_unsol_event() will be called every time gpio line changing state. * In this case gpio4 line goes up as a result of reading interrupt status * registers in previous cs8409_jack_unsol_event() call. * We don't need to handle this event, ignoring... */ if ((res & (1 << 4))) return; mutex_lock(&spec->cs8409_i2c_mux); /* Read jack detect status registers */ reg_cdc_status = cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x1308, 1); reg_hs_status = cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x1124, 1); reg_ts_status = cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x130f, 1); /* Clear interrupts, by reading interrupt status registers */ cs8409_i2c_read(codec, CS42L42_I2C_ADDR, 0x1b7b, 1); mutex_unlock(&spec->cs8409_i2c_mux); /* If status values are < 0, read error has occurred. */ if (reg_cdc_status < 0 || reg_hs_status < 0 || reg_ts_status < 0) return; /* HSDET_AUTO_DONE */ if (reg_cdc_status & CS42L42_HSDET_AUTO_DONE) { type = ((reg_hs_status & CS42L42_HSTYPE_MASK) + 1); /* CS42L42 reports optical jack as type 4 * We don't handle optical jack */ if (type != 4) { if (!spec->cs42l42_hp_jack_in) { status_changed = 1; spec->cs42l42_hp_jack_in = 1; } /* type = 3 has no mic */ if ((!spec->cs42l42_mic_jack_in) && (type != 3)) { status_changed = 1; spec->cs42l42_mic_jack_in = 1; } } else { if (spec->cs42l42_hp_jack_in || spec->cs42l42_mic_jack_in) { status_changed = 1; spec->cs42l42_hp_jack_in = 0; spec->cs42l42_mic_jack_in = 0; } } } else { /* TIP_SENSE INSERT/REMOVE */ switch (reg_ts_status) { case CS42L42_JACK_INSERTED: cs8409_cs42l42_run_jack_detect(codec); break; case CS42L42_JACK_REMOVED: if (spec->cs42l42_hp_jack_in || spec->cs42l42_mic_jack_in) { status_changed = 1; spec->cs42l42_hp_jack_in = 0; spec->cs42l42_mic_jack_in = 0; } break; default: /* jack in transition */ status_changed = 0; break; } } if (status_changed) { snd_hda_set_pin_ctl(codec, CS8409_CS42L42_SPK_PIN_NID, spec->cs42l42_hp_jack_in ? 0 : PIN_OUT); /* Report jack*/ jk = snd_hda_jack_tbl_get_mst(codec, CS8409_CS42L42_HP_PIN_NID, 0); if (jk) { snd_hda_jack_unsol_event(codec, (jk->tag << AC_UNSOL_RES_TAG_SHIFT) & AC_UNSOL_RES_TAG); } /* Report jack*/ jk = snd_hda_jack_tbl_get_mst(codec, CS8409_CS42L42_AMIC_PIN_NID, 0); if (jk) { snd_hda_jack_unsol_event(codec, (jk->tag << AC_UNSOL_RES_TAG_SHIFT) & AC_UNSOL_RES_TAG); } } } #ifdef CONFIG_PM /* Manage PDREF, when transition to D3hot */ static int cs8409_suspend(struct hda_codec *codec) { struct cs_spec *spec = codec->spec; mutex_lock(&spec->cs8409_i2c_mux); /* Power down CS42L42 ASP/EQ/MIX/HP */ cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x1101, 0xfe, 1); mutex_unlock(&spec->cs8409_i2c_mux); /* Assert CS42L42 RTS# line */ snd_hda_codec_write(codec, codec->core.afg, 0, AC_VERB_SET_GPIO_DATA, 0); snd_hda_shutup_pins(codec); return 0; } #endif /* Enable/Disable Unsolicited Response for gpio(s) 3,4 */ static void cs8409_enable_ur(struct hda_codec *codec, int flag) { /* GPIO4 INT# and GPIO3 WAKE# */ snd_hda_codec_write(codec, codec->core.afg, 0, AC_VERB_SET_GPIO_UNSOLICITED_RSP_MASK, flag ? (GPIO3_INT | GPIO4_INT) : 0); snd_hda_codec_write(codec, codec->core.afg, 0, AC_VERB_SET_UNSOLICITED_ENABLE, flag ? AC_UNSOL_ENABLED : 0); } /* Vendor specific HW configuration * PLL, ASP, I2C, SPI, GPIOs, DMIC etc... */ static void cs8409_cs42l42_hw_init(struct hda_codec *codec) { const struct cs8409_cir_param *seq = cs8409_cs42l42_hw_cfg; const struct cs8409_cir_param *seq_bullseye = cs8409_cs42l42_bullseye_atn; struct cs_spec *spec = codec->spec; if (spec->gpio_mask) { snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_MASK, spec->gpio_mask); snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DIRECTION, spec->gpio_dir); snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA, spec->gpio_data); } for (; seq->nid; seq++) cs_vendor_coef_set(codec, seq->cir, seq->coeff); if (codec->fixup_id == CS8409_BULLSEYE) for (; seq_bullseye->nid; seq_bullseye++) cs_vendor_coef_set(codec, seq_bullseye->cir, seq_bullseye->coeff); /* Disable Unsolicited Response during boot */ cs8409_enable_ur(codec, 0); /* Reset CS42L42 */ cs8409_cs42l42_reset(codec); /* Initialise CS42L42 companion codec */ cs8409_cs42l42_reg_setup(codec); if (codec->fixup_id == CS8409_WARLOCK || codec->fixup_id == CS8409_CYBORG) { /* FULL_SCALE_VOL = 0 for Warlock / Cyborg */ mutex_lock(&spec->cs8409_i2c_mux); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, 0x2001, 0x01, 1); mutex_unlock(&spec->cs8409_i2c_mux); /* DMIC1_MO=00b, DMIC1/2_SR=1 */ cs_vendor_coef_set(codec, 0x09, 0x0003); } /* Restore Volumes after Resume */ if (spec->cs42l42_volume_init) { mutex_lock(&spec->cs8409_i2c_mux); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, CS8409_CS42L42_REG_HS_VOLUME_CHA, -spec->cs42l42_hp_volume[0], 1); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, CS8409_CS42L42_REG_HS_VOLUME_CHB, -spec->cs42l42_hp_volume[1], 1); cs8409_i2c_write(codec, CS42L42_I2C_ADDR, CS8409_CS42L42_REG_AMIC_VOLUME, spec->cs42l42_hs_mic_volume[0], 1); mutex_unlock(&spec->cs8409_i2c_mux); } cs8409_cs42l42_update_volume(codec); cs8409_cs42l42_enable_jack_detect(codec); /* Enable Unsolicited Response */ cs8409_enable_ur(codec, 1); } static int cs8409_cs42l42_init(struct hda_codec *codec) { int ret = snd_hda_gen_init(codec); if (!ret) snd_hda_apply_fixup(codec, HDA_FIXUP_ACT_INIT); return ret; } static const struct hda_codec_ops cs8409_cs42l42_patch_ops = { .build_controls = cs_build_controls, .build_pcms = snd_hda_gen_build_pcms, .init = cs8409_cs42l42_init, .free = cs_free, .unsol_event = cs8409_jack_unsol_event, #ifdef CONFIG_PM .suspend = cs8409_suspend, #endif }; static void cs8409_cs42l42_fixups(struct hda_codec *codec, const struct hda_fixup *fix, int action) { struct cs_spec *spec = codec->spec; int caps; switch (action) { case HDA_FIXUP_ACT_PRE_PROBE: snd_hda_add_verbs(codec, cs8409_cs42l42_init_verbs); /* verb exec op override */ spec->exec_verb = codec->core.exec_verb; codec->core.exec_verb = cs8409_cs42l42_exec_verb; mutex_init(&spec->cs8409_i2c_mux); codec->patch_ops = cs8409_cs42l42_patch_ops; spec->gen.suppress_auto_mute = 1; spec->gen.no_primary_hp = 1; spec->gen.suppress_vmaster = 1; /* GPIO 5 out, 3,4 in */ spec->gpio_dir = GPIO5_INT; spec->gpio_data = 0; spec->gpio_mask = 0x03f; spec->cs42l42_hp_jack_in = 0; spec->cs42l42_mic_jack_in = 0; /* Basic initial sequence for specific hw configuration */ snd_hda_sequence_write(codec, cs8409_cs42l42_init_verbs); /* CS8409 is simple HDA bridge and intended to be used with a remote * companion codec. Most of input/output PIN(s) have only basic * capabilities. NID(s) 0x24 and 0x34 have only OUTC and INC * capabilities and no presence detect capable (PDC) and call to * snd_hda_gen_build_controls() will mark them as non detectable * phantom jacks. However, in this configuration companion codec * CS42L42 is connected to these pins and it has jack detect * capabilities. We have to override pin capabilities, * otherwise they will not be created as input devices. */ caps = snd_hdac_read_parm(&codec->core, CS8409_CS42L42_HP_PIN_NID, AC_PAR_PIN_CAP); if (caps >= 0) snd_hdac_override_parm(&codec->core, CS8409_CS42L42_HP_PIN_NID, AC_PAR_PIN_CAP, (caps | (AC_PINCAP_IMP_SENSE | AC_PINCAP_PRES_DETECT))); caps = snd_hdac_read_parm(&codec->core, CS8409_CS42L42_AMIC_PIN_NID, AC_PAR_PIN_CAP); if (caps >= 0) snd_hdac_override_parm(&codec->core, CS8409_CS42L42_AMIC_PIN_NID, AC_PAR_PIN_CAP, (caps | (AC_PINCAP_IMP_SENSE | AC_PINCAP_PRES_DETECT))); snd_hda_override_wcaps(codec, CS8409_CS42L42_HP_PIN_NID, (get_wcaps(codec, CS8409_CS42L42_HP_PIN_NID) | AC_WCAP_UNSOL_CAP)); snd_hda_override_wcaps(codec, CS8409_CS42L42_AMIC_PIN_NID, (get_wcaps(codec, CS8409_CS42L42_AMIC_PIN_NID) | AC_WCAP_UNSOL_CAP)); break; case HDA_FIXUP_ACT_PROBE: /* Set initial volume on Bullseye to -26 dB */ if (codec->fixup_id == CS8409_BULLSEYE) snd_hda_codec_amp_init_stereo(codec, CS8409_CS42L42_DMIC_ADC_PIN_NID, HDA_INPUT, 0, 0xff, 0x19); snd_hda_gen_add_kctl(&spec->gen, NULL, &cs8409_cs42l42_hp_volume_mixer); snd_hda_gen_add_kctl(&spec->gen, NULL, &cs8409_cs42l42_amic_volume_mixer); cs8409_cs42l42_hw_init(codec); snd_hda_codec_set_name(codec, "CS8409/CS42L42"); break; case HDA_FIXUP_ACT_INIT: cs8409_cs42l42_hw_init(codec); fallthrough; case HDA_FIXUP_ACT_BUILD: /* Run jack auto detect first time on boot * after controls have been added, to check if jack has * been already plugged in. * Run immediately after init. */ cs8409_cs42l42_run_jack_detect(codec); usleep_range(100000, 150000); break; default: break; } } static int cs8409_cs42l42_exec_verb(struct hdac_device *dev, unsigned int cmd, unsigned int flags, unsigned int *res) { struct hda_codec *codec = container_of(dev, struct hda_codec, core); struct cs_spec *spec = codec->spec; unsigned int nid = ((cmd >> 20) & 0x07f); unsigned int verb = ((cmd >> 8) & 0x0fff); /* CS8409 pins have no AC_PINSENSE_PRESENCE * capabilities. We have to intercept 2 calls for pins 0x24 and 0x34 * and return correct pin sense values for read_pin_sense() call from * hda_jack based on CS42L42 jack detect status. */ switch (nid) { case CS8409_CS42L42_HP_PIN_NID: if (verb == AC_VERB_GET_PIN_SENSE) { *res = (spec->cs42l42_hp_jack_in) ? AC_PINSENSE_PRESENCE : 0; return 0; } break; case CS8409_CS42L42_AMIC_PIN_NID: if (verb == AC_VERB_GET_PIN_SENSE) { *res = (spec->cs42l42_mic_jack_in) ? AC_PINSENSE_PRESENCE : 0; return 0; } break; default: break; } return spec->exec_verb(dev, cmd, flags, res); } static int patch_cs8409(struct hda_codec *codec) { int err; if (!cs_alloc_spec(codec, CS8409_VENDOR_NID)) return -ENOMEM; snd_hda_pick_fixup(codec, cs8409_models, cs8409_fixup_tbl, cs8409_fixups); codec_dbg(codec, "Picked ID=%d, VID=%08x, DEV=%08x\n", codec->fixup_id, codec->bus->pci->subsystem_vendor, codec->bus->pci->subsystem_device); snd_hda_apply_fixup(codec, HDA_FIXUP_ACT_PRE_PROBE); err = cs_parse_auto_config(codec); if (err < 0) { cs_free(codec); return err; } snd_hda_apply_fixup(codec, HDA_FIXUP_ACT_PROBE); return 0; } /* * patch entries */ static const struct hda_device_id snd_hda_id_cirrus[] = { HDA_CODEC_ENTRY(0x10134206, "CS4206", patch_cs420x), HDA_CODEC_ENTRY(0x10134207, "CS4207", patch_cs420x), HDA_CODEC_ENTRY(0x10134208, "CS4208", patch_cs4208), HDA_CODEC_ENTRY(0x10134210, "CS4210", patch_cs4210), HDA_CODEC_ENTRY(0x10134213, "CS4213", patch_cs4213), HDA_CODEC_ENTRY(0x10138409, "CS8409", patch_cs8409), {} /* terminator */ }; MODULE_DEVICE_TABLE(hdaudio, snd_hda_id_cirrus); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Cirrus Logic HD-audio codec"); static struct hda_codec_driver cirrus_driver = { .id = snd_hda_id_cirrus, }; module_hda_codec_driver(cirrus_driver);